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A review of two different, one-dimensional models of the vapor transport within the thermal
diffusion cloud chamber (TDCC) is presented. In one case the assumption is made that there are no
convective fluxes within the chamber and that heat and mass transport occur by diffusion only.
Although in this model there are no restrictions on the transport of the two components within the
chamber, the assumption of no velocities within the chamber results in an incorrect flux boundary
condition for the background, carrier gas. The second model is based on the typical, stagnant
background gas assumption and the equations of this model closely follow those of the classical
Stefan tube problem in which there is transport of a volatile species through a noncondensible,
carrier gas. Unfortunately, this model of the TDCC also suffers from the same inconsistencies as
noted by several researchers for the Stefan tube. When the convective contributions to the flux are
low in the stagnant background gas model, the two models give reasonably close results. For more
convective situations, the supersaturation results can differ by more than 50%. One interesting
feature of the zero velocity model is that it predicts a change in the supersaturation profile with
pressure, whereas no pressure dependence is predicted with the stagnant background gas model.
Unfortunately, the direction of this pressure change is opposite to that seen in experimental

observations. © 2000 American Institute of Physics. [S0021-9606(00)50741-7]

I. INTRODUCTION

The thermal diffusion cloud chamber (TDCC) has been
used to study the nucleation of a variety of materials since its
introduction to the nucleation community by Katz and Oster-
meir over 30 years ago.! In the early years, it was used to
measure the critical supersaturation, S, the supersaturation
at which the flux of droplets was approximately 1 cm™>s™".
In the late 1980s as researchers began measuring both the
flux as well as the supersaturation, they noticed a depen-
dence of the flux on the background gas that was not seen in
typical expansion studies.? Since a difference of a few per-
cent in the supersaturation can cause an order of magnitude
or more difference in the flux, these flux measurements were
extremely sensitive indicators of differences between the two
experimental systems.

To examine the role of the background gas on the nucle-
ation behavior, Heist et al. developed a high pressure diffu-
sion cloud chamber (HPCC) capable of studying the nucle-
ation of materials at pressures as high as 40 bar.>~ The
results of this work seem to suggest that there is a significant
pressure dependence of the critical supersaturation, increas-
ing with increasing pressure.

Today there is increasing concern in determining the
stable range of operation of the TDCC/HPCC. For example,
at sufficiently high pressures, there can be an inversion in the
density profile. Such an inversion results in strong convec-
tive currents within the chamber, thereby rendering the 1D
model of the TDCC system invalid. A more insidious prob-
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lem can be caused by convective flows generated by sidewall
buoyancy effects.® In this case, convective flows can cause a
slight, yet systematic change in the temperature and mole
fraction profiles within the chamber. Because of their small
magnitude, it may be difficult to detect such flows experi-
mentally.

To examine the possible magnitudes of these flows, Fer-
guson and Nuth developed a two-dimensional model of a
typical diffusion cloud chamber which includes the appropri-
ate buoyancy effects.” Ferguson and Nuth found that small
flows can exist and, for the cases they investigated, these
flows were able to reduce the maximum supersaturation
along the center line by roughly 2—8 %.

The equations used to solve for the temperature and con-
centration fields are coupled and depend upon the expres-
sions used for the physical properties of the constituent spe-
cies. In order to clearly delineate the effects due to buoyancy
alone, the authors calculated the maximum supersaturation
within the chamber with the model at a gravitational level of
1 and 0. With g=0, buoyancy effects are eliminated and the
results should be identical to the typical one-dimensional
(1D) modeling [provided the diameter to height ratio (D/H)
is sufficiently high and that wall effects do not extend to the
center line].

Although very close, the 0 g solution and that of the
typical 1D modeling did not match identically, even using
identical physical properties. The following discussion out-
lines the differences between these two approaches and tries

© 2000 American Institute of Physics
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Gas Stream of A and B

FIG. 1. Cross-sectional diagram and mass transfer boundary conditions for
the classical Stefan tube problem.

to emphasize the importance of the momentum boundary
condition in the modeling of the TDCC.

