
Clemson University
TigerPrints

Presentations School of Computing

9-2013

JUMMP: Job Uninterrupted Maneuverable
MapReduce Platform
William Clay Moody
Clemson University, wcm@clemson.edu

Linh B. Ngo
Clemson University, lngo@clemson.edu

Edward Duffy
Clemson University, eduffy@clemson.edu

Amy Apon
Clemson University, aapon@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/computing_pres

Part of the Computer Sciences Commons

This is brought to you for free and open access by the School of Computing at TigerPrints. It has been accepted for inclusion in Presentations by an
authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Moody, William Clay; Ngo, Linh B.; Duffy, Edward; and Apon, Amy, "JUMMP: Job Uninterrupted Maneuverable MapReduce
Platform" (2013). Presentations. 2.
https://tigerprints.clemson.edu/computing_pres/2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268624577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fcomputing_pres%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pres?utm_source=tigerprints.clemson.edu%2Fcomputing_pres%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing?utm_source=tigerprints.clemson.edu%2Fcomputing_pres%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pres?utm_source=tigerprints.clemson.edu%2Fcomputing_pres%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fcomputing_pres%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/computing_pres/2?utm_source=tigerprints.clemson.edu%2Fcomputing_pres%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

JUMMP: Job Uninterrupted Maneuverable
MapReduce Platform

William Clay Moody∗, Linh Bao Ngo∗, Edward Duffy†, Amy Apon∗
Computer Science Division of the School of Computing ∗

Clemson Computing and Information Technology †

Clemson University
Clemson, South Carolina

{wcm,lngo,eduffy,aapon}@clemson.edu

Abstract—In this paper, we present JUMMP, the Job Un-
interrupted Maneuverable MapReduce Platform, an automated
scheduling platform that provides a customized Hadoop envi-
ronment within a batch-scheduled cluster environment. JUMMP
enables an interactive pseudo-persistent MapReduce platform
within the existing administrative structure of an academic high
performance computing center by “jumping” between nodes with
minimal administrative effort. Jumping is implemented by the
synchronization of stopping and starting daemon processes on
different nodes in the cluster. Our experimental evaluation shows
that JUMMP can be as efficient as a persistent Hadoop cluster
on dedicated computing resources, depending on the jump time.
Additionally, we show that the cluster remains stable, with good
performance, in the presence of jumps that occur as frequently
as the average length of reduce tasks of the currently executing
MapReduce job. JUMMP provides an attractive solution to
academic institutions that desire to integrate Hadoop into their
current computing environment within their financial, technical,
and administrative constraints.

Keywords—MapReduce; Hadoop; academic cluster; maneuver-
able applications; jummp;

I. INTRODUCTION

MapReduce [1] is an important programming paradigm for
today’s data-intensive computing problems. The open source
Apache Hadoop [2] project is the de-facto baseline imple-
mentation of a MapReduce framework from which a rich and
complex software ecosystem has evolved. Many industrial and
governmental organizations have built large-scale production
data centers with dedicated computing resources for Hadoop
clusters to support their big data and scientific computation
workloads. This rapid evolution and adoption of Hadoop [3]
introduces challenges to system administrators in offering this
service while maintaining a stable production environment.
This is especially challenging in a typical centralized aca-
demic research environment where the hardware and software
infrastructures are designed to accommodate a wide variety
of research applications within a set of financial, technical,
and administrative constraints. To address this problem, we
introduce the Job Uninterrupted Maneuverable MapReduce
Platform. JUMMP is an automated scheduling platform that
enables the integration of Hadoop into the existing large scale
computational infrastructure to support high availability and
continuous computing for research and education.

The strength of Hadoop comes from its design character-
istics that bring computation to data stored on large local hard
drives to take advantage of data locality instead of having
to transfer data across the network, and to guarantee job
completion in the event of frequent failures. This comes at
a cost of extra computing cycles due to additional commu-
nication and metadata overhead to support very large scale
transparent parallelization [4]. As a result, a typical Hadoop
cluster consists of computing nodes with multiple terabyte-
sized local storage [5]. Standard practice for architectural
design of centralized, shared academic research environments
usually places the computing components and the storage
components into separate clusters. The local storage on the
computing components is temporary and measured in just a
few hundreds of gigabytes. Provisioning Hadoop as a separate
stand-alone cluster requires the additional acquisition of new
hardware, new rack placements, and additional power and
cooling cost. On the other hand, the setup of a dynamic Hadoop
environment is limited to standard resource scheduling policies
in a shared computing environment. Examples of such policies
are the maximum number of resources that can be reserved, or
the maximum amount of time that a computing node can be
reserved. This places a limit on the capability of Hadoop-based
programs within such an environment.

