Clemson University TigerPrints

Graduate Research and Discovery Symposium (GRADS)

Research and Innovation Month

Spring 2013

Finite Element Modeling of Concrete Based on Quantitative Computed Tomography (QCT)

Arash Razmjoo

Amir Poursaee

Follow this and additional works at: https://tigerprints.clemson.edu/grads_symposium

Recommended Citation

Razmjoo, Arash and Poursaee, Amir, "Finite Element Modeling of Concrete Based on Quantitative Computed Tomography (QCT)" (2013). *Graduate Research and Discovery Symposium (GRADS)*. 49. https://tigerprints.clemson.edu/grads_symposium/49

This Poster is brought to you for free and open access by the Research and Innovation Month at TigerPrints. It has been accepted for inclusion in Graduate Research and Discovery Symposium (GRADS) by an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

HINISI

INTRODUCTION

Models have been used before to predict the mechanical and transport behavior of concrete. In most of these studies, aggregates were considered either circle or sphere and the impact of the aggregates geometry and in-homogeneities in concrete structure is spherical aggregates ignored.

Figure 1. Model of concrete for diffusion with circular

Y. Zeng, "Modeling of chloride diffusion in hetero-structured concretes by finite element method. "Cement and Concrete

As Figure 1. shows, a rectangular 100 by 10 mm plane concrete body with its surface exposed to a chloride containing medium, which aggregates modeled as circular shaped.

L. Liu and his colleagues made a 3D model of the microstructure of hydrated cement to investigate damage of saturated internal paste due cement to ice crystallization pressure during freezing, this model is shown in 👌 Figure 2. which aggregates modeled as non real spherical shapes.

Figure 2. 3D image of hydrated cement

Liu, G. Ye, E. Schlangen, H. Chen, Z. Qian, W. Sun, and K. van Breugel, "Modeling of the internal damage of saturated cement paste due to ice stallization pressure during freezing." Cement and Concrete Composites, 2011. 33(5): p. 562–571.

Failure analysis model is illustrated in Figure. 3 by S. Kim and his colleagues, in this 3-D model the stress–strain curve obtained. As can be seen in this Figure, the 3-D analysis gives a tensile strength. Different aggregate distribution has been considered but as a spherical shaped.

Figure 3. 3-D tensile damage propagation of cementitious composites³. Sun-Myung Kim, Rashid K. Abu Al-Rub, "Meso-scale computational modeling of the plastic-damage response of cementitious composites." Cement and ncrete Research 2011 Vol 41:339-358

But as shown in Figure 4. in reality aggregates have no simplified geometrical shapes and this simplification will reduce the precision of the analysis and may cause some error.

OBJECTIVES

The objective of this study is to develop a novel Figure 4. Real aggregates method for accurate prediction of the mechanical have non regular shape behavior of concrete using quantitative computed tomography (QCT)-

based finite element analysis. Concrete cylinders were cast and cured for 28 days. The QCT scans were carried out on the samples using a clinical CT scanner. An image processing method was applied to detect aggregates, paste content and the air voids. The distribution of each phase then calculated in each image slice (2D) and in the bulk material (3D). The processed QCT images were directly converted into voxel-based 3D FE models for linear and nonlinear analyses. The FE models were generated by conversion of each voxel into an 8-noded brick element. Air void content of the cylinders (2D and 3D) was determined. In addition, the aggregates content was estimated using the image analysis. In both cases, the results obtained by the image analysis and the actual measurement and ASTM method are in very good agreement.

discriminated completely with smoothed edges

As shown in Figure 5., X-Ray attenuates when passing through an object. Attenuation is following by Beer's law: $I(x) = I_0 e^{-\mu x}$

Finite Element Modeling of Concrete Based on **Quantitative Computed Tomography(QCT)**

Arash Razmjoo¹, and Amir Poursaee² Glenn Department of Civil Engineering, Clemson University ¹Research Assistant and PhD candidate (arazmjo@clemson.edu), ²Assistant Professor (amire@clemson.edu)

SAMPLE PREPARATION

le 1. Mixture Proportion					
Materials	Specific Gravity	Amount (Lbs./yd ³)	Volume (ft ³ /yd ³)	Batch Volume (ft ³)	Percentage
nent (Type I)	3.15	913.84	4.65	4.65	
ter	1	383.81	6.15	6.15	W/C 0.42
e Aggregate	2.46	1036.15	6.75	6.75	25%
arse Aggregate	2.48	1462.41	9.45	9.45	35%

X-ray IMAGING

Figure 5. X-ray attenuation mathematical model while running through a homogeneous object with constant attenuation p

IMAGING PROCEDURE

The following steps are used for imaging and image processing:

The QCT scans were carried out on concrete samples using a clinical scanner (Figure 8.). The X-ray parameters were set at 120keV and 200mA. Each voxel has the size of 0.25×0.25 mm/pixel resolution, and 1mm slice thickness. This set up provides approximately 200 sliced pictures for each sample. Figure 9 shows one of the slices.

As Figure 6. shows, a rotating X-ray source together with sample translation provides cross-sectional or slice images of 3-D objects. The portion of the sensors opposite the source collect the Xray energy that pass through the object.

Figure 6. Three dimensional X-ray tomography

FINITE ELEMENT MODELING

QCT-based finite element models of concrete specimens have been created by voxel-based method. In this method, the geometry is obtained directly from the images without using any surfaces or solid bodies and the finite element mesh is developed by assigning hexahedral elements that each encloses a predefined cubic volume of image voxels. Element sizes on the order of 0.25mm x 0.25mm x 1 mm have been used for the voxel-based method.

A slice of concrete QCT image is shown in Figure 15. including coarse aggregates in red, voids in white and concrete matrix in blue color. 3D FEM of whole concrete sample includes 26 million elements and 27 million nodes shown in Figure 16. Due to this high amount of elements using personal computer was not applicable. Therefore, Clemson high performance computing (HPC) resource has been used. .

RESULTS AND CONCLUSIONS

All processed images assembled slice by slice to make a three dimensional model. Using this sectioned view, aggregate and void distribution inside concrete could be investigated in order to find if there are any defects or segregation. One of the QCT applications is shown in Figure 17. It illustrates a 3-D model indicating aggregates in light gray, cement matrix in dark gray and air voids in red color inside it.

Figure 18. 3-D air void distribution inside the concrete sample.

As shown in Figure 19. The distribution of coarse aggregates has been calculated for each QCT slices. The mean value of aggregate fraction is in good agreement with that amount in mixture design.

Figure 15. A slice of concrete QCT image including coarse aggregates, voids and concrete matrix together with finite element model corresponding to the same slice.

Figure 16. Inside sectioned view of 3D finite element model of concrete sample in Abagus.

Figure 17. Inside sectioned view of 3D model of concrete sample.

ASTM C457 to measure air void content takes too much time, give total air void amount and its precision is operator dependent but this imaging techniques as shown in Figure 18 not only calculates the total air void in less than 5 min but also gives the air void distribution together with their size classification.

Figure 19. 3-D aggregate distribution¹

GOALS AND FUTURE WORKS

- Aggregate content assessment
- Mechanical performance assessment
 - Moisture ingress modeling
 - Chloride diffusion modeling
 - Corrosion prediction and modeling