II. MODELING OF THE TDCC

The development of the equations for the TDCC follow
very closely those for the classical Stefan tube problem as
outlined by Bird, Stewart, and Lightfoot.® Such an apparatus
can be used to measure binary diffusion coefficients and a
diagram of a typical Stefan tube apparatus is shown in Fig. 1.
The tube is filled with a liquid A evaporating into a back-
ground gas B and it is assumed that the mole fraction at the
liquid surface is given by the ratio of the equilibrium vapor
pressure at the temperature of the liquid to the total pressure.
At the top of the tube, the mole fraction of A is also speci-
fied.

Fick’s law for the transport of A is

NA—xA(NA+NB)=—cDAB VxA, (1)

where N; is the molar flux of species i with respect to a fixed
coordinate system, ¢ the molar concentration of the mixture,
D 4 p the binary diffusion coefficient, and x; the mole fraction
of species i. If we assume the flux is one-dimensional and
that the background gas is essentially stagnant (i.e., Ng,=0)
we get

CDAB dxA

Naw=- 1-x, dz @

If it is assumed that the tube is at steady state and isothermal
and that the gases behave ideally, a shell balance for the flux
of A can be used to develop analytical expressions for the
mole fraction profile and the rate of evaporation.®

A diagram of a typical diffusion cloud chamber and the
boundary conditions for the typical 1D modeling are shown
in Fig. 2. The TDCC differs from the Stefan tube in that the
top boundary is closed and the bottom and top surfaces are
held at different temperatures. During operation, vapor dif-
fuses from the hotter, lower plate towards the cooler, upper
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FIG. 2. Typical thermal diffusion cloud chamber and transport boundary
conditions.

plate. At sufficiently high supersaturations the vapor con-
denses and forms droplets which fall back to the lower plate.
In order to model the system in one-dimension only, the
D/H ratio of such chambers are typically large, approxi-
mately 5 or greater. In contrast, Stefan tubes typically have
very low D/H ratios to minimize end effects (e.g., error in
fluid meniscus level, circulating flows at the top of the tube).

Katz originally developed the equations describing trans-
port in the TDCC.® Because the system is not isothermal, an
additional equation is needed for the temperature profile. The
mass flux in the 1D system is given by

dxA d
""_+kT d_zlnT

dz ’ ®

xgNy,—x4Np,=—cDyp

where k; is the thermal diffusion coefficient and T is the
temperature. The second term in the brackets accounts for
the influence of the temperature field on the mass flux, i.e.,
the Soret effect. Again the assumption is made that the flux
of B is zero; hence the equation can be written as

XA d
_+kT 'jglnT

xgNy,=—cDyp dz

: @

It is more convenient to define the thermal diffusion ratio, «,
as

kr
XaXp

a= )
Also, the following substitution can be made for the mole
fraction, x, :

P
xAsz (6)
t

where P is the partial pressure of A and P, is the total pres-
sure within the chamber. The binary diffusion coefficient,
D,p, can be expressed as

DST°  DSRRT ™!
DAB= = Pt ] (7)

c
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where DY is a constant and s is a factor ranging from 0.5 to

1.0. Substituting these expressions into Eq. (4) yields a dif-

ferential equation for the partial pressure profile of A:
dP aP(P—P,)dT (P—P,)L ®
dz TP, dz D%,

The heat flux, Q, in the TDCC consists of three terms: trans-

port by conduction, transport due to convective flux, and the

Dufour effect. This flux is given by

RTk;Ny,

+Ny ,H+ —, (9)
XA

v aT
0=—kaz
where k and H are the thermal conductivity and enthalpy of
the mixture, respectively. Using the same substitutions as

used for the molar flux equation gives

ar 1 ( aRT(PrP))
az x| 9TNa\H P, :

The coupled differential equations (8) and (10), can be
solved numerically for the temperature and partial pressure
profile to determine the supersaturation profile.