Our work with the Job Uninterrupted Maneuverable
MapReduce Platform provides the following contributions:

• A platform that enables the integration of Hadoop
into an existing large scale academic computational
infrastructure,

• Automated scheduling mechanisms that facilitate an
arbitrarily long run time of MapReduce applications
within the administrative constraints of a shared envi-
ronment and with minimal interactions required from
system administrators, and

• Experimental results that demonstrate that jumps can
occur as frequently as the average length of the reduce
tasks of the executing MapReduce jobs, with only
modest impact to performance.

The remainder of the paper is organized as follows. Sec-
tion II describes user and environmental considerations that
motivate the design of the platform. Section III explains the
architecture of the platform and discusses different design

978-1-4799-0898-1/13/$31.00 c© 2013 IEEE

trade-offs. Next, we study the performance of Hadoop running
with JUMMP versus a dedicated environment in Section IV.
We discuss related work in Section V, and conclude the paper
with Section VI.

II. MOTIVATION

In this section, we describe user and environmental con-
siderations that motivate the JUMMP implementation. These
considerations are observed in the typical shared high perfor-
mance computing environment found in academic institutions.

A. User Considerations

In an academic environment, we can classify the usage
of Hadoop into three different categories. The first category
includes research applications that use Hadoop MapReduce
as a tool for research purposes. These projects can either use
MapReduce programs exclusively or use MapReduce programs
as part of a larger workflow in a programming framework.
The researchers may spend some time developing MapReduce
programs and other necessary components and then focus on
executing the programs to achieve the final results. As these
are research applications, researchers will typically alternate
between running the computations and analyzing the produced
outputs.

The second category is the study of the Hadoop MapRe-
duce ecosystem itself. This includes studies of Hadoop
MapReduce under different hardware and software configura-
tions, development of improvements to Hadoop MapReduce,
and implementations of different alternative parallel frame-
works to Hadoop MapReduce. While these projects do not
usually use as many computing hours as the first category, they
need to frequently test different setups of the Hadoop cluster
for performance analysis purposes. This testing of dynamic
execution environments for Hadoop is difficult to do in most
dedicated production facilities.

The third category includes small projects such as those
submitted by students doing course projects. While these
projects usually have short run times and use small data, the
nature of the students’ behavior can lead to unintended issues.
In our experiences teaching Hadoop MapReduce during the
Fall 2012 and Spring 2013 semesters, we observed multiple
problems, such as crashing of the Hadoop MapReduce core
processes, corruption of data on the cluster’s HDFS, and
overloading of the cluster as students rush to complete the
work before deadlines.

With these categories, we have the following design objec-
tives:

• Support guaranteed execution of MapReduce pro-
grams until completion regardless of run time (cur-
rently, there is no check-pointing mechanism for
MapReduce jobs),

• Allow reconfiguration of Hadoop environment settings
such as block size, number of map tasks, and number
of reduce tasks, for different performance evaluation
experiments,

(a) A typical HPC cluster with compute nodes sepa-
rated from storage nodes

(b) A Hadoop cluster with storage on the compute
nodes for data locality

Fig. 1: Comparing a design choice for computing and storage
placement between typical HPC cluster and Hadoop cluster

• Facilitate isolated execution of MapReduce programs,
and

• Support rapid movement to different hardware when
impending failures are detected on current hardware.

B. Environment Considerations

While considering the needs of the users, we also seek
to address other constraints of a typical academic high perfor-
mance computing environment. The first constraint is cost. The
costs of purchasing new computing hardware, building new
floor space, and maintaining power make it difficult for many
academic computing centers to provision dedicated resources
for Hadoop.

A second constraint is the difference in technology be-
tween Hadoop MapReduce and a typical high performance
computing cluster. Standard accepted practice for building
high performance computing clusters (HPC) is to separate
compute nodes from storage nodes. The compute nodes handle
CPU-intensive parts of parallel applications while the stor-
age nodes handle I/O demands of the applications, typically
through a parallel file system [6]. Parallelization mechanisms
are facilitated by specialized libraries at run time (e.g. MPI
libraries for C-based applications), and data movement be-
tween computation and storage is done through a high-speed

interconnect. While Hadoop MapReduce also relies on special-
ized libraries to facilitate parallelism, its performance comes
from the data locality enabled by the Hadoop Distributed File
System (HDFS). HDFS divides data files into equally sized
blocks and stores them on the local hard disks of compute
nodes. Instead of transferring data through the network, the
computation processes are spawned locally and assigned to
individual blocks. This difference in computation and storage
placement is illustrated in Figure 1.

