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Mori—-Zwanzig—Daubechies decomposition of Ising-model

Monte Carlo dynamics
George D. J. Phillies®

Department of Physics and Associated Biochemistry Faculty, Worcester Polytechnic Institute,

Worcester, Massachusetts 01609

Jonathan Stott

Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106

(Received 29 August 1994; accepted 4 January 1995)

Monte Carlo dynamics of one- and two-dimensional Ising lattices were studied by computer
simulation. A comparison of decompositions made with Haar and Daubechies wavelets finds that
wavelet—wavelet time correlation functions {c"(f)c"(t+ 7)) and their long-time decay constants
I, are virtually independent of the choice of wavelet basis. An intermediate-temperature scaling
relation between I',, and (c"(¢)c"(¢+ 7)) fails at low temperature. The temperature at which failure
occurs decreases with increasing wavelet decimation level n. Mori—-Zwanzig memory kernels ¢(7)
are extracted from (c"(¢)c"(r+ 7)) without resort to Laplace transforms. Numerically, ¢(7)
computed from the random force autocorrelation function { f;(¢)f;(t+ 7)) is in good agreement
with ¢(7) computed from the (c¢"(¢)c"(t+ 7)). Even for a system as simple as the two-dimensional
periodic Ising lattice with nearest-neighbor interactions, ¢(7) is nonexponential; our results are
consistent with a power-law decay of ¢(7) at large 7. © 1995 American Institute of Physics.

INTRODUCTION

The Ising' model of a magnetic system has been a major
topic of study since 1925, when Ising studied properties of
a one-dimensional ring of spins with nearest-neighbor in-
teractions. More recently, statistico-mechanical properties
of the Ising lattice have been a significant focus for inves-
tigation via computer simulation. The objective in this ar-
ticle is to demonstrate how certain new collective variables,
namely the wavelet components treated by Strang” and
Daubechies,” provide a useful description of Ising model
dynamics. Wavelets are not widely familiar in physics or
chemistry; in addition to Daubechies’ work,> Chui,* and
1KaiserS provide extended pedagogical discussions on wave-
ets.

We have previously examined® the utility of aEplying
to the one-dimensional Ising ring the Burt—Adelson’ wave-
- lets sometimes used in image analysis. Here we explore the
Importance of the choice of wavelet basis: by varying the
Probe wavelets, can one get usefully different types of in-
formation about a system? Relative to our previous article,®
We obtain results over a wider range of temperatures, and
cover two- as well as one-dimensional systems.

_ We further explore how wavelet—wavelet time corre-
lation functions can be used to enhance a Langevin-like
description of spin dynamics. For a collective variable A, a
ECneralized Langevin equation may be written as

t

dA(t)
7{-—=—J‘ dSA(S)qb(I"S)“’.fi(I)S (l)
0

Where &(t—s) and f;(t) are the memory kernel and the

e —
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random force, respectively. In the familiar Langevin equa-
tion for a Brownian particle, ¢(¢—s) is proportional to a
Dirac delta function &(f—s). The fluctuation—dissipation
theorem links the time evolutions of f;(¢) and ¢(¢).

Mori® and Zwanzig’ have shown that in any system
whose dynamics follow Lagrange’s equation of motion the
dynamics can be reduced via a projection operator formal-
ism to equations having the form of Eq. (1). The signifi-
cance of the Mori—Zwanzig formalism is that it actually
provides a general way to extract exact Langevin-like equa-
tions, for a set of (typically collective) variables, from the
complete Lagrangian. The Mori—Zwanzig formalism is per-
haps more familiar to theoretical chemists'™!! than to theo-
retical physicists, so its core results are briefly noted below.

For the systems treated here, we applied Eq. (1) to
analyze the dynamics of spin and wavelet (collective spin)
variables. A procedure for extracting ¢(t) from spin—spin
and wavelet—wavelet correlation functions is given and ap-
plied. By applying the extracted ¢(t) to a further simula-
tion on the same system, we were able to obtain the random
force f;(¢) and show that the random force and memory
kernel that we determine are consistent with the
fluctuation—dissipation theorem, confirming the numerical
validity of our ¢(r).~

The following sections treat wavelet projections, Ising
models and Monte Carlo dynamics, an exploration of the
significance of the wavelet basis in one-dimensional sys-
tems, dynamic scaling behavior of wavelet amplitude relax-
ations in two-dimensional systems, and the Mori—
Zwanzig—Daubechies decomposition of wavelet dynamics
in one- and two-dimensional systems. A discussion closes
the article.
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L. WAVELET PROJECTIONS

Wavelets are members of the family of functions /i, ;, in
which

(x—b)
o) = |a| “2hL e ) 2)
Wavelets are thus self-similar under a group of translations
and dilations. x may be continuous or discrete. In general,
there are no restraints on the parameters a or b; we consider
applications in which a=2 and b=1. The resulting form

H, (x)=2""*h(2 "x—m) : (3)

for integer m and n may be used to generate wavelet fami-
lies. Here, m determines the translation and n determines
the order of the dilation. If x is discrete rather than continu-
ous, the 27" quantities refer to decimation rather than di-
lation.