(10)

lll. DIFFERENCES IN THE MODELING

In contrast to the typical assumptions used to compute
the concentration and temperature field, Ferguson and Nuth
assumed that all velocity components at the chamber bound-
aries were zero with the exception of the symmetry condition
at the chamber center line. Under this assumption and in the
absence of any pressure gradients and body forces, there is
no generation of momentum within the chamber so that

v=0 (11)

at every point within the chamber and the transport of mass
and energy within the chamber is purely diffusional. No as-
sumption was made on the transport of either the volatile
species, A, or the background gas, B, within the chamber. In
other words, the background gas, B, was not forced to be
stagnant. Yet, the consequence of specifying a zero velocity
at the boundaries is a nonzero flux of the insoluble, back-
ground gas at the solution boundaries. In general, for the 1D
case the mass-average velocity within the chamber at any
point is given by

1
vz:;[NAzMA+NBzMB]- : (12)

For a nonzero flux of A, N4, at the top and bottom bound-
aries, the assumption of v, =0 implies that there is also a
compensating flux of the background gas into the liquid at
these boundaries. Therefore, there is an unrealistic boundary
condition in the solution of such a model.

The equations typically used to calculate the concentra-
tion and temperature profiles in the TDCC have inconsisten-
cies as well. If the assumption is made that the background
gas is insoluble in the volatile liquid, i.e., N5, =0 at the
boundaries, then

1
vz:;[NAzMA]- (13)

Ferguson, Heist, and Nuth

v, # v:(7)
\AAAA
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FIG. 3. Two different concepts of the velocity profile within the stefan tube
and diffusion cloud chamber.

In a 1D model, if Ng,=0 at the boundaries, then by conti-
nuity the flux of background gas must also be zero through-
out the chamber and this is the origin of the stagnant back-
ground gas assumption. Therefore Eq. (13) is not only valid
at the boundaries but it must hold throughout the chamber.
Under steady operation, the flux of A is constant and Eq. 13
indicates that the velocity within the chamber varies in-
versely with the overall density. Under normal chamber op-
eration the density decreases with height in the chamber.
Therefore, the highest velocity occurs at the top of the cham-
ber where the density is the lowest.

As suggested by Whitaker, one problem with Eq. (13) is
that it must break down at high concentrations of the volatile
species.'® For example, the velocity in Eq. (13) depends on
the flux of A, which is given by Eq. (2} (if we neglect the
Soret effect in this particular example). This equation, and

~ hence the mass-average velocity within the chamber, suffers

from problems as x,— 1.0. For the TDCC, this is generally
not a problem since the mole fraction of the volatile species
is typically low.

Another limitation of Eq. (13) is that there is no radial
dependence in this equation for the velocity in the chamber
and this equation predicts a flat velocity profile as shown in
Fig. 3(a); yet such a profile violates the no-slip boundary
condition at the chamber side wall. For laminar flow, the
no-slip boundary at the chamber sidewall should give a
parabolic-type of velocity profile similar to that shown in
Fig. 3(b).

It was recognized quite a while ago that the uniform
velocity profile violated the no-slip boundary condition at the
wall and this resulted in a radial variation in the concentra-
tion gradient. Heinzelmann ef al. performed a detailed ex-
perimental and theoretical analysis of the Stefan tube assum-
ing no-slip at the walls and concluded that the radial
concentration was essentially uniform within their experi-
mental error.!! Rao and Bennet performed another study of
radial concentration effects in the Stefan tube and arrived at
a similar conclusion.'?

Later on, justifications for the apparent discrepancy be-
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tween the velocity profile of species A and the no-slip bound-
ary condition came including the presence of slip at the
walls. Kramers and Kistemaker'? postulated the existence of
a diffusive slip boundary condition in the presence of a con-
centration gradient and this was invoked by Whitaker as a
possible explanation for the momentum boundary condition
inconsistency.'

