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Abstract: We show that each of the classes of left-orderable groups and orderable groups is a quasivariety
with undecidable theory. In the case of orderable groups, we find an explicit set of universal axioms. We then
consider the relationship with the Kaplansky group rings conjecture and show that K, the class of groups
which satisfy the conjecture, is the model class of a set of universal sentences in the language of group the-
ory. We also give a characterization of when two groups in K or more generally two torsion-free groups are
universally equivalent.
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Dedicated to the memory of Seymour Lipschutz

1 Introduction
The first author is fond of using the positive solution of the Tarski conjecture on the elementary equivalence
of the nonabelian free groups to give alternative proofs of results deduced for groups elementarily equivalent
to F = ⟨a1, a2; ⟩, especially (with a few exceptions of low genus) surface groups (both orientable and nonori-
entable); with tongue in cheek, he calls such alternative proofs “something for nothing.” (Of course, the proof
of the Tarski conjecture is exceedingly nontrivial!) This is particularly striking in the case when the property
to be deduced is, on the surface, anything but first-order, only to subsequently be found to be such after all.
One such example is a theorem of Magnus asserting that if in a free group two elements a and b have the
same normal closure, then b must be either conjugate to a or conjugate to a−1. An explicit set of first-order
sentences capturing the above theorem of Magnus may be found, for example, in [10] (see also [7, 8]). So we
get “for free” that Magnus’ theorem holds in surface groups (of sufficiently high genus). The authors of this
paper attended the 2015 ZassenhausGroupTheory conference. At that conference, Zoran Sunic gave a talk on
left relative convex subgroups. In this talk, he mentioned that surface groups (of sufficiently high genus) are
orderable as well as the result (due independently to Iwasasa [12] and Neumann [17]) modulo the theorem
of Magnus [15], asserting that a free group F is residually nilpotent with torsion-free lower central quotients
F/γn+1(F) that free groups are orderable. That prompted the second author to pose the question, with the
“something for nothing” approach in mind, of whether group orderability is a first-order property. Surpris-
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ingly the answer is positive. Thus, every elementarily free group is orderable. More is true. Since the axioms
are universal sentences, every nonabelian universally free group is orderable. We further show that each of
the classes of left-orderable groups and orderable groups is a quasivariety with undecidable theory. In the
finitely generated case, universally free groups are precisely, in the terminology of Sela [20], the nonabelian
limit groups. These groups are also called nonabelian fully residually free groups.

One reason that orderable groups are of interest is their ties to the Kaplansky group rings conjecture that
a group ring K[G] over a field K has no zero divisors over a field K if and only if G is torsion-free. If G is a group
and the group ring K[G] has no zero divisors for any field K, we call G a Kaplansky group. We let K denote
the class of Kaplansky groups. It is known that any orderable group is a Kaplansky group. Our results show
that all elementary free groups, and in particular all universally free groups, are then Kaplansky groups. It
was pointed out to us by the referee that our proof for orderable groups follows also for the groups inK. We
then prove in Section 4 that the classK is the model class of a set of universal sentences in the language L0
appropriate for group theory. We thank the referee for pointing this out to us. We also prove a theoremwhich
characterizes when two Kaplansky groups are universally equivalent.

In this paper, we unabashedly embrace the Axiom of Choice. In particular, Zermelo’s well-ordering prin-
ciple is available to us. Our ordinals will be vonNeumann ordinals so that every ordinal coincideswith the set
of its predecessors. We let ω be the first limit ordinal which we identify with the set of nonnegative integers
endowed with its natural order.

Definition 1.1. A group G is left-orderable provided it admits a total order ≤ satisfying hg1 ≤ hg2 whenever
g1 ≤ g2. Moreover, G is orderable provided it admits a total order ≤ satisfying both

hg1 ≤ hg2 whenever g1 ≤ g2,
g1h ≤ g2h whenever g1 ≤ g2.

