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Abstract- In this study finite difference method (FDM) is used with Dirichlet boundary conditions on 
rectangular domain to solve the 2D Laplace equation. The chosen body is elliptical, which is discretized 
into square grids. The finite difference method is applied for numerical differentiation of the observed 
example of rectangular domain with Dirichlet boundary conditions. The obtained numerical results are 
compared with analytical solution. The obtained results show the efficiency of the FDM and settled 
with the obtained exact solution. The study objective is to check the accuracy of FDM for the numerical 
solutions of elliptical bodies of 2D Laplace equations. The study contributes to find the heat (temperature) 
distribution inside a regular rectangular elliptical discretized body. 
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I. IntroductIon

The Laplace partial differential equation in two independent variables  have important 
applications in engineering and science, like fluid flow, electricity and steady heat conduction. In 
engineering and science mostly deals with variables like and to discuss space with timealso as 
independent variable for a modeled physical problem  is considering as dependent variable. Engineers 
and scientist investigate the actual partial differential equations (PDE’s) that given the investigated 
physical problem. Many numerical methods are invented in 20th century to solve Elliptic partial 
differential equations (EPDE’s). Physical problems like sound, heat, electrodynamics, fluid flow, 
elasticity etc. are formulated mathematically by Partial differential equations (PDE’s). The Neumann 
and Dirichlet boundary conditions are mostly applied to obtain the solution of 2D Laplace equation. 
M.L. Dhumal and S.B. Kiwne [1] used Neumann and Dirichlet boundary conditions to obtain the 
solution of Laplace equation. The approximate solution of two dimensional Laplace equation using 
Dirichlet conditions is also discussed by Parag V. Patil and J.S.V.R. Krishna Prasad [2].

Laplace equation is used to solve Cauchy problem by Qian et al [3]. The solution of Laplace 
equation with simple boundary conditions studied by Morales et al [4]. Lesnic et al [5] did work for 
the solution of Cauchy problem to the Laplace equation using an iterative boundary element method. 
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Li et al [6] have studied Laplace’s equation on elliptic domains by using Dirichlet conditions. 
Laplace equation in circular domains with circular hole by using Neumann problems of Laplace’s 
equation in circular domains with circular holes have studied by Lee et al [7].  Lee et al concluded 
that the method of field equation’s is an effective method to solve the Neumann problems. Smith 
G.D. [8], Ames W.F. [9], Lapidus Land Pinder G.F. [10] and Greenspan D. and Parter S.V. [11] 
studied the Finite difference methods (FDM) for partial differential equations.

Many numerical methods are invented in 20th century to solve Elliptic partial differential 
equations. Since 1900 the applications of FDM for PDE’s have been known. To solve the elliptic 
interface problems finite difference method is an accurate method studied by J. Thomas [12]. In 
1960 the mesh based methods finite difference method and finite element method was used for 
numerical solutions of ODE’s and PDE’s. Jensen [13] worked with fully arbitrary meshes by using 
FDM. FDM’s and FEM’s are more suitable for regular meshes. Perrone and Kaos [14] worked 
on irregular meshes by using two dimensional FDM.  P.G. Martinsson [15] discussed for variable 
coefficient elliptic partial differential equations discretized by composite spectral collocation 
method. For solving irregular domains by FEM is a relatively time consuming.  Ames [16] worked 
to solve PDE’s in irregular domains by FDM. On irregular 2D domain Orovio et al [17] studied the 
spectral method to solve reaction-diffusion equation. This paper used finite difference method to get 
the discrete numerical approximations for the derivative. Finite difference method is used here to 
discretize the domain  into uniform grids.

In engineering elliptic partial differential equations used to describe steady-state boundary 
value problems. For the approximate solution of elliptic partial differential equations (EPDE’s), 
the given partial differential equation is converted into an algebraic difference equation.  In this 
paper we used finite difference method to determine potential in rectangular domain using Dirichlet 
boundary conditions.