Rao and Bennet later argued that the no-slip boundary
condition could be satisfied if there was recirculation of the
background gas.'> This 2D phenomena would be in contrast
to the typical stagnant background gas assumption made in
1D. In order to satisfy the no-slip boundary condition at the
walls (i.e., v,=0), of the Stefan tube they envisioned a
downward flux of the background gas in accordance with Eq.
(12). This downward flux at the walls would have to be
balanced by an upward flux of B in the interior of the tube.

This postulation was first confirmed in a numerical simu-
lation by Meyer and Kostin for a constant density situation,
(i.e., components A and B of equal molecular weight).16
These authors showed that there was considerable recircula-
tion of the background gas in contrast to the typical, *‘stag-
nant’> approximation. Later Markham and Rosenberger
made a much more general and refined numerical study of
the Stefan tube problem.'” They considered unequal molecu-
lar weight species and examined the resulting concentration
profiles as well as the velocity distribution within the tube.
Like Meyer and Kostin, they also found considerable recir-
culation of the background gas. In addition, they also noted
that the radial density profile depended upon the ratio of the
molecular weights and that the total mass flux through the
Stefan tube differs very little from the 1D solution for typical
tube conditions where H/D~10. They did warn that with a
decrease in this ratio, buoyancy-driven contributions can de-
velop that can cause larger errors (several 10%) in the typical
1D solution.!”

In summary we have presented two different models of
the TDCC and each represents a limiting case of the 1D
modeling. Each one of these models also suffers from some
problems or inconsistencies. In the zero velocity model, no
assumption is made about the transport of A or B within the
chamber, but specification of a zero velocity at the boundary
results in an incorrect flux boundary condition for the back-
ground gas. In the case of the stagnant background gas
model, the no flux boundary condition of the background gas
at the boundaries requires that Nz_=0 at all points within the
chamber. The work of Meyer and Kostin and Markham and
Rosenberger has shown that in fact there is considerable re-
circulation of this background gas. These inconsistencies in
both models can be resolved by resorting to a 2D model of
the chamber which contains elements of each of these 1D,
limiting cases. Such a model is unfortunately much more
complex and a 1D model is obviously preferred in the cal-
culation of chamber supersaturation data.

In this paper we make a comparison between these two
ID models and show the characteristics and predictions of
each. To make such a comparison, we neglect the cross-
coupling terms (Soret/Dufour effects) in the transport equa-
tions. The emphasis of this analysis is to highlight the differ-
ences between the terms describing ordinary, concentration-
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induced diffusion; the cross-coupling terms would
unnecessarily complicate the analysis and may be included
in a full analysis with little effort.

A mass balance on species A, at steady state and without
generation terms through chemical reactions gives

V-(pwsv)=(V-pD,pVwy), (14)

where w, is the mass fraction of species, A. Since the ve-
locities in the momentum and continuity equations are mass
average velocities, there is an advantage to switching to mass
fractions for concentrations rather than using mole fractions.
In Eq. (14) for 1D, assuming v=0 everywhere, the inertial
term drops out and we are left with

d
dz

d(.()A

pDsp a7 =0. (15)

Using p=cM where M is the mean molecular weight of the
mixture and

wA=[x"M“] | (16)

M
in Eq. (15) gives

d [cDsgMsMp dx
a apMaMp _A}z (17)
dz| M dz

Since M, and My are constants we get
d| cD dx
— = —2|=0. (18)
dz|Mp+(Ms—Mp)x, dz

This equation should be compared with the equation under
the stagnant gas approximation

d
dz
obtained from Eq. (2) by assuming the flux is constant
throughout the chamber. As x,—0, the denominator of
Eq.(18)— M. Since the denominator of Eq. (18) is just the

mean molecular weight of the binary mixture, it is always
greater than zero.

CDAB dxA
(1—x,) dz

=0 (19)

IV. COMPARISON BETWEEN EXPRESSIONS

What is the difference in the mole fraction profiles be-
tween Eqs. (18) and (19)? To examine this effect we assume
that the ¢D 45 product is a constant {which is reasonable for
an ideal gas mixture); then the equations reduce to a com-
parison of

dl 1 dxy

ZIELmd—Z =0 (20)
and

d| 1 dx,

dz|Mg+(M,—Mp)x, dz 0 2

For the second equation we need molecular weights so we
choose M,=60.096 and My=4.0026 corresponding to
1-propanol and helium, respectively, as a test case.