A third constraint is the support of the run time envi-
ronment of Hadoop. Hadoop maintains two permanent Java
daemon processes, called the DataNode and the Task Tracker.
These process are on all of the compute nodes at all times in
order to handle both HDFS and MapReduce. The continous
execution of dedicated persistent Java virtual machines makes
Hadoop unsuited for a centralized installation on an HPC clus-
ter where users also frequently run non-Hadoop applications.

Our approach is to provision Hadoop as a dynamic execu-
tion environment that can be set up, executed, and shut down
on demand by a user. This is feasible from user space since
Hadoop’s core Java processes do not require any root-level
privileges to execute and communicate. However, scheduling
dynamic setups of Hadoop environments creates overhead
due to run-time configuration, data staging, output write, and
shutdown of the environment. Related work shows that for
data-intensive applications, the total overhead could be as high
as the execution time itself [7]. To make dynamic provisioning
effective, there must be a mechanism that allows dynamic
Hadoop environments to reserve the resources beyond the
standard policy of per-user limits in a semi-persistent manner
during the computation phases of application execution. An
obvious solution to this problem, permanently assigning a
set of compute nodes to specific users, places additional
responsibilities on the administrators such as how to set a
scheduling policy for users who want to execute both Hadoop
and non-Hadoop applications, and how to make sure that the
allocations of computing resources are fair.

Our goal is to facilitate the setup of user-controlled
dynamic Hadoop environments that execute within existing
scheduling policies including resource limitation, maximum
walltime, and priority preemption, without administrative in-
tervention.

III. ARCHITECTURAL DESIGN

A. Hadoop Overview

Hadoop MapReduce is a network-based parallel program-
ming paradigm for implementing data computation over big
data using a cluster of commodity computer systems. The
network file system for the cluster is the Hadoop Distributed
File System (HDFS). This file system is composed of a single
centralized management node, NameNode, which maintains
all the metadata for the cluster along with multiple storage
nodes, DataNodes, which contain all of the data in large block
sizes (default 64 MB). Large files are divided into blocks and
the data blocks are replicated across the cluster to provide
redundancy.

The MapReduce computation model includes a single
central management node, JobTracker, and multiple compu-
tation nodes, TaskTrackers. The JobTracker is responsible for

delegating the specific map and reduce task for a submitted
MapReduce job to a subset of the TaskTrackers in the cluster.
The JobTracker further monitors the status of the TaskTrackers
to ensure redundancy and timely completion of the job. A
single TaskTracker can be assigned both map and reduce
tasks within the same job. DataNodes and TaskTrackers exist
on the same physical computing system, thus providing the
computation and storage integration that is critical to the
performance of MapReduce.

A MapReduce job is made up of multiple map tasks
and multiple reduce tasks. A mapper takes an input set of
data in a key-value pair (K,V) and outputs an intermedi-
ate key-value pair (K ′, V ′). The input to the reducer is an
intermediate key and the set of intermediate values for that
key (K ′, {V ′

1 , V
′
2 , V

′
3 , ...} from all the mappers across the

cluster. The reducer performs some computation on the set
of intermediate values and produces the final output value for
each key for which it was responsible for reducing. The entire
possible set of intermediate key values are partitioned and each
partition is assigned to a reducer. During the shuffle phase
between map and reduce, a reducer pulls its respective partition
from each mapper before beginning the reduce computation.

B. Portable Batch System

The Portable Batch System, PBS, was developed by the
Numerical Aerodynamic Simulation Facility at NASA Ames
Research Center in the 1990s [8]. PBS provides an exter-
nal batch scheduler for execution of shared supercomputing
resources. PBS maintains different priority job queues with
designed authorized users and hardware. This allows adminis-
trators to allow some jobs to be given preferential scheduling
over other jobs and to limit the runtime of user submitted
jobs. Users submitting jobs to PBS are allowed to specify
the number of computing nodes, the number of processors,
and memory needed on each computing resource, among other
options.