Wavelets are of interest because they provide local-
ized, orthogonal or nonorthogonal, complete or overcom-
plete sets of basis functions. Just as a function F(#) may be
written as a sum of Fourier functions cos(w,t) and Fourier
amplitudes F(#n) as 2, F(n)cos(w,t), so also may a func-
tion be expanded as a sum of wavelets multiplied by wave-
let amplitudes ¢! and d.

Wavelet components of a discrete function s; are ob-
tained by wavelet transforms. A wavelet transform can gen-
erally be expressed as the sum of a lincar low-pass filter L
and a linear high-pass filter H. The L filter performs deci-
mation and translation, while the H filter recovers detail
lost by L.2 L and HJOlmly transform N terms of s; into N/2
smoothed terms c and N/2 hl;_,h frequency term% d;. !, The
transformation proccss is iterative, application of L and H
to the ¢/ yielding smoothed terms ¢™! and high-frequency
terms d/*!. Here the subscript denotes the translational po-
sition of the wavelet and the superscript indicates the order
of the decimation. Discrete wavelet transforms may be
written as matrix multiplications. iz

Work here is centered on an analysis of wavelet am-
plitudes. We used two types of wavelet families, namely the
Haar wavelets and the Daubechies® wavelets. One- or two-
dimensional spin patterns s; or s; ; were decomposed into
smoothed and hlbh-frequuncy wnw.lel components, Static
and dynamic correlation functions of the ¢ and d} were
then computed, gaining information about equilibrium and
time-dependent properties of Ising lattices.

The continuum Haar wavelets have as a basis
function

1, 0=x<0.5
hix)=4 —1, 0.5sx<1 . (4)
0, otherwise

The remainder of the Haar wavelets are generated from
h(x) by application of Eq. (3). For a discrete system, Eq.
(4) is replaced by
1 i=0
h(x,-)= -1 =1 (5)
0 i<0 or i>]

Discrete Haar wavelets are orthogonal, in that a scalar
product of two Haar wavelets obtained from Egs. (3) and
(5) can be wrilten

.y UL ITE 1IN Y TRl ISTTRZEIEw Y APAT 0 AT/ A R B4 1% 74 TST% 140 &

-n')=§

nmt .

xmn)z—-m',’l(z—-m’

2 E 2 ----m/?_h(z -m
n et

(6)

For the discrete Haar wavelets, Strang” derives fund:
mental filters L and H

L=(1 1),
H=(1 —1). 1)

Filters act hy vector multiplication on an N-component daty

vector {s L and H may be combined into one matriy

operation, lhe complete N XN transformation matrix being
Lrati] A [ 2f)
1.-1.0 0

D=0 0 2ls (8)
070000 1

Applying the decomposition matrix Dy; to a vector §
containing an even number of components yields a new
vector whose elemcnts are alternately the low- frequ(.ncy
components ¢! and the high-frequency components 4!, i.c.,

1
DHS {Ctlvd(bclidh"" me"’dwifnﬁ.} (9)

DyS is usefully permuted as
SI’={c[l]’C}v' -1--14-11/"751[15‘!'7 d-l+n,"’}’ (10)

Recurswe application of an N/2 X N/2 component of Dy; to
the ¢/ ~! yields higher-order decompositions ci and d}.
Note that the decimation process is intrinsically recursive;
each order n of wavelet components has half as many terms
as the previous ordu did.

The Haar basis® is the only wavelet basis which is
orthonormal, h'lS compact support, and has a symmetry
axis. Daubechies® has developed a family of orthonormal
wavelets which are compactly supported but lack a reflec-
tion axis. For the discrete case these wavelets bases are
labeled by the number of their components as D,y, e.g.,
D,, Dy,...; Daubechies® tabulates coefficients equivalent to
Eq. (5) for N = 2,...,10. High and low pass filters for D, are’

Lps=(cy ¢y ca c3),

1
Hpy=(c;3 (1)

where cy=(1+3)/4\2, ¢, =3+ 342, c,=(3—3)/4
V2, and c;3=(1—3)/42.