II. Problem FormulatIon

Is the elliptic partial differential equation (steady state) with two spatial dimensions, such that

  is the steady state potential distribution in the given domain. The Dirichlet 
boundary conditions on three sides are homogeneous and on one side non-homogeneous are shown 
in Figure 1:
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Figure 1. Rectangular domain of the assumed problem

The rectangular domain Ω is divided into finite number of square components. The division is 
such that each of the line and node of the field is shared with the connected elements other than the 
sides of the boundaries. The nodes and lines numbering are shown in Figure 2, as follows:

Figure 2. Potential distribution discretized region

III. the FInIte dIFFerence methods (Fdm)

FDM is a simple and easiest technique to numerical solutions of elliptic partial differential 
equations. In this problem approximated all the derivatives using finite differences. The discretization 
of the region in the directions   of with a change of    such that 
  The discretized scheme is shown in Figure 3 below.
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Figure 3. The discretized scheme in 2D

The equation to find the temperature at the particular nodes is

i. Derivation
Let us consider a Laplace Equation in two dimensional space on a rectangular shape like 

With the conditions 

The Dirichlet boundary conditions are 

The grids are uniform in both  x and y directions. The objective is to find the approximate solution 
at the grid points only, that is    . The finite difference approximation to the 
partial derivatives at the grid point    are:
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Plugging these approximations into the Laplace equation at the point, we get

Equation (7) is a discrete equation holds at every grid point  not on the boundary that 
is
The boundary conditions are:

Note that the only interior points will be the unknowns. The equation for the temperature 
distribution at a particular node is:

The temperature at the four sides is given, at all the internal points the temperature is assumed. 
Here this study used the Gauss-Seidel iterative method for solving the system of equations. All the 
points, which have equal steps horizontally and vertically, the potential is distributed by the finite 
difference equation (8).

The gauss-Seidel iterative process for the numerical solution of the assumed problem is, shown 
in Table I:

TABLE I
Numerical results

Iterations T*
1,1 T*

2,1 T*
1,2 T*

2,2

01 0 0 18.75 18.75
02 4.6875 4.6875 23.4375 23.4375
03 7.03125 7.03125 25.78125 25.78125
04 8.203125 8.203125 26.953125 26.953125
05 8.7890625 8.7890625 27.5390625 27.5390625
06 9.08203125 9.08203125 27.83203125 27.83203125
07 9.228515625 9.228515625 27.978515625 27.978515625
08 9.3017578125 9.3017578125 28.0517578125 28.0517578125
09 9.3383789062 9.3383789062 28.0883789062 28.0883789062
10 9.3566894531 9.3566894531 28.1066894516 28.1066894516
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The stopping criterion for the iterations is:
So at the 9th iteration

At the 10th iteration

this is negligible so we stop and this solution is appropriate and reliable approximate solution.

IV. analytIcal solutIon

The two dimensions Laplacian equation with the boundary conditions are:

Separation of variables is used to reduce PDE to ODEs. In the method of variable separation, 
it tried to find the solution in the form of product later on replaced the solution into Laplacian 
equation. The constant of separation is introduced by λ. Here only certain values of  λ are allowable. 
The determined solution of Laplacian equation is only satisfied the boundary conditions at λ ˂ 0.        
 these solutions have 
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The product solution of Laplace equation with the given boundary conditions is shown below 
and represented in Table II:

TABLE II
exact solutioN

Nodes Exact Solution

T1,1 8.94613

T2,1 8.94613

T1,2 28.5539

T2,2 28.5539

This is the exact solution of 2D-Laplace equation obtained by using variable separation with 
Dirichlet boundary conditions.

A. Graphical Representation of the FDM Solution and Exact Solution
Following graph a and b are the representation of the FDM solution:

Graph a: Comparison of Numerical FDM and Exact Result
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Group b: Potential Distribution 3D Representation

V. conclusIon and dIscussIon

This study focused on the software uses in varies domains to obtain solutions numerically 
by using numerical methods particularly Finite Difference method (FDM) to solve 2D Laplace 
equations with Dirichlet boundary conditions. The graph and the tables I and table II results shown 
the good agreement of the exact and numerical solution obtained by FDM. Finite difference method 
is actual an average discretized domain method so it is more appropriate method as compare to other 
numerical methods for potential distribution. The results of table I showed that for the prediction of 
potential distribution in the regular rectangle domains Finite difference technique is superior in both 
competence and accuracy. To understand other quantities like potential distributions on irregular 
domains or flow and velocity distribution in varies geometries are the research areas in future for 
the researchers.
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