PBS jobs can be interactive or can run in batch mode,
executing designed programs or scripts that are provided as
part of the job submission. Typical parallel programming
models involve the creation of a set of parallel processes, a
designated set of data, and the location for storing the output.
Jobs are submitted to a queue. When serviced the job is
assigned to a set of nodes to be executed. The user does not
have to concern himself or herself with when the job will run.
That is the domain of the scheduler. While a job is running,
there is the potential for the job to be preempted by a job
submitted to a queue with a higher priority that needs the
preempted job‘s computing resource.

C. JUMMP Design

JUMMP is designed to operate within the Palmetto High
Performance Computing Cluster at Clemson University [9]
using the PBS Professional scheduler, although the system
can easily be adapted to use with other schedulers. Hadoop
version 1.1.2 is used in our system. Any 1.x version can
be used. The Hadoop cluster uses a single dedicated node
for both the NameNode and JobTracker. This dedicated node
resides outside the control of the scheduler. Each DataN-
ode/TaskTracker is scheduled as an individual PBS job, which

allows for preemption or failure of a PBS job to only affect a
single node of the Hadoop Cluster.

The design choice to use a dedicated persistent node as
the master of the Hadoop cluster is based on an assumption
that securing a single node for dedicated use from an HPC
administrator is more achievable than securing all the nodes
required for the cluster. Also, the transition of the head node
of an active Hadoop cluster during the middle of a MapReduce
job is technically more difficult than the transition of the
slave nodes. Including the JobTracker and name node in the
maneuvering portion of the cluster is a topic for future work.

Each DataNode and TaskTracker is established within its
own PBS job. The PBS job starts the Hadoop daemons and
connects them to the persistent head node. Each daemon
waits for its trigger to jump. When the trigger to jump is
received (PBS preemption or expiration of the jump timer),
the PBS job schedules its replacement PBS job. Next, the
DataNode decommissions itself from the name node and the
TaskTracker blacklists itself from the JobTracker. Finally, the
Hadoop daemons are stopped and the PBS job completes. The
newly spawned replacement node repeats this process.

When notified of an upcoming jump of a slave node, the
name node begins to reassign the blocks replicated on the
outgoing node to the remaining nodes in the cluster. The
incoming node receives a subset of the blocks its previous
node possessed. The JobTracker immediately kills any task
assigned to the outgoing TaskTracker and reassigns those tasks
to available TaskTrackers.

In our earlier implementations of JUMMP, we stopped the
TaskTracker daemons without notifying the JobTracker. After
the standard heartbeat failure timeout, tasks would then be
reassigned. This behavior greatly degraded performance. The
proactive measure of blacklisting the TaskTracker allows the
JUMMP to transition much faster.

JUMMP is implemented using a combination of Bash and
Python scripts to control execution of the daemons, logging of
actions, and trapping of signals to ensure the rescheduling of
replacement nodes during jumps.

We describe the configuration of the JUMMP with the
following variables:

• The number of DataNodes and TaskTrackers in the
system is n.

• The scheduled time between node jumps is tj .

When the JUMMP system is initialized, the user is able
to specify n and tj . After a stabilization period, a single node
will live for ntj minutes. A node jumps somewhere in the
cluster every tj minutes.

In the event of a jump caused by an PBS scheduler
preemption, the jumping node could alert its new node of
the remaining time until the regularly scheduled jump, thus
allowing the timing of the cluster transitions to be resumed.
This topic is an area of future work.

The flexible and maneuverable design of JUMMP allows
us to support our user considerations as presented in Section
II. While allowing preempted or failed nodes to submit PBS

jobs for their replacement, we have guaranteed survival of
the Hadoop cluster and continuation of running jobs until
completion. Since each instantiation of JUMMP specifies a
Hadoop directory with executables and configurations, users
are able to tailor their JUMMP instance to the needs of their
long running Hadoop environment on an isolated set of nodes
within the shared cluster environment. Lastly, administrators
can “blacklist” nodes that are experiencing prolonged failure
or which have upcoming maintenance. Blacklisted nodes are
not listed as available resources for the scheduler, thus allowing
JUMMP to avoid and maneuver around those resources to
more suitable hardware.