Clearly, both left-orderability and orderability are inherited by subgroups.
Fixing notation, if G is a group and H and K are (not necessarily distinct) subgroups in G, then [H, K]

shall be the subgroup of G generated by all commutators [h, k] = h−1k−1hk as h and k vary independently
over H and K, respectively. The lower central series of G is defined recursively by γ1(G) = G, and if n > 1 and
γn−1(G) has already been defined, then γn(G) = [γn−1(G), G].

Theorem 1.2 ([12, 17]). Suppose G is a group such that

⋂
0≤n<ω

γn+1(G) = {1}

and G/γn+1(G) is torsion-free for each n, 0 ≤ n < ω. Then G is orderable.

Since, by a classical result of Magnus [15], the hypotheses of Theorem 1.2 are satisfied by free groups, we
have the immediate corollary.

Corollary 1.3. Every free group is orderable.

2 Preliminaries from logic
Let L0 be the first-order language with equality containing a binary operation symbol ∙ (suppressed notation-
ally in favor of juxtaposition), a unary operation symbol −1 and a constant symbol 1. Thus, an L0-structure
is a set G provided with a binary operation G2 → G, (g, h) → gh, a unary operation G → G, g → g−1 and a
distinguished element 1 ∈ G.

A group is then an L0-structure which is a model of the axioms

∀x1, x2, x3((x1x2)x3 = x1(x2x3)),
∀x(x1 = x),
∀x(xx−1 = 1).
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Suppose X = {xn : n < ω} is the set of variables of L0. The set of terms of L0 is defined recursively as
follows: Every variable xn is a term; moreover, the constant symbol 1 is a term. If t is a term already defined,
then (t)−1 is a term. If (t1, t2) is an ordered pair of terms already defined, then (t1)(t2) is a term. Modulo the
group axioms, every term is equal to a word on the variables and their formal inverses. Here, 1 is identified
with the empty word.

An identity or law of L0 is a universal sentence of the form ∀x(T(x) = t(x)), where x is a tuple of distinct
variables and T(x) and t(x) are terms of L0 involving at most the variables in x. Thus, for example, the group
axioms are identities of L0.

A quasi-identity of L0 is a universal sentence of the form

∀x(⋀
i
(Si(x) = si(x))→ (T(x) = t(x))),

where x is a tuple of distinct variables and Si(x), si(x), T(x), and t(x) are terms of L0 involving atmost the vari-
ables in x. Note that the identity∀x(T(x) = t(x)) is equivalent to thequasi-identity∀x((1 = 1)→ (T(x) = t(x))),
so that identities may be considered as special cases of quasi-identities. Note also that, modulo the group
axioms, the quasi-identity

∀x(⋀
i
(Si(x) = si(x))→ (T(x) = t(x)))

is equivalent to one of the form

∀x(⋀
i
(ui(x) = 1)→ (w(x) = 1)),

where the ui(x) and w(x) are words in at most the variables in x and their formal inverses. A quasivariety of
groups is the model class of a set of quasi-identities of L0 together with the group axioms. Following Chang
and Keisler [6], we call a class of L0-structures elementary provided it is the model class of at least one set of
sentences of L0. A theoremofMal’cev [16] asserts that anonempty elementary class of groups is a quasivariety
of groups if and only if it is closed under taking subgroups and (unrestricted) direct products.

Two (not necessarily distinct) L0-structures G and H are elementarily equivalent, in symbols G ≡ H, pro-
vided they satisfy precisely the same sentences of L0. (In particular, if G ≡ H, then H is a group if and only
if G is a group.) The next theorem gives an algebraic characterization of elementary equivalence. It was ini-
tially proven byKeisler assuming theGeneralized ContinuumHypothesis and subsequently proven by Shelah
without need of that assumption.

Theorem 2.1 ([21]). Two L0-structures are elementarily equivalent if and only if they have isomorphic ultra-
powers.

For a discussion of ultraproducts, see, for example, [6].

Theorem 2.2 ([6]). Aclass of L0-structures is an elementary class if andonly if it is closedunder both elementary
equivalence and ultraproducts.

We shall have occasion to apply the following classical “trick”.

Theorem 2.3. Let X be an elementary class of groups. If X contains a finitely presented group with unsolvable
word problem, then the theory of X is undecidable.