Some of the following simulations were made on two
dimensional Ising lattices. A two-dimensional wavelet
transformation of a square lattice may be obtained by mak-
ing a one-dimensional transformation and permutation of
each row of the latltcc so that individual s, ; are repIaLLd
with (c}); and (d}); as shown in Eq. (10). The notation
(- ) refers to the contents of the jth row of the lattice after
each row has separately been wuve]et dccomposed via L
and H, and then permuted. The (c! ); and (d}) j form a
square lattice, with one component to each column. A one-
dimensional transformation on each column of the trans-
formed matrix then yields the two-dimensional wavelet
transformation of the matrix. The components of the trans-
formed matrix may formally be described as arising from
L®L,LeH, H®L, and H®H. lterative application of the

=C3 -1 =Cp)s

A=




filters, alternately to rows and to columns, yields all higher-
order two-dimensional wavelet components.

j1. ISING MODEL

This article treats simulations of one- and two-dimensional
[sing lattices with nearest neighbor interactions. The Ising
model Hamiltonian for the one-dimensional lattice was
written

N
H':z Jsi5'i+la (12)

where for N spins and periodic boundary conditions
sy+j=8;. Here s;==*1 1is constrained. On a two-
dimensional L XL lattice with periodic boundary condi-
tions, the Hamiltonian was

A
H=> > J(si, jSiv1, i1 80, 30, j+1)s (13)
i=1 j=1

where s; ; [the spin at the (i, j) lattice site] has allowed
values =1, and where periodic boundary conditions give
Si j=Si, j+n and s; =Sy ;.

Static and dynamic properties of the one-dimensional
Ising ring were treated analytically by Glauber,® who
showed that the single-time spin—spin correlation function
15

(siDsicn())=7", (14)

where s,(¢) is the value of the ith spin at time ¢ and where
np=tanh(BJ) is a short-range order parameter.”* Glauber
also presents two-time spin—spin correlation functions for a
dynamics not quite the same as ours. From Eq. (14) and the
wavelet definitions, analytic calculations of mean-square
wavelet amplitudes ([c}(¢)]*) and ([d"(1)]?) are possible.
The system Hamiltonian only determines the equilibrium
(static) properties of the spin lattices. Spin dynamics were
taken to arise from interactions of the spins with a virtual
heat bath not represented in Egs. (12) and (13).

We treat Ising lattice dynamics b}l computer simula-
tion using the Metropolis algorithm, * which describes
spins with internal interactions given by Eqs. (12) or (13)
and external interactions with a heat bath. The computer
models the bath interactions by randomly selecting a spin
and computing the change AH in the Hamiltonian attendant
to flipping that spin. If BAH <0, the spin is flipped, where
B=(kzT)"! is the reciprocal temperature in energy units.
If BAH>0, the spin is flipped with probability
P=exp(—BAH) on comparison of P with a computer-
generated pseudorandom number. To ascribe a dynamics to
this system, the notional time variable is the number of
attempted spin flips, whether successful or not, in natural
units of flips per spin.

Note that Metropolis—Monte Carlo dynamics are not
the same as the dynamics treated in Ref. 13. While both
types of dynamics satisfy the principle of detailed balance,
lflc principle of detailed balance controls the ratio of reac-
tions rates for flipping a spin up or down, not the absolute
rate for either process. We therefore only make quantitative
comparisons with Ref. 13’s equilibrium results.

_ Simulations on one-dimensional systems used prima-
rily 1024-spin rings; control simulations made with rings
Ccontaining 256 to 2048 spins showed no sensitivity of our
Tesults to ring size. Two-dimensional simulations were

largely made on 64X64 square lattices. One-dimensional
simulations on cold systems (e.g., BJ=2.0) involved
400 000 attempted flips per spin, shorter simulations being
found adequate at higher temperatures. Two-dimensional
simulations on warmer systems (A/=0.6) extended over
shorter times, typically 10 000-50 000 attempted flips per
spin.

Each simulation was preceded by a thermalization
process adequately long to equilibrate all spins. The simu-
lations had four fundamental parts, namely operation of the
spin dynamics, projection of the spins into their wavelet
components, computation of wavelet—wavelet correlation
functions, and analysis of the correlation functions. Wavelet
projections and correlation functions were computed on the
fly; correlation functions were stored and analyzed post
facto. Based on our previous work,” we focused primarily
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Figure 1. Single time correlation functions (a) (IO and (b)
(|d"(1)|*) of Daubechies D, wavelet amplitudes as a function of inverse
temperature BI for wavelets of order n=0-9 (labels 0, 3, 5, 7, 9 denote
decimations n). The underlying Ising lattice is a one-dimensional 1024-
spin ring. Solid lines represent analytic calculations for fixed n.
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on smoothed wavelets, calculating single-time and two-
time correlation functions for various wavelet bases and
decimation levels n.

lll. ONE-DIMENSIONAL SYSTEMS: SIGNIFICANCE OF THE WAVELET
BASIS ,

The literature contains a very wide range of wavelet bases,
including the Haar and Daubechies wavelets described
above and the Burt—Adelson basis’” employed in our previ-
ous article.’ Clearly, if each choice of basis emphasized
substantially different aspects of the same fundamental
data, selecting the basis would become a fundamental ques-
tion in applying wavelet projections to physical problems.
To study the importance of various wavelet bases, we cal-
culated the static and dynamic properties of the Ising ring
for Haar wavelets and for Daubechies wavelets D,y for N
of 2-5.