IV. PERFORMANCE ANALYSIS

Adding maneuverability to a Hadoop cluster incurs some
degradation of performance. We attempt to evaluate this degra-
dation to understand the trade-offs of such a system and to
estimate the rate at which a jump could efficiently occur. With
each jump of a DataNode, additional overhead is occurred
over a non-jumping cluster. This overhead comes from two
separate sources: the scheduler overhead and replication of
HDFS blocks. As previously mentioned, JUMMP schedules
each DataNode and TaskTracker as separately scheduled jobs
within the supercomputing environment. Scheduling and queu-
ing delays will result in fewer TaskTrackers being available
to perform map and reduce tasks. We refer to the JUMMP as
being “undersized” during the time when a node is awaiting the
scheduler to place the slave node on an available node in the
datacenter. Once an existing DataNode leaves the cluster, all
blocks that were stored on its local storage must be replicated
across the cluster. The NameNode begins this immediately
upon the decommissioning of the outgoing node. This data
replication consumes processing, network bandwidth, and disk
drive seeks that normally would be used for computation for
the currently running MapReduce job.

A. Experimental Design

In order to capture, measure and quantify this degradation,
we conducted two separate experiments on the performance of
JUMMP on the Palmetto High Performance Computer Cluster.
In each experiment, we establish a baseline performance metric
for a stationary Hadoop cluster by repeatedly running the same
MapReduce job 100 times over a static dataset. We rerun the
job three additional times while varying the jump time for
the cluster. We record the times of the jumps, the individual
task start and stop times, and the overall job run time. With
these results we quantify the overhead of jumping during the
execution of a MapReduce job.

We ran our experiments on a homogeneous set of nodes
within Palmetto to ensure uniformity of test results. All tests
are run on an isolated pool of 96 nodes for DataNodes
and TaskTrackers. The hardware of these nodes is shown in
Table I. A datablock size of 256 MB is used throughout the
experiments and each TaskTracker has 8 map task slots and
4 reduce task slots. 2GB of memory is allocated for each
task. At the allocation of the initial nodes and creation of the
JUMMP, the dataset for the experiment is imported, the nodes
start jumping, and the MapReduce job begins to run.

For our experiments, we use the dataset and benchmarks
from PUMA, Purdue’s MapReduce Benchmark Suite [10].

Node HP SL250s
CPU Intel Xeon E5-2665 (2)
Cores 16
Memory 64 GB
Local Storage Capacity 900 GB
Networking Infiniband

TABLE I: Node Configuration

Application Wordcount Terasort
Dataset Size 50 GB 300 GB
Node Count 8 32
Jump Times [mins] 7/10/15 20/40/60

TABLE II: Experiment Parameters

PUMA is developed as a benchmark suite to represent a
broad range of MapReduce applications exhibiting application
characteristics with high/low computation and high/low shuffle
volumes. The parameters of our two experiment runs are shown
in Table II. The jump times are calculated based on the average
running time of the baseline MapReduce job. Jump times are
configured to jump during every second, third, and fourth job
runs.

B. Characteristics of the Impact

Whenever an active TaskTracker jumps, all tasks currently
executing and some previously completed tasks will have to
be rerun. Since all reduce tasks must retrieve their partition of
intermediate data from all map tasks, any map task previously
completed by a jumping TaskTracker will have to be rerun
if all reduce tasks have not finished the shuffling phase.
Furthermore, any reduce tasks being executed by the jumping
TaskTracker will have to be reassigned and rerun. If any reduce
task is restarted, then then the map task whose intermediate
data is unavailable will also have to be rerun. This re-execution
of in-progress and completed tasks adds delay and overhead
into the overall execution of the MapReduce job.

This restarting overhead is visualized in Figure 2. Figures
(a) and (d) show a typical execution of the wordcount and
terasort experiments in the absence of a node jump. The
charts plot the number of currently executing tasks, grouped by
type, during the time of the job execution. The job starts with
multiple map tasks conducted in parallel. Once the first set of
map tasks completes, the shuffle phase of the first set of reduce
tasks begins downloading their partitions of the intermediate
data from the completed map tasks. This process continues
until all map tasks have completed and the shuffling is done,
at which time the reduce actions begin. The reducing continues
until all reduce tasks have completed and the output is written
to HDFS.

Figure 2 (b) and (e) present the cost of jumps occurring
before all the mapping and shuffling phases have completed.
In these examples, a spike in the number of map tasks at the
time of the jump (indicated by dashed vertical lines) shows
that additional mapping and shuffling acitivities are performed
due to the loss of work from the jumped tasktracker (shown in
yellow). The intermediate data from the map tasks completed
by the jumping TaskTracker is no longer available for the
future reduce tasks and thus that work must be repeated. As
illustrated in Figures 2 (c) and (f), when jumps occur during

the reduce phase, map tasks must be re-executed and reduce
tasks must begin shuffling intermediate data to complete the
MapReduce job.