Figure 4 is a comparison between these two equations
for three different cases with a constant difference in the
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FIG. 4. A comparison between the predicted mole fraction profiles based on
the stagnant gas assumption and the zero velocity assumption. Curves are
shown for different concentrations with a total Ax, of 0.1.

mole fraction at the boundaries, Ax,, of 0.1. The resulting
profiles will depend upon the value of x, so three extreme
cases are shown in the graph; x,—0, x,~0.5, and x4
—1.0. In each case, the actual mole fraction boundary con-
ditions used in the computation are shown on the right-hand
side of the figure. The dark curve denotes the typical, stag-
nant background gas solution while the dashed curve is the
profile calculated using the zero velocity assumption.

In all three cases, Eq. (21) predicts a smaller value for
the mole fraction than Eq. (20). For values of x,~0.5, there
is virtually no difference between the two solutions. As x,
—0 and x4— 1.0, the differences between the two profiles
are larger and the effect is more pronounced for the x4
— 1.0 case.

Figure 5 is a similar plot for the mole fraction profile,
but with a larger concentration difference between the

1.0 TTIIII’I‘IIIIIII[III'

r 10.99
0.8 N 40.79
0.6 |- - 0.60
s .
H -
0.4 — +10.40
- —— Stagnant B Assumption
L - — —  Zero Velocity Assumption
0.2 40.21
0-0 l 1 1 1 l 1 1 1 I 1 1 1 l 1 1 L ' L 1 1 l ] 0.01

0.0 0.2 0.4 0.6 0.8 1.0

Z

FIG. 5. A comparison between the predicted mole fraction profiles based on
‘hF Stagnant gas assumption and the zero velocity assumption. Curves are
siown for different concentrations with a total Ax, of 0.2.

Ferguson, Heist, and Nuth

boundaries. In this case, the concentration difference be-
tween the two boundary points is 0.2. Again, in all cases the
stagnant background gas approximation [Eq. (20)] predicts a
higher value for the mole fraction of A at any point over the
results from Eq. (21).

The differences between the two profiles are again
smallest for the x4, ~ 0.5 solution, but the differences between
the solutions are more dramatic for the Ax,=0.2 case than
for the Ax,=0.1 case.

Because of the coupling between the equations for the
concentration and temperature profiles, it can be hazardous
to draw general conclusions as to the results on the super-
saturation profile. The results from Figs. 4 and 5 seem to
suggest that the supersaturation calculated via Eq. (21) will
always be lower than that calculated using Eq. (20) and that
these differences will be more pronounced as the concentra-
tion of the vapor becomes very small or very large.

V. CALCULATION OF SUPERSATURATION DATA

To examine the effect of the stagnant background gas
and zero velocity assumption on the actual supersaturations
calculated, we will examine two test cases. The first of these
will be the condensation of 1-propanol in helium at 1.18 bar
with lower and upper plate temperatures of 302.9 and 256.5
K, respectively. The maximum supersaturation between the
two plates is calculated via the typical 1D equations derived
by Katz and by the following two equations for the tempera-
ture and mass fraction profile, respectively:

d kd—T =0 22
Gl DY 23
dz PL4p dz | (23)

These equations are based upon the zero velocity assumption
in which there is purely diffusional transport of energy and
mass within the chamber. As with the traditional equations
for the TDCC, the condensation flux is assumed to be suffi-
ciently small that the effect of the condensing vapor does not
significantly influence the temperature or concentration pro-
file as calculated by these equations. Physical properties for
both sets of equations were identical and were taken from the
tabulated data given by Heist.? In both sets of equations the
Soret and Dufour effects were neglected and the ideal gas
equation of state was used.

