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In a recent paper on nonlinear stationary waves in a mag-
netized plasma, Verheest (2007) imposed the constraint of
“strict” charge neutrality by which is meant that simultane-
ously withni=ne the longitudinal electric fieldEx is strictly
zero. Armed with this constraint Verheest (2007) goes on to
show that nonlinear whistler waves, oscillitons and obliquely
propagating Hall-MHD solitons do not exist. This is a case
of throwing the baby out with the bathwater.

There are circumstances in which quasi-charge neutrality
holds withni≈ne but divE 6=0. The nonrelativistic whistler
wave is one such circumstance. In this case we may write
Poisson’s equation in the form
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in which ωpe is the electron plasma frequency andδn/n

is the ratio of excess of ions over electrons to the plasma
density. The whistler oscilliton propagates at approximately
VAe/2 speed (whereVAe is the Alfven speed based on the
electron mass density) with a characteristic length scale
VAe/�e (where�e is the electron gyrofrequency) and an
electron accelerationVAe�e/4 (see e.g. Sauer et al., 2002;
Dubinin et al., 2003; McKenzie et al., 2004; Mace et al.,
2007). Equation (1) then shows that

δn

n
∼

�2
e

4ω2
pe

=
V 2

Ae

4c2
(2)

Hence quasi-charge neutralityni≈ne andEx 6=0 is a good ap-
proximation if the wave speedVAe/2 is not relativistic. Ac-
cording to Chen (1984) “the novice finds this property diffi-
cult to understand”. On the other hand, ifVAe is of the order
of c then we must not only use Poisson’s equation but also the
equations of motion must be made relativistic as discussed by
McKenzie et al. (2005).
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A similar argument can be made for Hall-MHD solitons
in which the acceleration of the protons is 0(VA�p), the
length scale isVA/�p yielding the fractional charge sep-
arationδn/n∼�2

p/ω2
pi=V 2

A/c2, whereVA and �p are the
Alfven speed based on the proton mass density and the pro-
ton gyrofrequency, respectively, demanding thatδn/n is rel-
ativistically small and divE 6=0. This is the reason why the
standard Hall-MHD equations do not require Poisson’s equa-
tion and do not impose any constraint on divE. The electric
fields are derived from Faraday’s law and the equations of
the motion together with the condition divj=0. Poisson’s
equation provides us only with an estimate of the charge sep-
aration ratioδn/n as was shown above.

In the classic nonlinear wave propagating transverse to the
magnetic field (Adlam-Allen, 1958; Sagdeev, 1966) the cir-
cumstances are not quasi-charge neutral. In fact, such an
assumption would violate conservation of longitudinal mo-
mentum requiring a balance between dynamic pressure and
magnetic pressure. It is interesting that in this case the elec-
tric stresses are again relativistically small compared with
magnetic stresses (pressure) but Poisson’s equation is not re-
quired even withni 6=ne (McKenzie et al., 2001).

By setting Ex=0 simultaneously withni=ne(uix=uex)

Verheest (2007) has taken a wrong turning and got a
paradoxical result even for the linear (evanescent) waves. In
conclusion, note that a question of using Poisson’s equation
versus the quasineutrality condition is not a new one. It was
discussed and clarified 40 years ago in the classical review
paper by Braginskii (1965).
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