C. Performance Measurements

There are two important measures in understanding the per-
formance of a jumping cluster. The first measure, the “effort”
overhead, is the overhead of work that must be re-executed
because of a jump. The second measure, “performance” over-
head, is the additional wall-time needed to complete the job.
We record the performance of our experiments and present the
results with a focus on these two measures in this section.

Observing the information shown in Figure 2, we calculate
the effort overhead as the area of the jumped map and reduce
tasks. This extra computation is wasted since it must be
repeated after the jump. We can quantify taskseconds for all
phases of the job by taking the area under the curve of each
type of task.

The mean taskseconds for each cluster for both the word-
count and terasort applications are shown in Figure 3. Tasks
that are executed by a node that will jump during the job
execution are refered to as “doomed” since they will be lost
and re-executed. The results are interesting in that they show
the doomed reduced tasks incurr no additional taskseconds
than the Hadoop normal effort overhead of speculative exe-
cution of straggler reduce tasks. Furthermore, in both cases of
(a) wordcount and (b) terasort, the doomed map taskseconds
increase as jump times decrease, but this effort overhead is
still two orders of magnitude less than the taskseconds of the
successful map tasks.

The running times of the MapReduce jobs themselves are
extracted from the normal logging system of Hadoop. Since
our experiments use the same job running on the same static
dataset, we have control over many variables that affect the
run time of MapReduce jobs. Those variables that are outside
of our control are locations on disk where intermediate values
and reduce outputs are written, network traffic from adjacent
nodes not part of the Hadoop cluster, and variations in task
scheduling from the JobTracker.

The map task run time cumulative distribution function
(CDF) in Figure 4 for both the (a) wordcount and (b) terasort
jobs show that jumping has minimal impact on the map task
time. This is due to the fact that the system only reports the
time for the successful attempt of each map task. For instance,
in the case of the wordcount experiment, there are 200 HDFS
blocks on which map tasks are placed. If there is a 50% failure
rate on map tasks, the time spent during those failed attempts
for the 100 map tasks would not be included in the time to
complete those tasks. As such, viewing the map task time does
not help to show the imposed overhead of a jumping node. That
is where information in Figure 3 is more relevant.

The job run time CDFs in Figure 5 for both (a) wordcount
and (b) terasort jobs show the expected behavior of longer run
times as the frequency of the jumps increase. Each jump time
plot is observed to follow the non-jumping plot up until the
point where it reaches the percentage of jobs that are under
jump conditions. This is directly related to the ratio of average
run time and the jump time for the cluster. For instance, the

(a) No jump during wordcount execution (b) Jump during map phase of wordcount execution (c) Jump during reduce phase of wordcount execution

(d) No jump during terasort execution (e) Jump during map phase of terasort execution (f) Jump during reduce phase of terasort execution

Fig. 2: MapReduce job task execution during jump

wordcount job, when not jumping, has an average run time of
3 minutes. When jumping every 7 minutes, 60% of the jobs
are unaffected by a jump. Observing the CDF plot will show
that the slope of the plot is near vertical up to 60% and the
remaining 40% begins to flatten as overhead is observed.

D. Optimizing Jump Time

Due to the observed overhead of JUMMP, a very short
jump time is not preferred for a maneuverable Hadoop cluster.
As the cluster’ size increases and reservation window de-
creases, it becomes necessary for JUMMP to be configured
such that a node jumps before the expiration of its reservation
window. An optimal jump time is one that minimizes the
overhead of the jumps but also allows the size of the cluster to
be maximized for improving parallel processing. Equation 1
shows the derivation of the maximum time to jump (tj) based
on reservation window (RESV) and size of the cluster (n).

n× tj ≤ RESV
tj ≤ RESV

n

(1)

Characteristics of the behavior of Hadoop also contribute
to the calculation of the minimal jump time. These factors
involve data replication speeds and MapReduce job execution
timing. We will look at each of these individually to discuss
how they contribute to minimizing the jump time.