Figure 1 shows mean-squared values of smoothed and
high-frequency wavelet components of a one-dimensional
Ising lattice as a function of temperature, using the
Daubechies D, wavelets. The mean-square components are
the average over i of the mean-squared components for
each translation i, so the subscript i of ¢ has been sup-
pressed. Qualitatively, (|c"(¢)|*) and (|d"(¢)|*) for D,
wavelets show behavior qualitatively identical to the be-
havior that we reported previously® while employing Burt—
Adelson wavelets. The {|c”()|?) fall with increasing deci-
mation n, but increase with increasing BJ. At small 87, the
(|d"(¢)|*) fall with increasing order n; they first increase
and then decrease with increasing BJ.

As described in our previous article, for an Ising ring
the (|c"(¢)|?) and (|@"(¢)[*) can be calculated analytically.
Computed forms (solid lines in Fig. 1, obtained using
Mathematica on a 486/Weitek PC) are polynomials. With
increasing n, the calculation times eventually became in-
conveniently large, so we only report {|c”(r)|?) for n<5.
From Fig. 1, our simulations match accurately the com-
puted analytic behavior. Some polynomials were of order
N=100, the dominant term of the polynomial having order
=~N/2 at BJ=1; care and high precision arithmetic were
needed to get accurate results. With increasing n, the poly-
nomials rapidly become too long to publish explicitly.

Representative  wavelet—wavelet time correlation
functions for a one-dimensional Ising ring appear in Fig. 2.
Figure 2 gives

C'(m)=(c"(t)c"(t+ 7)) (15)

at high and intermediate temperatures as a function of tem-
perature and decimation level. C"(7) for Daubechies wave-
lets shows the same qualitative behavior as did C"(7) for
the Burt—Adelson wavelets used in our previous article.® At
high temperatures, C"(7) stays very close to single-
exponential behavior, the decay constant I" of the exponen-
tial being virtually independent of decomposition level. At
intermediate temperature, for small n C"(7) shows double-
exponential behavior, namely a fast exponential that disap-
pears with increasing n and a slow exponential exp(—TI'7)
whose I, extracted by nonlinear fitting techniques, is nearly
independent of 1.

C"(7) was computed for Haar wavelets and for D,,
wavelets for ne(2,5). Figure 2 shows sample outcomes.
For clarity, only Haar, D, and D, wavelets are plotted. At
fixed n and 7, C"(7) is virtually independent of the wavelet
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Figure 2. Comparison of Haar (diamonds), Daubechies D  (squares), and
Daubechies D\ (triangles) wavelets using a one-dimensional Ising ring. n
(labels mark n=0, 3, 6, 9). Wavelet-wavelet time correlation functions
(c"(e)c"(t+7)) at (a) high (B1=0.1) and (b) intermediate (A7=1.0)
temperatures are plotted against delay time .

basis. The remainder of this article therefore focuses largely
on computations using a single wavelet species, namely the
D, wavelets.

A comparison of I' with the system compliance
(|c"(1)|?) provides a test of scaling relationships

r=(e" ()", 10

where z is a scaling exponent. In the previous article,” we
tested this relationship for Burt—Adelson’ wavelets, finding
z~1.8. Equation (16) refers to the decay of all fluctuations
within the support of a given wavelet, not to the decay of
fluctuations of some mean size £ so arguments predicting
relaxation times ! that scale as £ do not apply in un:
modified form to our relaxation times. The previous article’
predicted that Eq. (16) can only be valid at intermediate
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Figure 3. Long-time exponential decay time I against mean-square
amplitude {|c"(t)|?) of Dy wavelets for a one-dimensional Ising ring,
testing intermediate-temperature scaling (U™ =({|c"(t)[}%; straight
lines). Lines connect points of equal n; filled squares denote n="9 with
other n labeled. Here I €(0,2.5); BJ increases towards the top of the

graph.

temperatures. In the limit 7—0, one expects I'—0 but
{|c"(1)|*)—1, so Eq. (16) necessarily fails in the low-
temperature limit.

Figure 3 shows an extensive test of Eq. (16) at tem-
peratures BJ €(0,2.5). Figure 3 plots I'"' against
(|c"(#)|*). Displayed data refer to D, wavelets; data based
on other Daubechies wavelets can be superposed on the
points seen here. The decay constant falls nearly 1000-fold
over the temperature interval that we studied. In Fig. 3,
lines unify points of equal decomposition n at a series of
temperatures. Filled squares refer to n=9; points corre-
sponding to single spins (n=0) lie on the right-hand verti-
cal coordinate axis. Points of highest temperature are at the
bottom of the graph; temperature falls as one moves up-
wards.