Proof. Suppose G, lying in X, has finite presentation

⟨a1, . . . , am; R1(a1, . . . , am) = ⋅ ⋅ ⋅ = Rn(a1, . . . , am) = 1⟩

and has unsolvable word problem. For each word w(x1, . . . , xm) on the distinct variables x1, . . . , xm and
their formal inverses, let σw be the sentence

∀x1, . . . , xm(
n
⋀
i=1
(Ri(x1, . . . , xm) = 1)→ (w(x1, . . . , xm) = 1)).
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If there were a recursive algorithm to decide whether or not each σw is true in every group in X, then we
would have an algorithm to solve the word problem for G. The contradiction shows that the theory of X is
undecidable.

Finally, in this section we explicitly mention the positive solution to the Tarski question.

Theorem 2.4 ([13, 20]). Every nonabelian free group is elementarily equivalent to F = ⟨a1, a2; ⟩.

3 Orderable groups as a universal quasivariety
We follow the notation in Passman’s book [18]. Let G be a group and let S be a subsemigroup of G. Just as for
subgroups, we call S normal in G provided it is invariant under conjugation by arbitrary elements in G. If n is
a positive integer and (b1, . . . , bn) ∈ Gn, we let SG(b1, . . . , bn) be the least normal subsemigroup of G con-
taining {b1, . . . , bn} as a subset, and let S(b1, . . . , bn)be the least subsemigroupofG containing {b1, . . . , bn}
as a subset.

Continuing to fix notation, we let ℤ be the ring of integers, letℕ = {1, 2, 3, . . . } be its positive class and
let U = {1, −1} be its group of units.

Theorem 3.1 (Passman [18]). The following statements hold:
(i) A necessary and sufficient condition for a group G to be left orderable is that, for every finite subset
{a1, . . . , an} of G \ {1}, the intersection of the 2n semigroups S(aε11 , . . . , aεnn ) is empty as (ε1, . . . , εn)
varies over Un.

(ii) Anecessary and sufficient condition for a group G to be orderable is that, for every finite subset {a1, . . . , an}
of G \ {1}, the intersection of the 2n normal subsemigroups SG(aε11 , . . . , aεnn ) is empty as (ε1, . . . , εn) varies
over Un.

Theorem 3.2. The class of orderable groups is elementary.

Proof. For each n ∈ ℕ, ε = (ε1, . . . , εn) ∈ Un and each N = (N0, N1, . . . , Nn) ∈ ℕn+1, let w(ε, N) be a word of
positive length at most N0 on the free semigroup generators (regarded as compound symbols, so no formal
cancellation is permitted) z−1i,j y

εi
i zi,j,1 ≤ i ≤ n,1 ≤ j ≤ Ni. In view of Lorenzen’s theorem (Theorem3.1 above),

the class of orderable groups is axiomatized by the group axioms together with the sentences

∀x, y1, . . . , yn , z1,1, . . . , zn,Nn(( ⋀
1≤i<j≤n
(yi ̸= yj) ∧ ⋀

ε∈Un
(x = w(ε, N)))→

n
⋁
i=1
(yi = 1))

as n varies over ℕ, and the N vary over ℕn+1, and as the w(ε, N) vary over all possible choices (note that
ai ̸= 1, so yi ̸= 1).

Corollary 3.3. Any elementary free group, and more generally any universally free group, is orderable.

Theorem 3.4. The class of left-orderable groups is elementary.

Proof. As in the proof of Theorem3.2,we give an explicit set of sentenceswhichdescribes this class of groups.
These follow from the two parts of Theorem 3.1. To capture the class of left-orderable groups, we need the
group axioms together with the sentences, one for each n ∈ ℕ with

ε = (ε1, . . . , εn) ∈ Un ,

and each N0 ∈ ℕ,

∀x, y1, . . . , yn( ⋀
1≤i<j≤n
(yi ̸= yj) ∧⋀

ε
∈ Un(x = u(ε, N0))→

n
⋁
i=1
(yi = 1)),

where u(ε, N0) is a semigroup word.
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Theorem 3.5. The class of orderable groups is a quasivariety of groups with an undecidable theory.

