
Clemson University
TigerPrints
Graduate Research and Discovery Symposium
(GRADS) Research and Innovation Month

Spring 2013

Exploring Supply Chains from a Technical Debt
Perspective
J. Yates Monteith

John D. McGregor

Follow this and additional works at: https://tigerprints.clemson.edu/grads_symposium

This Poster is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in
Graduate Research and Discovery Symposium (GRADS) by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

Recommended Citation
Monteith, J. Yates and McGregor, John D., "Exploring Supply Chains from a Technical Debt Perspective" (2013). Graduate Research
and Discovery Symposium (GRADS). 55.
https://tigerprints.clemson.edu/grads_symposium/55

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/rim?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/grads_symposium/55?utm_source=tigerprints.clemson.edu%2Fgrads_symposium%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Exploring Supply Chains from a Technical Debt Perspective

J. Yates Montieth and John D. McGregor

{jymonte, johnmc}@cs.clemson.edu
School of Computing, Clemson University

Abstract

Software development has evolved from software development

organizations building custom solutions for every need and

creating a backlog of applications needed by users to specialized

organizations producing components that are supplied to other

software development organizations to speed the development of

their software products. Our objective is to illustrate how a

manager might use supply chain information to evaluate software

being considered for inclusion in a product. We investigated the

Eclipse platform code to illustrate analysis methods that produce

information of use to decision makers. The technical debt of the

software pieces was measured using the Technical Debt plug-in

to SONAR as one input into the evaluation of supply chain

quality. The dependency graphs of uses relationships among files

were analyzed using graph metrics such as betweenness

centrality. There was a statistically significant moderate

correlation between the technical debt for a file and the

betweenness centrality for that file. This relationship is used as

the basis for a heuristic approach to forming advice to a

development manager regarding which assets to acquire.

Technical Debt – What’s Not Quite Right

Experiments

In a software supply chain those nodes that are central to

the chain are the ones that aggregate the functionality to be

delivered to the customer. Centrality is a measurement of a

node‘s relative importance within a graph or network, while

betweenness centrality accomplishes this through shortest-path

analysis. Betweenness centrality is defined as follows:

𝐵𝐶 =
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠 ≠𝑡 ≠𝑣

Where 𝜎𝑠𝑡 is the number of shortest paths from node s

to node t, and 𝜎𝑠𝑡(𝑣) is the number of shortest paths from s to t

that pass through 𝑣.

In our experiment, we posed the question:

• Is there a relationship between the amount of technical debt

attributed to a file and the betweenness centrality of the file?

With the null hypothesis:

• There is no correlation between technical debt and

betweenness centrality.

Experiment 2: Longitudinal Analysis of Candidate Subgraphs

By analyzing the metrics produced by both Sonar and

Understand, we were able to identify a single cluster which had a

significant change from one version to the next. Cluster 9 was

not the biggest cluster in terms of any metrics, but saw an 80%

reduction in code size, 50% reduction in code violations, and an

80% reduction in technical debt from version JDT 3.4 to JDT 3.5.

What is more telling is the reduction of technical debt as

measured in man-days, which indicates roughly 114 man-days of

effort were put into fixing the code between these versions.

Using our method to identify and isolate candidate clusters for

examination, our findings indicate that the Eclipse Developers

have a technical debt, or at least quality conscience, perspective

on both development and code maintenance. This is further

evidenced by the relatively small amount of changes that were

made from JDT version 3.5 to 3.6

Conclusion

Metaphor to describe the coding properly and coding fast, or “not-

quite-right” code. The initial “debt “represents the effort it would

take to correct the code, while the ”interest“ can be seen as the

amount of additional work that must be as a result of the initial

“debt.” Through using the Sonar tool, not only are we able to

quantify technical debt via a discrete number of code violations,

we are able to represent it in man-days and dollars.

Debt can be incurred strategically, for a number of different

reasons:

• Technology is not mature enough to be integrated

• Non-critical features in the face of known bugs

• Non-code related artifacts in the face of schedule faces

Traditionally, Supply Chains represent the flow of raw materials to

completed products. In a software context, raw products can be

thought of as developers and design techniques.

Supply chains exist within a software dependency through the

flow of development assets from one organization to another.

Some assets may be not be code, such as processes or

architectures, while others may be code based, related through

source-code dependency.

We have modeled code-based software supply chains as

dependency graphs. In our graphs, each node represents a

source file, while each edge connecting two nodes represents a

generalized “uses” relationship.