Figure 3 covers a considerably wider range of n and T
than our previous analysis. Low-decimation data points
(right-hand side of Fig. 3), previously found to lie on nearly
Straight lines, obviously curve away from power-law be-
havior at low temperatures, as we had predicted. The de-
gree of deviation decreases with increasing n. At the high-
est decomposition level that we examined, Eq. (16) works
well over three orders of magnitude in I'"'. There is at
most a slight dependence of z on the choice of Daubechies
Wavelet; we consistently find z in the range 1.73-1.81 for
Dy, D¢, Dy, and D, wavelets.

V. TWO-DIMENSIONAL SIMULATIONS

While the Ising ring’s properties have been found analyti-
cally, albeit not for our dynamics, the analytic behavior of
the two-dimensional Ising lattice remains an active topic of
Investigation. This section examines wavelet decomposi-
tions of a two-dimensional 64X64 square lattice with peri-
odic boundary conditions. In two dimensions, a wavelet

decomposition involves sequential decomposition into
smoothed and high-frequency components along alternate
axes. At each level n the decomposition yields four sets of
wavelet components, corresponding to smoothing or high-
frequency extraction along each axis. Here we focus on
wavelet components ¢"(¢) that have been smoothed along
both axes.

Figure 4 presents representative wavelet—wavelet time
correlation functions, as functions of 7 and »n, at the mod-
erately high temperature 8J=0.3. For a 64X64 lattice and
D, wavelets we are limited to n=35. For larger n, the sup-
port of the wavelet would be wider than 64 spins, so that
(given the periodic boundary conditions), the support
would wrap around and overlap itself. The zero-time corre-
lation functions {|¢"(¢)|*) depend inversely on n. At larger
n, {c"(t)c"(t+ 7)) decays nearly exponentially in 7. For
n<3 the decay is markedly nonexponential, with a rapid
early decay and a long time nearly exponential decay. In
one dimension, at large 7 a plot of the (c"(¢)c"(1+ 7))
reveals a series of near-parallel lines. In contrast, in two
dimensions at large 7 the (c¢"(f)c"(¢+ 7)) converge to a
common value that slowly decays.

Figure 5 gives the slow decay times I'! extracted
from fitting the long-time decay of (c"(¢)c"(t+ 7)) to an
exponential. We examined A7 e (0.1,0.6). Comparison is
made with the system wavelet compliance K ={|¢"(2)|*).
At high temperatures, fluctuations decay quickly; the short
correlation range £ leads to small compliances K. At lower
temperatures, relaxation times ! increase markedly,
while £ approaches the (two-dimensional) support of the
wavelets, so K—1.

The high-temperature scaling relation [Eq. (16)] is
tested in Fig. 5. Scaling works over a limited temperature
range in warmer systems, particularly at larger decomposi-
tions n=3. Even for n=5, the relation clearly fails at tem-
peratures colder than BJ=0.4. High temperature scaling
relations (as opposed to scaling relations that are effective
if T—T.—0) between decay rates and system compliances
(however defined) are not a major topic of research; we
cannot identify predictions with which Fig. 5 could usefully
be compared. Indeed, many simplified discussions of scal-
ing treat scaling behavior purely in terms of the very inter-
esting phenomena to be found near T., not as a high-
temperature leading behavior.

V. MOR-ZWANZIG—DAUBECHIES DECOMPOSITION OF WAVELET
DYNAMICS

The objective of this section, which presents the core re-
sults of this article, is to demonstrate that one may self-
consistently extract a generalized Mori—Zwanzig memory
kernel from the dynamic data reported above. The memory
kernel is then used to compute the “random” force associ-
ated with our dynamics. The Mori—Zwanzig random force
is not the same as the random heat-bath “force” respon-
sible for flipping Spins in the Metropolis algorithm. We
demonstrate below that our memory kernel and random
force are self-consistent, in that the temporal evolution of
our memory kernel agrees correctly with the temporal au-
tocorrelation function of the random force computed while
using our memory kernel.

The Mori—Zwanzig formalism®’ may not be uni-
formly familiar to all readers. We first sketch its principal
results, which were obtained for systems whose complete
Hamiltonians were known, and then show how the results
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can be applied to systems having Metropolis—Monte Carlo
dynamics. The Mori—-Zwanzig formalism provides a sys-
tematic method for proceeding from the Liouville equation

L A 17

P (17)
for the time evolution of a variable A to a Langevin-like
equation for the same variable. Formally, Eq. (17) has the
solution

A(t)=exp(t )A(0). (18)
Here
NaH o 9l s

Iyl

ap; or; (19)

; ardp;

i=1

is the Liouville operator, where H is the Hamiltonian, and
where the N pairs of variables (r;, p;) are positions and
canonically conjugate momenta. The dynamic variable A
may be one of the r; or p; or a function of those variables;
in the extended form of the formalism A may be a vector
(an ordered list) of mechanical variables.