Proof. In view of Mal’cev’s characterization of quasivarieties, it suffices to show that the class of orderable
groups is closed under taking subgroups andunrestricted direct products.Wehave already noted that order is
inherited by subgroups. (Alternatively, since the class has a set of universal axioms, it is closed under taking
substructures.)

Suppose ≤0 is an order on the group G0 and ≤1 is an order on the group G1. Then the lexicographic
order on G0 × G1 (i.e., if (g0, g1) ̸= (h0, h1), then (g0, g1) < (h0, h1) provided either g0 <0 h0 or g0 = h0 and
g1 <1 h1)makes G0 × G1 into an ordered group. Now, [11, Section 47, p. 292, Corollary 2 of Chapter 7] asserts
that if an elementary class X is closed under the direct product of two structures, then it is closed under
arbitrary direct products of nonvoid families of structures in X.

Alternatively, we could argue as follows: Wemay well-order the index set of any nonvoid family of order-
able groups. There is no loss of generality in taking the index set to be an ordinal α. Suppose ≤ξ is a left order
on Gξ for all ordinals ξ < α. Then the lexicographical order on

G =∏
ξ<α

Gξ

(i.e., if (gξ )ξ<α ̸= (hξ )ξ<α, then (gξ )ξ<α < (hξ )ξ<α provided gμ <μ hμ, where μ is the least ordinal ξ such that
gξ ̸= hξ ) makes G into an ordered group. It follows that the class of orderable groups is a quasivariety of
groups.

Theorem 3.6. The class of left-orderable groups is a quasivariety of groups.

Theorem 3.7. The theory of orderable groups is undecidable.

Proof. By a result of Bludov and Glass [4], there is a finitely presented orderable group with unsolvable word
problem. The result then follows from the proof of Theorem 2.3.

Exactly the same proof shows the following theorem.

Theorem 3.8. The theory of left-orderable groups is undecidable.

Remark 3.9. It would be of interest to find explicit quasi-identities axiomatizing each of the classes of order-
able groups and left-orderable groups.

4 The classK of groups satisfying the Kaplansky conjecture
The Kaplansky conjecture for group rings is that the group ring K[G] over a field K has no zero divisors if and
only if G is torsion-free. A stronger conjecture that implies this one is the Kaplansky unit conjecture that in
a group ring K[G], with K being a field and G a torsion-free group, the only units are the trivial ones of the
form ug, where u ∈ K \ {0} and g ∈ G.

Both conjectures are still open in general but the basic group rings conjecture has been shown to hold
in many classes of groups. In particular, K[G] has no zero divisors if G is orderable or left-orderable. We
let K denote the class of groups for which the Kaplansky conjecture is true, that is, the class of groups G
such that K[G] has no zero divisors for any field K. If G ∈ K, we call G a Kaplansky group. From our results
on orderable groups and the fact that G ∈ K for any orderable group K, it follows that an elementary free
group and more generally any universally free group is in K. It was pointed out to us by the referee that
our techniques in handling orderable groups can also be applied directly to the class K. We show that the
class K is the model class of a set of universal sentences of L0. We thank the referee for pointing this out
to us.

We first note that the fact that G ∈ K if G is finitely generated and elementary can be proved directly
using the Gaglione–Spellman–Remeslennikov characterization of finitely generated universally free groups
as precisely the finitely generated nonabelian fully residually free groups (see [7]).
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Lemma 4.1. Let G be a finitely generated fully residually free group. Then G ∈ K, that is, K[G] has no zero
divisors for any field K.