The default replication factor in Hadoop is three. This
means that a data block will exist within the local storage

of three DataNodes. This is configurable by the cluster ad-
ministrator at start up or on a case-by-case basis when data is
written into HDFS. When the NameNode detects a block is
under-replicated, it will assign another replication to be stored
throughout the cluster. JUMMP initiates this replication pro-
actively when a jumping node decommissions itself from the
Hadoop cluster, as previously mentioned. If the jump time
is so small that nodes are jumping faster than the blocks
can be replicated, the JUMMP could become unstable due
to missing blocks. The speed at which data is replicated is
related to average number of blocks on the node, the speed of
the network interconnect, and the workload of the NameNode
to reassign block locations. Calculating the minimum jump
time as related to data replication is an area of future work.

Finally, optimal jump time is tied to the timing of the
currently executing MapReduce job. As shown in Figure
2, when a TaskTracker jumps, its currently executing and
previously completed tasks in the running MapReduce jobs
must be reassigned. The biggest impact is observed when a
TaskTracker with an active reduce task jumps. This causes
the reduce task to start over and have any unavailable map
intermediate data to be recalculated. If nodes are jumping so
frequently as to never allow a rescheduled reducer to complete
execution, then JUMMP will become unstable and jobs will
be interrupted. We thus find that the cluster remains stable in
the present of jumps as frequent as the average execution time
of the reduce tasks of the currently executing MapReduce job.

(a) Wordcount TaskSecond Averages

(b) Terasort TaskSecond Averages

Fig. 3: Map, shuffle and reduce taskseconds and doomed map
and reduce tasks for wordcount and terasort jobs under various
jump times

V. RELATED WORK

A common solution to integrating Hadoop into existing
HPC clusters is the use of virtualization. For clusters that
support virtualization interfaces, users can reserve a set of
compute nodes and set up a cluster of virtual machines
(VMs) on these nodes. This provides users with an isolated
environment in which they have full root-level control over the
set up of Hadoop. Notable HPC clusters that take advantage of
this approach are the FutureGrid distributed testbed [11] and
the Amazon Elastic MapReduce Cloud [12]. A drawback of
this approach is the degradation in I/O performance for data-
intensive MapReduce applications, which has been observed
on FutureGrid [13]. Another potential issue is the interaction
between Hadoop and non-Hadoop jobs that are part of a
workflow using non-Hadoop software packages installed on
the physical hardware.

Another approach is to dynamically set up Hadoop envi-
ronments in users’ workspace. A solution provided by Apache
is the Apache Hadoop on Demand (HOD) system [14]. HOD
enables the quick provision and management of multiple
Hadoop MapReduce instances on a shared cluster with PBS
Torque scheduler. However, HOD requires access to a static

(a) Wordcount Map Task Time CDF

(b) Terasort Map Task Run Time CDF

Fig. 4: CDF of Map Task times for WordCount and TeraSort

external HDFS cluster. The myHadoop system extends HOD
by including a dynamic HDFS with user-generated Hadoop
environments [7]. This HDFS could either be placed on the
local storage of the compute nodes in non-persistent mode or
on a permanent external parallel file system in persistent mode.
The approach of HOD and myHadoop enables the concurrent
and isolated creation of Hadoop environments with dedicated
resources through reservations. However, the implementations
of HOD and myHadoop do not allow users to automatically
deal with administrative and policy issues such as walltime
limitation and priority preemption of computing resources.

Recent work focuses on creation of a new resource man-
agement mechanism that can handle both Hadoop and non-
Hadoop parallel jobs. Significant efforts include the Apache
Mesos project [15] and Apache Hadoop YARN (Yet Another
Resource Negotiator) [16]. The main principle for this ap-
proach is the separation of resource management and task
scheduling mechanism in Hadoop’s JobTracker. The new
stand-alone resource manager can be used to handle both
Hadoop and non-Hadoop processes. This keeps the users from
having to configure a new Hadoop environment every time
while still maintaining dynamic and isolated execution of
MapReduce applications. However, the above projects are still
being developed, with Mesos adapted by only a few institutions
and YARN yet to be considered stable for production [17].

(a) Wordcount Job Run Time CDF

(b) Terasort Job Run Time CDF

Fig. 5: CDF of Job times for WordCount and TeraSort

VI. CONCLUSION

We have presented JUMMP, the Job Uninterrupted Ma-
neuverable MapReduce Platform, an automated scheduling
platform that provides a customized Hadoop environment
within a batch-scheduled cluster environment. Through its
design and redundant nature, JUMMP enables an interactive
pseudo-persistent MapReduce platform within the existing
administrative structure of an academic high performance
computing center. Our experimental evaluation shows that
JUMMP can be as efficient as a persistent Hadoop cluster on
dedicated computing resources, depending on the jump time.
Additionally, we show that the cluster remains stable, with
good performance, in the presence of jumps that occur as
frequently as the average length of reduce tasks of the currently
executing MapReduce job.