The results were an S, of 3.226 calculated via Egs.
(22) and (23) and an S,,,, of 3.66 as calculated via the typi-
cal, stagnant background gas solutions. The Sp,,,=3.226 is
identical to the solution derived by the 2D model at 0 g by
Ferguson and Nuth’ while the 3.66 value is close to the value
estimated from the graph in the work of Bertelsmann and
Heist.!® As expected, the value calculated from the zero ve-
locity model is lower than that based on the stagnant back-
ground gas equations and in this case there is just over 10%
difference between the two values. As noted earlier, Eq. (13)
can be used to compute the velocity profile within the TDCC
under the stagnant background gas assumption. In this test
case, the velocity values are ~0.1 cm s~! for a chamber di-
ameter of 10.38 cm and height of 1.384 cm. In this case since
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TABLE 1. Comparison between maximum supersaturation values for nonane taken from the work of Katz
(column 5), calculated using the stagnant gas assumption (columns 6 and 7), and calculated with the zero
velocity assumption (column 8). For each experiment, the total chamber pressure, P, , and the temperature of
the bottom, Ty, and top, Ty, plates are shown. Experiments highlighted with an a represent runs where the

total pressure in the chamber was doubled.

Expt. No. P, (torr) Ty (K) Tip (K) S S'max S ax S nax
Soret/Dufour Included? Yes Yes No No
Np,=0 used? Yes Yes Yes No
Source Katz!  This work This work  This work

6 340.0 343.61 262.79 13.46 13.52 13.15 6.43

6¢ 659.0 346.66 262.80 13.72 13.65 13.22 7.51

1 95.9 319.65 24312  26.54 26.68 2593 11.59

15 45.0 305.59 231.90  41.89 42.11 40.82 17.88

15¢ 89.4 307.54 231.84 41.50 41.26 39.83 21.30

the velocity values are small, it is not surprising that the two
models give reasonably close values for the maximum super-
saturation.

A second comparison is made between the values calcu-
lated by Katz for a nonane-helium system.” In this case, a
direct comparison is more complicated because Katz in-
cluded the Soret/Dufour effects on the profiles. Fortunately,
Katz also included a detailed sensitivity analysis for these
same data and examined the effect of several parameters
upon the maximum calculated supersaturation anywhere
within the chamber. His analysis indicates that the effect of
neglecting these coupling terms causes an approximately 3%
deviation in the maximum supersaturation.

Table I is a comparison between the values derived by
Katz, the values calculated via the stagnant background gas
approximation (with and without Soret/Dufour terms) and
the S« calculated with the zero velocity approximation. As
is seen in the table, the results calculated via our stagnant gas
model are essentially identical when the Soret/Dufour effects
are included. When these effects are not included the results
are consistent with a 3% variation in the values as noted by
Katz. This reinforces the fact that the physical properties and
solution procedure are consistent with those used by Katz.
The values for the supersaturation calculated with the zero
velocity approximation are much lower; approximately 50%
lower for most of the cases shown. However, there is a very
real concern as to the reliability of all the low temperature
critical supersaturation data for nonane.

The mass flux of the background gas, np, with respect to
a stationary coordinate system is given by

ng=jptpwpv=—pD 45 Vwg+pwpv (24)

and is composed of a diffusive flux term, jz, and a convec-
tive term. The assumption of a stagnant background gas,
np=0, means that the convective term (the so-called Stefan
flow), is exactly balanced by the diffusive term. In short,
even though a concentration gradient exists in the back-
ground gas, the background gas remains stagnant because
there is a compensating convective flux which exactly can-
cels this diffusive flux. When the concentration gradient is
large, (e.g., when the total pressure is decreased), this Stefan
flow term is also large. Some of these velocities can become

quite large. For example, in case 11 of Table I these veloci-
ties range from ~3—14 cms™! for a chamber height of 5.27
cm.