Proof. First, let us recall that a group G is fully residually free if for any finite set of nontrivial elements
{g1, . . . , gn} ⊂ G \ {1} there exists a epimorphism ϕ : G → F where F is a free group and ϕ(gi) ̸= 1 for
all i = 1, . . . , n. A result of Gaglione and Spellman, and independently Remeslennikov, (see [7]) charac-
terizes the finitely generated universally free groups as precisely the finitely generated fully residually
free groups. Now let G be fully residually free and K a field. Suppose that z1 = f1g1 + ⋅ ⋅ ⋅ + fngn ∈ K[G]
and z2 = k1h1 + ⋅ ⋅ ⋅ + kmhm ∈ K[G], and assume that z1 ̸= 0 and z2 ̸= 0. We may assume that fi ̸= 0 for
i = 1, . . . , n, gig−1j ̸= 1 for 1 ≤ i < j ≤ n, and that ki ̸= 0 for i = 1, . . . ,mj, hih−1j ̸= 1 for 1 ≤ i < j ≤ m. Sup-
pose that z1z2 = 0 in K[G]. Then there exists a homomorphism ϕ : G → F with F being a free group and
ϕ(gig−1j ) ̸= 1 for 1 ≤ i < j ≤ m and ϕ(hih−1j ) ̸= 1 for 1 ≤ i < j ≤ m. The homomorphism ϕ extends to a group
ring homomorphism ϕ∗ : K[G]→ K[F] with ϕ∗(z1) ̸= 0 and ϕ∗(z2) ̸= 0. We then have ϕ∗(z1z2) = 0, which
is a contradiction since K[F] has no zero divisors with F being a free group. Therefore, K[G] has no zero
divisors.

The above lemma also follows from the following argument: It is known that groups universally equivalent
to free groups are orderable since they are subgroups of ultrapowers of a free nonabelian group, which is
orderable. Hence any group universally equivalent to a free group is a Kaplansky group.

We now prove thatK is a universal class.

Theorem 4.2. LetK be the class of groups for which the Kaplansky group ring conjecture is true. ThenK is the
model class of a set of universal sentences of L0.

Proof. From [1, Chapter 7, Theorem 3.10] a class of group X is the model class of a set of sentences in L0
if and only if X is closed under isomorphisms and ultraproducts, and its complement cX within the set of
L0-structures is closed under ultrapowers.

Now letK be the class of groups for which the Kaplansky group ring conjecture is true. Clearly, G1 ≅ G2
implies that K[G1] ≅ K[G2], soK is closed under isomorphisms. Now let Λ be a nonempty index set and let
(Gλ)λ∈Λ be a family of groups ofK. Let D be an ultrafilter on Λ. If A ⊆ Λ, let A = Λ/A be its complement in Λ.
Let U be the ultraproduct constructed from the above data. We show that K[U] has no zero divisors for every
field K.

Suppose that a, b ∈ K[U] and ab = 0. We show that either a = 0 or b = 0. Let

a =
m
∑
i=1
αiζi and b =

n
∑
j=1
βjηj ,

where

ζi = [(xi,λ)λ∈Λ]D , i = 1, . . . ,m,
ηj = [(yj,λ)λ∈Λ]D , j = 1, . . . , n.

Now let

A = {λ ∈ Λ : (
n
∑
i=1
αixi,λ)(

m
∑
j=1
βjηj,λ) = 0}.

Then A ∈ D. For each λ ∈ A we must have either
m
∑
i=1
αixi,λ = 0 or

m
∑
j=1
βjyj,λ = 0.

Therefore, if

B = {λ ∈ Λ :
m
∑
i=1
αixi,λ = 0} and C = {λ ∈ Λ :

n
∑
j=1
βjyj,λ = 0},
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then
B ∪ C ∈ D since B ∪ C = A.

Suppose that B ∉ D and C ∉ D. Then
B ∈ D and C ∈ D,

and therefore B ∩ C ∈ D. Then B ∩ C = (B ∪ C) ∉ D since B ∪ C ∈ D. This contradiction shows that B ∈ D
or C ∈ D. If B ∈ D, then a = 0, while if C ∈ D, then b = 0. From this it follows that the group ring K[U] for the
ultraproduct U has no zero divisors.

Now let G be a group not inK and let ∗G be an ultrapower of G. If ∗G is not a group, then G violates one of
the group axioms, and then∗G also violates this axiomand∗G ∉ K. IfG is a group but not a Kaplansky group,
then K[G] has zero divisors for some field K. The embedding G → ∗G induces an embedding K[G]→ K[∗G]
so that K[∗G] has zero divisors and ∗G ∉ K. It follows now from the result in Bell and Slomson [1] thatK is
the model class of a set of sentences of L0.