In the future, we plan to explore how JUMMP can be
used to provide a moving target defense approach to Hadoop
cluster security, to integrate Hadoop with a distributed network
file system available in many large campus supercomputing
clusters, and to integrate Software Defined Networking to build
dynamic network topologies to minimize network congestion
for MapReduce traffic. We also plan to investigate smart
jumping, determined by coordination with the NameNode and
JobTracker to minimize overhead and the inclusion of the head

node into the maneuverable portion of the cluster.

ACKNOWLEDGMENTS

We would like to acknowledge the use of Clemson Uni-
versity’s Palmetto Cluster and assistance from Randy Martin
and Corey Ferrier, Clemson Computing and Information Tech-
nology. This work was supported in part by National Science
Foundation Grant #1228312.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[2] Apache Hadoop, http://hadoop.apache.org, 2013.
[3] J. Y. Monteith, J. McGregor, and J. Ingram, “Hadoop and its evolving

ecosystem,” Proceedings of IWSECO, 2013.
[4] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,

and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in Proceedings of the ACM SIGMOD, 2009.

[5] Hortonworks, “Best practices for selecting apache hadoop hard-
ware,” http://hortonworks.com/blog/best-practices-for-selecting-apache-
hadoop-hardware/.

[6] Z. Sebepou, K. Magoutis, M. Marazakis, and A. Bilas, “A compar-
ative experimental study of parallel file systems for large-scale data
processing,” in Proceedings of the 1st USENIX Workshop of Large-
Scale Computing, 2008.

[7] S. Krishnan, M. Tatineni, and C. Baru, “myHadoop
- Hadoop-on-Demand on Traditional HPC Resources,”
http://www.sdsc.edu/pub/techreports/SDSC-TR-2011-2-Hadoop.pdf,
2011, San Diego Supercomputing Center Tech Report.

[8] R. L. Henderson, “Job scheduling under the portable batch system,” in
Job Scheduling Strategies for Parallel Processing, ser. Lecture Notes in
Computer Science, D. Feitelson and L. Rudolph, Eds. Springer Berlin
Heidelberg, 1995, vol. 949, pp. 279–294.

[9] Clemson University, “Palmetto cluster - high performance computing
resource,” http://citi.clemson.edu/palmetto/.

[10] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar, “Puma:
Purdue mapreduce benchmarks suite,”
http://web.ics.purdue.edu/ fahmad/benchmarks.htm.

[11] J. Diaz, G. von Laszewski, F. Wang, A. J. Younge, and G. Fox,
“Futuregrid image repository: A generic catalog and storage system
for heterogeneous virtual machine images,” in Proceedings of the 3rd
IEEE International Conference on Cloud Computing Technology and
Science, 2011.

[12] Amazon Elastic MapReduce,
http://www.aws.amazon.com/elasticmapreduce/, 2013.

[13] Y. Kang and G. C. Fox, “Performance evaluation of mapreduce ap-
plications on cloud computing environment, futuregrid,” in Grid and
Distributed Computing, T. Kim, H. Adeli, H. Cho, O. Gervasi, S. S.
Yau, B. Kang, and J. G. Villalba, Eds. Springer Berlin Heidelberg,
2011, vol. 261.

[14] Apache Hadoop on Demand,
http://hadoop.apache.org/docs/r1.1.2/hod scheduler.html, 2013.

[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proceedings of the 8th USENIX
Conference on Networked System Design and Implementation, 2011.

[16] Apache Hadoop NextGen MapReduce,
http://hadoop.apache.org/current/hadoop-yarn/hadoop-yarn-
site/YARN.html, 2013.

[17] Deploying MapReduce v2 (YARN) on a Cluster,
http://www.cloudera.com/content/cloudera-content/cloudera-
docs/CDH4/4.2.0/CDH4-Installation-Guide/cdh4ig topic 11 4.html,
2013.

	Clemson University
	TigerPrints
	9-2013

	JUMMP: Job Uninterrupted Maneuverable MapReduce Platform
	William Clay Moody
	Linh B. Ngo
	Edward Duffy
	Amy Apon
	Recommended Citation

	tmp.1382559538.pdf.7YB1M