Katz obtained excellent agreement between the experi-
mentally measured critical supersaturations (using the equa-
tions based on the stagnant gas approximation) for nonane
and classical nucleation theory (CNT) so discrepancies be-
tween these new equations and CNT are likely based on the
sample of results in Table 1. The S, vs T envelopes from
Katz’ experimental data are plotted in Fig. 6 as short dashes
along with the predictions of CNT using the physical prop-
erties for nonane given in the original work. As shown in the
figure, the agreement between the two is excellent. The ex-
perimental data are a bit below CNT predictions at the lower
temperature end and a bit higher at the higher temperature
end—this behavior is similar to that seen with a large num-
ber of other materials in the TDCC. It is important to point
out that all of the supersaturation versus temperature curves
shown in Fig. 6, except for the five curves in each set at the

T ! T T T T I T T T T I T
0~ -
B Stagnant Background Gas Assumption |
J — Zero Velocity Assumption
—=—==  Pressure Doubled Data

CNT

l T |

30 °

SC'I‘

20

10 |-

Temperature (K)

FIG. 6. A comparison between nonane experimental data and CNT predic-
tions. The supersaturation prediction based on the zero velocity assumption
indicates a pressure effect while the typical equations used to calculate the
supersaturation profile in the TDCC do not show this effect.
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highest temperatures, violate the stability criteria for stable
(e.g., free from buoyancy-driven convective flows) TDCC
operation as defined by Bertelsmann and Heist.>'® As a re-
sult, all these data are suspect and should most probably be
represented by smaller computed supersaturation values.”'®
- However, the reduction in the computed supersaturation due
to the buoyancy-driven flow in this case is not as significant
as the reduction in the computed supersaturation arising from
the two models discussed here.

The S vs T envelopes based on the general equations
where the zero velocity assumption is made are shown as the
solid curves. These data fall well below the CNT predictions.
At the lower temperature end, the S, values are less than 1/2
of those of the Katz and CNT predictions and the differences
between the two become smaller at the higher temperatures.
Another important point to notice is that the data with the
stagnant background gas yield a smooth S, vs T envelope. In
contrast, there are four data sets for the newly calculated data
which are markedly higher than the rest of the data set. These
four sets correspond to runs where the pressure in the TDCC
was doubled.

As noted in the introduction, one of the problems cur-
rently plaguing TDCC work is the apparent dependence of
the results upon the pressure of the chamber carrier gas. Such
an effect is not predicted by CNT or the typical equations
used to calculate the supersaturation profile in the chamber.
Yet the transport equations under the zero velocity assump-
tion in this work predict a rise in the supersaturation with
increasing pressure.

Again, we restrict our discussion to concentration-
induced diffusion and ignore- the smaller-order, cross-
coupling terms in the mass and energy equations, The equa-
tions describing mass transport under both models are of the
form

d|_d ¢J
e [F iz =(). (25)
When steady conditions are reached in the TDCC, the tem-
perature of the upper and lower plates fix the partial pressure
at these boundaries via the vapor pressure equation. These
partial pressures are essentially invariant with pressure, so
the ¢’s in Eq. (25), whether they are mass or mole fractions
scale accordingly with pressure—they are both simply dif-
ferent ways of describing the partial pressure profile in the
chamber. Variations in the partial pressure profile occur be-

tween these two fixed boundary conditions because of the
factor, I, in Eq. (25). For Eq. (19),

r= ( cDas ) . (26)

The mole fractions in TDCC experiments are typically small.
For example, the largest mole fraction of any of the ex-
amples shown in Table I is 0.15. Therefore, the denominator
in Eq. (26) is ~1.0. Further, the product of cD,j is essen-
tially pressure independent. Hence, a doubling of pressure
would make little difference to the supersaturation profile
calculated using Eq. (20).
On the other hand, in Eq. (15),

Wl S ——m—m———BG—————

Ferguson, Heist, and Nuth

In this case a doubling of the pressure effectively doubles
this value, thereby altering the calculated supersaturation
profile. Equation (23) predicts an increase in the supersatu-
ration with pressure, although the direction of this change
(an increasing maximum supersaturation with increasing
pressure) is opposite to that which is typically observed.