Suppose that G ∈ K and G0 ⊂ G. Since for any field K the group ring K[G] contains no zero divisors, the
group ring K[G0] cannot contain zero divisors. HenceK is closed under subgroups.

Now, [6, Theorem 5.2.4] asserts that a theory T is closed under submodels if and only if T has a set
of universal axioms. Therefore, K is the model class of a set of universal sentences of L0, thus proving the
theorem.

We now prove a technical theorem that characterizes when two torsion-free groups, and in particular two
Kaplansky groups, are universally equivalent in terms of Horn sentences in their integral group rings (see
[7, 10]). In what follows, L0 is a first-order language appropriate for group theory, L1 is a first-order language
appropriate for ring theory, and L2 a first-order language appropriate for group-rings (see [9]). For the proof
of this theorem we need the following lemma.

Lemma 4.3. Let G be a torsion-free group and g a nontrivial element of G. Then 1 − g is not a zero divisor in the
group ringℤ[G]

Proof. We prove the stronger result that if g is an element of infinite order in any group G, then 1 − g is not
a zero divisor inℤ[G].

Suppose that g has infinite order. Consider the additive endomorphism ϕ : ℤ[G]→ ℤ[G] given by
ϕ(x) = gx.

We claim that ϕ has no fixed point x0 ̸= 0. Suppose that ϕ(x0) = x0. Write x0 = m1g1 + ⋅ ⋅ ⋅ + mkgk, where
mi ∈ ℤ \ {0} for i = 1, . . . , k and the g1, . . . , gk are distinct elements of G.

Then x0 = ϕ(x0) = m1gg1 + ⋅ ⋅ ⋅ + mkggk. Since the ggc are distinct, it follows that gg1, . . . , ggk must be
g1, . . . , gk in some order by uniqueness of the representation. Thus the restriction of ϕ to {g1, . . . , gk} is
a permutation π.

Suppose that π has order n. Then in particular gng1 = g1, so gn = 1, contradicting the assumption that g
has infinite order. Therefore, ϕ has no nonzero fixed points.

A similar argument shows that ψ : ℤ[G]→ ℤ[G] given by ψ(x) = xg has no nonzero fixed points.
Now suppose that 1 − g were a zero divisor inℤ[G]. Then there would be x0 ∈ ℤ[G] \ {0} such that either

(1 − g)x0 = 0 or x0(1 − g) = 0. In the first case x0 would be a fixed point of ϕ, and in the second case x0 would
be a fixed point of ψ. This contradiction shows that 1 − g is not a zero divisor inℤ[G].

Now we give the technical theorem.

Theorem 4.4. Let G and H be torsion-free groups. Then H is a model of those universal sentences of L0 true
in G if and only if the group ringℤ[H] satisfies every strict universal Horn sentence of L2 of the form

∀x((
n
⋀
k=1

Γ(xk) ∧
p
⋀
i=1
(ui(x) = 1))→ ((1 − w1(x)) ⋅ ⋅ ⋅ (1 − wq(x)) = 0))

true in the group ring ℤ[G], where x = (x1, . . . , xn) is a tuple of distinct variables and the ui(x) and wj(x) are
group words on the variables and their formal inverses.
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Proof. Suppose thatℤ[H] satisfies every universal Horn sentence in L2 of the form

∀x((
n
⋀
k=1

Γ(xk) ∧
p
⋀
i=1
(ui(x) = 1))→ ((1 − w1(x)) ⋅ ⋅ ⋅ (1 − wq(x)) = 0))

true inℤ[G].
To deduce a contradiction, assume that H violates some universal sentence of L0 true in G. Then H satis-

fies some existential sentence of L0 false in G. The usual argument then shows that H satisfies some primitive
sentence of L0 false in G. Let this primitive sentence be

∃x(
p
⋀
i=1
(ui(x) = 1) ∧

q
⋀
j=1
(wj(x) ̸= 1)) (4.1)