Fundamental to the Mori—Zwanzig theory is the pro-
jection operator P, , where for a variable B the projected
variable P4(B) is

{AB(1))AQ)
PyB(1)]= AT ‘ (20)

The brackets (--*) denote a conventional thermal average;
Eq. (20) is to be modified if (a case not relevant here) the
dynamic variables are complex rather than real. Using 1 to
represent the identity operator, Q,=1—P,. P, acts on 4
variable B by extracting from it the part of B that is corre-




jated with A; @, acts on B by extracting from B the part of
B that is orthogonal to (uncorrelated with) A. A and B may
pe thought of as vectors in a generalized Hilbert space, in
which case the thermal averages of Eq. (20) play the role of
dot products in a standard definition of the vector scalar
product.

For a system having time reversal symmetry (this re-
striction excludes, e.g., magnetic resonance experiments)
and time translation symmetry [so for a variable b,
(b(1)b(t+7)=(b(0)b(7))], Mori® and Zwanzig® show
that the Liouville equation can be written

JA(1) t
—-——=—J’ D(t—s)A(s)ds+ f(t). (21)
dt 0

Here f(t) is the Mori—-Zwanzig random force, while (¢
—) is the memory kernel. At time zero, the random force
is the part of [dA(0)/dt] that is uncorrelated with A,
namely f(0)=(1—P4)[dA(0)]/dt. The random force
evolves via a projected Liouville operator, so that

dA(0)
dt '

The time evolution of f(¢) is to be contrasted with the time
evolution of an orthodox mechanical variable, which
evolves according to Eq. (18).

The memory kernel is determined by the autocorrela-
tion function of the random force, namely

W)
= TEoD

In the simplest case of Brownian motion governed by the
Langevin equation, f(f) has a correlation time of zero,
while ¢b(¢—s) is a Dirac delta function centered at r—s.
In typical applications of the formalism,"*'® the (per-
haps collective) variable or variables with the slowest re-
laxation(s) are grouped into A, and various approximations
are used to evaluate ¢(¢). Because the slowly relaxing vari-
ables have been projected out of the dynamics, ¢(¢) is
commonly assumed to be short-lived and to have a rela-
tively simple form. However, nothing in the derivation of
the Mori—Zwanzig equation refers to the relative relaxation
rates of the variables isolated by P4 or by Q, ; the identi-
fication of A with the “slow variable(s)” is a step of con-
venience that often leads to interesting results. It is almost
always the case that an approximation scheme is used to
obtain ¢(t). There is rarely an explicit examination of the
difference between normal and projected dynamics, though
note Ref. 16, so that the detailed nature of projected dy-
namics remains an ill-studied part of statistical mechanics.
In the present case we do not have a complete Hamil-
tonian, so the system treated here is not an example of the
Hamiltonian systems for which the Mori®~Zwanzig® deri-
vation was performed. However, that derivation uses only
certain limited features of the Liouville operator. In particu-
lar, the derivation assumes that the system has a time trans-
lation operator %' that propagates arbitrary mechanical
variables b via point contact transformations, the translation
lt}ading to time translation symmetry and (special case) sta-
tionarity (i.e., ([b(1)]>)=([b(0)]7)). These requirements
also constrain the averaging process ((-++)), but the deriva-
. tion does not make explicit use of our identification of {---)
with a canonical ensemble average, in the sense that, e.g.,
t!lc Yvon identity relies on the form of the canonical statis-
tical weight. The Mori derivation of the Mori—Zwanzig

f(t)=exp[(1—P)t.Z)(1—Py) (22)

(23)

-z

equation is thus a formal statement about time evolution.
The statement is formal in the sense that the derivation
refers to the highly interesting case of a system whose com-
plete Hamiltonian is known, but the derivation is actually
valid for a much wider set of systems, including in particu-
lar the systems whose time evolutions are studied in this
article.

In this section we use the formalism of Egs. (21)-(23)
to analyze the wavelet dynamics simulated above. The time
evolution of our system is not governed by a known Hamil-
tonian, but the system satisfies the physical conditions
needed for the Mori-Zwanzig arguments to be applicable.
Since our time evolution operator uses a discrete rather
than a continuous time variable, derivatives and integrals
must be replaced with difference equations and summa-
tions. In particular, Eq. (21) is rewritten

A=A
liv1— 1

> (Ajbi-)+fi. (24)

j=0

Here subscripts refer to discrete times labeled by i, so A;
and f; are the dynamic variable of interest and the random
force at time 7, while ¢;_; is the memory function bridging
times labeled by i and j. The smallest identifiable time step
in our simulation is a single attempted spin flip, but there is
no fundamental reason not to treat a series containing sev-
eral attempted spin flips as the fundamental dynamic unit.
Natural time units here are attempted flips per spin, but A
can be sampled more or less frequently than once per natu-
ral time unit. i and ¢; are therefore independent variables.