As a brief aside, we note that Eq. (26) will become large
as the mole fraction of the diffusing component approaches
unity. The region in the TDCC where this will occur is in the
vicinity of the lower plate boundary, and the reason why this
would occur is operating the cloud chamber under low total
pressure conditions. As mentioned earlier, typical values for
mole fractions at the lower plate are usually small (several
tenths or less), so this is normally not an issue. However,
operation under conditions in which the value of the vapor
pressure of the diffusing component at the lower plate ap-
proaches the magnitude of the total pressure is becoming
increasingly important as the cloud chamber is being used to
investigate broader classes of working fluids over wider
ranges of operational conditions (e.g., nucleation near a criti-
cal point™).

In such experiments, as the value of x, approaches unity
the value of the mass flux will increase significantly and the
conditions at the lower plate surface will move increasingly
away from equilibrium. When that happens, we are no longer
able to use the equilibrium boundary condition approxima-
tion for the mole fractions at the lower (and upper) plate
surfaces, and we are no longer able to calculate conditions
within the chamber. Again, this is generally not a problem as
long as the ratio of the mass flux through the chamber to the
equilibrium evaporation flux at the lower plate is small. For
example, in recent experiments involving pentanol and hy-
drogen in which operation at low total pressures was specifi-
cally investigated, this ratio was typically on-the order of
107® (even at the lower total pressures used in those
experiments>?),

In the past, investigators have relied on empirical rules
of thumb to help determine proper operating ranges for the
TDCC. One such rule involves the so-called pressure ratio.
This quantity is defined as the ratio of the total pressure to
the equilibrium vapor pressure of the diffusing material at
the lower plate. It is generally accepted that the value of this
ratio should be larger than (roughly) two to three and the
bigger the better.”! At first glance it might seem reasonable
to associate the effect of the denominator in Eq. (26) with
this pressure ratio.

However, results from the pentanol-hydrogen investiga-
tion mentioned above clearly identified a lower total pressure
stability limit for diffusion cloud chamber operation below
which the nucleation data are increasingly unreliable.?’ In
that investigation, mole fraction and temperature profiles
within the cloud chamber were determined using the stag-
nant background gas assumption (including thermal diffu-
sion cross coupling terms and using a real gas equation of
state). In that investigation, the ratio of the mass flux to the
equilibrium flux was generally of the order 10~ °. Based on
the results of that investigation, it does not appear that the
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observed limit of lower total pressure stability reported in the
pentanol—-hydrogen investigation is a consequence of the de-
nominator in Eq. (26). Rather, as the authors point out, it
appears to be associated with the onset of buoyancy-driven
convective instabilities within the cloud chamber and ap-
pears also to be related to the presence of the thin pool of
liquid (source of diffusing vapor) on the lower plate. One
other important result of that investigation is that the pres-
sure ratio bears no relation to the lower total pressure limit of
stability and should not be used to specify operational con-
ditions for diffusion cloud chamber operation.

VI. CONCLUSIONS

As noted in the introduction, recent diffusion cloud
chamber experiments seem to indicate that measured critical
supersaturations depend upon both the type and pressure of
the background gas, even though such an effect does not
appear in the equations typically used in the TDCC data
reduction. In this work we have tried to highlight differences
between two different 1D models of the TDCC—the typical
stagnant gas approximation and one based on purely diffu-
sional transport. This second model is based on the assump-
tion of no mass-average velocities within the chamber and
results in an incorrect boundary condition for the flux of the
background gas. Several inconsistencies have been noted for
the Stefan tube problem and these same arguments are also
applicable to the stagnant background gas model of the
TDCC. As expected, for situations where the Stefan flow is
very small, the two models give similar results. As these
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velocities become much higher, critical supersaturations for
these two models can differ by as much as 50%. One inter-
esting feature of the zero velocity model is that it predicts a
rise in the critical supersaturation with pressure, although it
should be noted that the direction of this change is opposite
to that which is observed experimentally. The limitations of
each of these 1D models may be resolved with a 2D model
of the chamber and it would be interesting to compare such a
solution with these 1D predictions.
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