Since (4.1) is false in G, the group G satisfies

∀x(
p
⋀
i=1
(ui(x) = 1)→

q
⋁
j=1
(wj(x) = 1))

Sinceℤ[G] has no zero divisors of the form 1 − g by Lemma 4.3,ℤ[G] satisfies

∀x((
n
⋀
k=1

Γ(xk) ∧
p
⋀
i=1
(ui(x) = 1))→ ((1 − w1(x)) ⋅ ⋅ ⋅ (1 − wq(x)) = 0)) (4.2)

By hypothesis,ℤ[H] satisfies (4.2). Sinceℤ[H] has no zero divisors of the form 1 − g, the group H satisfies

∀x(
p
⋀
i=1
(ui(x) = 1)→

q
⋁
j=1
(wj(x) = 1)).

But that contradicts the assumption that H satisfies

∃x(
p
⋀
i=1
(ui(x) = 1) ∧

q
⋀
j=1
(wj(x) ̸= 1)).

The contradiction shows that H is a model of those universal sentences of L0 true in G.
Conversely, suppose that H is a model of those universal sentences of L0 true in G. Now suppose that

∀x((
k
⋀
i=1
(Γ(xi) ∧

p
⋀
i=1
(ui(x)) = 1))→ ((1 − w1(x)) ⋅ ⋅ ⋅ (1 − wq(x)) = 0))

is true inℤ[G]. Then, sinceℤ[G] has no zero divisors of the form 1 − g,

∀x((
p
⋀
i=1
(ui(x = 1))→

q
⋁
j=1
(wj(x)) = 1))

is true in G.
Since H satisfies those universal sentences of L0 true in G, it follows that H satisfies

∀x(
p
⋀
i=1
(ui(x) = 1)→

q
⋁
j=1
(wj(x) = 1)).

Sinceℤ[H] has no zero divisors of the form 1 − g, the group ringℤ[H] satisfies

∀x((
n
⋀
k=1

Γ(xk) ∧
p
⋀
i=1
(ui(x) = 1))→ ((1 − w1(x)) ⋅ ⋅ ⋅ (1 − wq(x)) = 0)).

Thus G and H are universally equivalent if and only if ℤ[G] and ℤ[H] satisfy the same given types of Horn
sentences.
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From this we immediately get the following corollary.

Corollary 4.5. Let G and H be torsion-free groups. Then G and H are universally equivalent with respect to L0
if and only if the group ringsℤ[G] andℤ[H] satisfy the same strict universal Horn sentences of L2 of the form

∀x((
n
⋀
k=1

Γ(xk) ∧
p
⋀
i=1
(ui(x) = 1))→ ((1 − w1(x)) ⋅ ⋅ ⋅ (1 − wq(x)) = 0)),

where x = (x1, . . . , xn) is a tuple of distinct variables and the ui(x) and wj(x) are group words on the variables
and their formal inverses.

We close this section and the paper by recalling some additional facts about the classK and then posing two
questions.

It is known that any unique product group is in K (see [3]). In [3], Bowditch introduced a geometric
variation of the unique product property called diffuse groups. Bowditch then discusses diffuse groups and
fundamental groups of hyperbolic manifolds. He also provides an example of a group that is diffuse but not
right-orderable. Recall that a group G is locally indicable if every finitely generated nontrivial subgroup of G
has an infinite cyclic quotient. Burns and Hale [5] showed that locally indicable groups are right-orderable.
However, Bergman [2] showed that a right-orderable group need not be locally indicable, answering a ques-
tion posed by Howie. Any finite extension of a polycyclic group is right-orderable if and only if it is locally
indicable [19],while other exampleswhere this is truewere examinedbyLongobardi,Maj andRhemtulla [14]
Another example of a right-orderable group that is not locally indicable is provided by the braided Thompson
group T, which is known to be right-orderable (see [2]), but has a simple subgroup of finite index so cannot
have any infinite cyclic quotient, and hence cannot be locally indicable.

We close with two questions motivated by our results on orderable groups.
(1) Can we determine an explicit set of universal axioms forK?
(2) Does the universal classK form a quasivariety?
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