To determine ¢,;, one multiples Eq. (24) by A, and
takes the thermal average, using the feature that the random
force is uncorrelated with the A; at earlier times to set
(Aof)=0, i>0. One writes

i

Aok} ~AA) 5 440, (25)

Liy1— ¢

j=0

When the autocorrelation functions (AgA;,) are
known quantities determined from Monte Carlo dynamics
simulations, Eq. (25) implies a soluble series of coupled
linear equations for the ¢;, the first of which is

(ApA ) — (|4

H—t

= oA pA). (26)

On the other hand, if the memory function ¢; is
known, Eq. (24) may be solved for the random force f;,
namely

Aj1—A,; i
fie———= 2 A, 27)

j=—=

Liv1— 4

allowing determination of the true random force f; from a
record of the A;. Once the f; are calculated, one can per-
form a self-consistency check from an adequately con-
verged set.of ¢b(¢) (i.e., a set taken out to sufficiently large
1), by ascertaining whether or not the computed f; and the
memory kernel satisfy Eq. (23). This self-consistency check
should be expected to deteriorate as the time separation
t;y1—t; of the ¢; is increased.

We first tested this approach for obtaining ¢; by per-
forming two independent simulations on the same Brown-
ian particle driven by white noise. In the first run, from Eq.
(25) we recovered the correct form for ¢;, namely a delta-
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function spike whose measured amplitude agreed with am-
plitude calculated from the standard theory of Brownian
motion. In the second run, the computed ¢; from the first
run was used to calculate the random part f; of the driving
force. The temporal autocorrelation function of f; was then
obtained; ¢; and ( f,f;. ;) were in agreement with Eq. (23).

If ¢; and ( f,f;;;) had been obtained from iterative
analyses of a single simulation run, agreement with Eq.
(23) would only mark satisfaction of a mathematical iden-
tity. The data sets we used to infer ¢; and ( fif;,;) were
independent, so the noise terms in the two determinations
were also independent, except that an error in measuring ¢
automatically leads to an error in calculating f. Differences
between our ¢; and our ( f;f; ;) arise from the noise in
our stochastic determinations of these quantities; the differ-
ence between the two approaches to ¢(¢) represents the
statistical sampling error in the simulations.

This method for finding ¢ and f was then applied to
the one- and two-dimensional Ising systems. A straightfor-
ward application of Eq. (25) to determine the ¢; requires
that the (A4A;) be determined at points ¢; that are spaced
uniformly in time. The simulations used to evaluate the ¢,
were therefore not in all cases the same as the simulations
discussed in the previous sections, because in some previ-
ous cases we computed (AyA;) at quasilogarithmically
spaced times.

Figure 6 shows memory functions computed for the
one-dimensional Ising ring at high and low temperatures,
Here times ¢ are expressed in natural units. A separate cal-
culation of ¢(t) is required at each decimation n. The time
variable was discretized in units of 1/8 flip per spin. For
each n, ¢(¢) has a spike at time zero, corresponding to the
approximate exponential decay of (c"(0)c"(#)). At >0,
d(1)<0, with ¢(¢) climbing towards zero at large t. Just as
(c"(0)c"(¢)) approaches single-exponential behavior at
large n, so also does ¢(r) approach a delta function at large
n.

In Fig. 6(a), the inset indicates the full time behavior,
while the larger figure shows on a semilog scale the decay
of —¢(t) out to large t. We looked for an analytic repre-
sentation of ¢(t). As seen from the early-time exponential
fit (straight line), only at the shortest times is the tail of
¢(t) exponential. To within calculational error, at all ob-
served ¢ ¢(t) follows closely a two-cumulant series (solid
lines)

d(t)=a exp(— K t+K,t%/2), (28)

the K; being the cumulants. However, the two-cumulant
series has unsatisfactory behavior in the large-t limit.

Figure 6(b) gives a log—log plot of ¢(1)/¢(0.125) at
BJ=2.5. The decay of ¢(t) depends on n, the decay of ¢
being slower for n=2 than for n=0. Data were fit both to
two-cumulant series [Eq. (28)] and (for larger times only)
to a power law

b(H)=Kr". (29)

From Fig. 6(b), the two-cumulant forms (curves) represent
the measured ¢(¢) adequately, but become obviously un-
physical at larger ¢. In contrast, long-time behavior is fit
well by a power law. Higher order wavelets have a longer-
lived albeit weaker (note normalization in the figure)
memory. For Eq. (29) we obtain v=—1.8 for n=0 wavelets
and v=—0.5 for n=2 wavelets.