We have provided a heuristic approach to examining software for

inclusion in an organization’s supply chain. We use betweenness

centrality to identify the most important files and technical debt to

identify the files most in need to rework. These measures were

applied to a set of versions of the Eclipse JDT package. Our

heuristic pointed to an area in the internal supply chain which the

experienced developers of the Eclipse platform also identified as

needing rework. This distinction is the object of further study.

Figure 3: JDT 3.4

Figure 4: JDT 4.5

Supply Chains

Experiment 1: Betweenness Centrality and Technical Debt

For our experiments, we have modeled a subcomponent of the

Eclipse Platform: the Eclipse Java Development Tools (JDT). We

have examined three versions, 3.4, 3.5 and 3.6 and created

network representations of their internal supply chains. We have

calculated technical debt using the SONAR technical debt

analysis tool. We have computed additional metrics using locally

developed tools and Understand, a commercial static analysis

tool.

Version Nodes /

Files

Edges /

Dependencies

Lines

JDT 3.4 1,429 16,361 229,110

JDT 3.5 1,437 16,553 317,487

JDT 3.6 1,564 17,222 322,642

Version Correlation Coefficient One-Tailed P Value

JDT 3.4 0.43607052 < 0.0001

JDT 3.5 0.42565911 < 0.0001

JDT 3.6 0.42765676 < 0.0001

Figure 1: Size Metrics

Figure 2: Betweenness Correlations

The calculations resulted in a significant, but moderate

correlation between technical debt and betweenness centrality,

sufficient to reject the null hypothesis.

Experiment 2: Longitudinal Analysis of Candidate Subgraphs

When acquiring software components from a supply chain,

acceptance testing is often too costly or time consuming for most

software producing organizations. Because of this, reducing the

problem space for acceptance testing is integral to informed

component acquisition. In order to accomplish this, we used

betweenness centrality and technical debt to filter out less

important nodes in our dependency graph, while using a spring-

embedded edge-weighted layout to organize sub-graphs into

clusters of similar dependencies.

Nodes were filtered based on technical debt. Successive

refinements on increments of $1,000. After several refinements,

we were left with 4 files each with over $10,000 in technical debt.

By selecting the adjacent edges and neighbors connected via

adjacent edges, we formed the internal supply chain for those

principal four nodes.

We then utilized a spring-embedded edge-weighted layout to

organize the dependency graph. Nodes are modeled as objects

which repel each other, while the edges are modeled as springs,

with their distance weighted by the betweenness centrality of the

node. Through this layout, we were able to identify 9 clusters

which in each case at least two of our four principal nodes were

dependent on.

0

1000

2000

3000

4000

5000

JDT-1 JDT-2 JDT-3 JDT-4 JDT-5 JDT-6 JDT-7 JDT-8 JDT-9

V
io

la
ti

o
n

s

Node Cluster

JDT 3.4

JDT 3.5

JDT 3.6

0

10000

20000

30000

40000

50000

60000

70000

80000

JDT-1 JDT-2 JDT-3 JDT-4 JDT-5 JDT-6 JDT-7 JDT-8 JDT-9

T
e

c
h

n
ic

a
l

D
e

b
t

($
)

Node Cluster

JDT3.4

JDT 3.5

JDT 3.6

0

5000

10000

15000

20000

25000

JDT-1 JDT-2 JDT-3 JDT-4 JDT-5 JDT-6 JDT-7 JDT-8 JDT-9

L
in

e
s
 o

f
C

o
d

e

Node Cluster

JDT 3.4

JDT 3.5

JDT 3.6

0

50

100

150

JDT-1 JDT-2 JDT-3 JDT-4 JDT-5 JDT-6 JDT-7 JDT-8 JDT-9T
e
c
h

n
ic

a
l

D
e
b

t
(D

a
y
s
)

Node Cluster

JDT 3.4

JDT 3.5

JDT 3.6

Figure 6: Technical Debt ($) of Component Clusters Across Versions

Figure 7: Lines of Code of Component Clusters Across Versions

Figure 8: Technical Debt (Days) of Component Clusters across Versions

Conclusion

Figure 5: Technical Debt ($) of Component Clusters Across Versions

	Clemson University
	TigerPrints
	Spring 2013

	Exploring Supply Chains from a Technical Debt Perspective
	J. Yates Monteith
	John D. McGregor
	Recommended Citation

	48x36 Poster Template