Figure 6(b) presents the self-consistency test for .
Equations (25) and (23) were used in separate simulations
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Figure 6. Memory function ¢(t) for spin-spin and wavelet-wavelet cor-
relation functions on a one-dimensional Ising ring at (a) I =0.8 and (b)
BI =25, using D, wavelets. Inset (a) shows the t =0 spike in $(t); main
figure shows slow recovery at longer times. In (a), ¢(t) is from spin (open
circles) and n=2 wavelet (filled circles) autocorrelation functions, and fit
(lines) to initial-exponential and two-cumulant forms, Lines in (b) are two
cumulant and power law fits to ¢(t) computed by applying Eq. 25 (+) or
Eq. 23 (O) to n=0 or n=2 wavelets (labeled 0, 2); in the normalization
of the ordinate, t; =0.125 in natural units.

to compute ¢, from (c¢"(0)c"(¢)) and from f;. If ¢; and f;
had been obtained by interative analyses of the same simu-
lation run, Eq. (23) would be an identity and agreement
between the two sets of points would be virtually exact. By
applying Eqs. (25) and (23) to two different computer runs
on the same system, an indication of the accuracy of the
determination of ¢ for spin and wavelet dynamics is ob-
tained. In Fig. 6(b), pluses represent the ¢b; computed from
(c"(0)c"(¢)), and open circles represent ¢; computed from
fj- The ¢; computed from f; and the fluctuation—
dissipation theorem is noisier than the ¢; from
(c"(0)c"(z)), but there is no indication of any systematic
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Figure 7. Memory function (1) for spin—spin correlations of a 64X64
square Ising lattice at B =0.4. Fits are to a two-cumulant series (smooth
curve) and a power law (straight line),

discrepancy between the two approaches to the memory
kernel.

Figure 7 shows the memory function from simulations
on two-dimensional 64x64 Ising lattices. Fluctuations
were decomposed via D,® D, wavelets; we here empha-
size the smoothed®smoothed components. As in Fig. 6,
@(t) has a positive spike at t=0, followed by a long time
tail ¢(¢)<<0 for t>0. Figure 7 shows the long-time behav-
ior of ¢(1). Lines represent least-mean-square fits to a two-
cumulant series and to a power law in t. For clarity only
n=0 data is shown. At large ¢ the cumulant series diverges;
at large ¢, ¢(r) clearly follows well a power law with

=113

V1. DISCUSSION

In the above, we treat aspects of applying wavelet decom-
positions to the study of the Monte Carlo dynamics of a 1D
or 2D Ising lattice. Several different wavelet bases, includ-
ing the Haar, D, Dy, and D, were applied to the Ising
ring. We have here shown that the decomposition is very
nearly robust to the choice of wavelet basis. Dynamics of
the one- and two-dimensional lattices were studied for a
range of temperatures. The previously noted® scaling rela-
tion [Eq. (16)] between the relaxation time I'"!' of the
Wavelet—wavelet temporal correlation function and the sys-
tem compliance (|c"(¢)|?) is indeed a high-temperature re-
sult that fails at lower temperatures (especially for
smaller-n wavelet decompositions); we had predicted this
low-temperature failure previously.®

The significance of the choice of wavelet basis was
€Xxamined previously by Meneveau,'” who examined nu-
merical simulations of turbulent three-dimensional fluids
for energy transfer. His data were projected ‘and analyzed
using Haar wavelets, Daubechies D 4 and Dg wavelets, spa-
tially confined Fourier transforms (“Fouricrlets”), and
Lemarie—Meyer—Battle!® wavelets. At fixed length scale
(Clc::lmation level), Meneveau found essentially no effect of

‘—_‘

choice of wavelet basis. Decomposition of a given quantity
to the same length scale gave essentially the same wavelet
amplitudes, no matter which wavelet basis was used. Our
result on the unimportance of the choice of wavelet basis,
at least for the range of wavelet bases that we examined, is
thus consistent with previous work'’ on a very different
physical problem.

Wavelet—wavelet temporal correlation functions decay
nonexponentially, especially at lower temperatures and
smaller n. We analyzed the nonexponential nature of the
decay by applying a discrete-time generalization of the
Mori-Zwanzig memory function formalism.*’ The Mori—
Zwanzig memory kernel ¢(¢) was extracted from the cor-
relation functions (c"(0)c"(¢)). If one specifies ¢(t), the
random component f(¢) of the force can be calculated from
a second simulation of the same system; a second ¢(t) can
then be computed from f(r) through Eq. (23). Agreement
between the two ¢(¢) forms is a self-consistency check on
the memory kernel. We made this test; as seen in Fig. 6(b),
there is excellent agreement between the two determina-
tions of ¢(¢), precisely as would be expected if the deter-
mination of ¢(t) was physically valid.

Even for the very simple physical systems that we
treat here, the Mori—Zwanzig memory kernel can have a
relatively complex form. While ¢(t) decays nearly expo-
nentially at very early times, at larger ¢ the decay 1is quite
nonexponential. Indeed, for a two-dimensional system,
¢(t) corresponding to the lowest-order wavelet decimation
(spin—spin correlations) has a long-time decay consistent
with power-law behavior. This long-time tail in ¢(t) ap-
pears likely to arise via the coupling of individual wavelets
to wavelet components of longer length scales.
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