
Fairfield University Fairfield University 

DigitalCommons@Fairfield DigitalCommons@Fairfield 

Engineering Faculty Publications School of Engineering 

2009 

Electrochemical Micro Machining: A Case Study for Synergistic Electrochemical Micro Machining: A Case Study for Synergistic 

International Industry - Academia Collaboration International Industry - Academia Collaboration 

Wayne Hung 
Texas A&M University 

Sriharsha Srinivas Sundarram 
Fairfield University, ssrinivassundarram@fairfield.edu 

Faith Ozkeskin 
University of Michigan 

Mike Powers 
Agilent Technologies 

Juan Manriquez 
Cideteq 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.fairfield.edu/engineering-facultypubs 

© 2009 American Society for Engineering Education. 

Repository Citation Repository Citation 
Hung, Wayne; Srinivas Sundarram, Sriharsha; Ozkeskin, Faith; Powers, Mike; Manriquez, Juan; and 
Vasiraju, Venkata, "Electrochemical Micro Machining: A Case Study for Synergistic International Industry - 
Academia Collaboration" (2009). Engineering Faculty Publications. 132. 
https://digitalcommons.fairfield.edu/engineering-facultypubs/132 

Published Citation 
W. Hung, S.S. Sundarram, F. Ozkeskin, M. Powers, J. Manriquez and V. Vasiraju, "Electrochemical Micro Machining: 
A Case Study for Synergistic International Industry - Academia Collaboration," 116th ASEE Annual Conference & 
Exposition, Austin, TX, June 2009. 

This item has been accepted for inclusion in DigitalCommons@Fairfield by an authorized administrator of 
DigitalCommons@Fairfield. It is brought to you by DigitalCommons@Fairfield with permission from the rights-
holder(s) and is protected by copyright and/or related rights. You are free to use this item in any way that is You are free to use this item in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/or on the work itself.in the record and/or on the work itself. For more information, please contact digitalcommons@fairfield.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Fairfield University: DigitalCommons@Fairfield

https://core.ac.uk/display/268546342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.fairfield.edu/
http://www.fairfield.edu/
https://digitalcommons.fairfield.edu/
https://digitalcommons.fairfield.edu/engineering-facultypubs
https://digitalcommons.fairfield.edu/schoolofengineering
https://digitalcommons.fairfield.edu/engineering-facultypubs?utm_source=digitalcommons.fairfield.edu%2Fengineering-facultypubs%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fairfield.edu/engineering-facultypubs/132?utm_source=digitalcommons.fairfield.edu%2Fengineering-facultypubs%2F132&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@fairfield.edu


Authors Authors 
Wayne Hung, Sriharsha Srinivas Sundarram, Faith Ozkeskin, Mike Powers, Juan Manriquez, and Venkata 
Vasiraju 

This conference proceeding is available at DigitalCommons@Fairfield: https://digitalcommons.fairfield.edu/
engineering-facultypubs/132 

https://digitalcommons.fairfield.edu/engineering-facultypubs/132
https://digitalcommons.fairfield.edu/engineering-facultypubs/132


AC 2009-2502: ELECTROCHEMICAL MICRO MACHINING: A CASE STUDY
FOR SYNERGISTIC INTERNATIONAL INDUSTRY-ACADEMIA
COLLABORATION

Wayne Hung, Texas A&M University

Sriharsha Sundarram, Texas A&M University

Fatih Ozkeskin, University of Michigan

Mike Powers, Agilent Technologies

Juan Manriquez, Cideteq

Venkata Vasiraju, Texas A&M University

© American Society for Engineering Education, 2009 

P
age 14.524.1



Electrochemical Micro Machining: A Case Study for Synergistic 

International Industry-Academia Collaboration 

 
 

Abstract 

 

Micro fabrication is generally confined to silicon-based processes for microelectronic 

applications. The advent of micro electromechanical systems (MEMS) using silicon and silicon 

based processes has opened up a new basis for micro fabrication technology, but the applications 

have been limited due to the brittle nature of silicon. Novel technologies have been sought for 

non-silicon micro components and systems. 

 

The electrochemical micro machining (µECM) is standing out among other solutions. An 

international group comprised of industry and academic institutes in Mexico and USA was 

formed to provide synergistic effort in developing this new technology. The funding came from 

the involved companies, National Science Foundation, National Consortium of Science and 

Technology (CONACyT, Mexico), and Texas A&M University. Both graduate and 

undergraduate students are involved in this research and educational project. Some research 

objectives have been achieved by dividing an objective into manageable laboratory projects that 

can be completed by undergraduate students in a few weeks. 

 

The anodic dissolution µECM process effectively forms and shapes micro components from any 

conductive material. Unlike classical ECM technology, the novel µECM utilizes very high 

frequency pulses and proprietary electrode shapes/motions to remove materials at the micro or 

nano scales, and can mass-produce micro components with exceptional quality and surface 

integrity. A theoretical model is developed which agrees with experimental data for 316L 

stainless steel and copper beryllium alloy. The environmentally friendly technology shows 

promise as a high-resolution production manufacturing process with excellent throughput and 

repeatability. 

 

 Introduction 

 

The fabrication methodology of micro systems and integrated circuitry components is known and 

it has become practically abundant. The silicon micromachining technology has found many 

applications extending from micro electromechanical systems, sensors, and actuators to 

biomedical devices. However, being brittle and biological incompatible, the usage of silicon is 

limited in demanding applications that required high stress or large strain at high temperature. 

Alternative techniques must be developed to effectively fabricate micro components from 

engineering alloys such as stainless steel, titanium or super alloys. 

 

Among the promising technologies is the electrochemical micro machining (µECM). This 

technology has seen increasing interest from industry during last decade due to its multifarious 

advantages, which have been practiced in numerous applications. The µECM is an anodic 

dissolution process where the anodic workpiece is selectively removed in atomic scale yielding a 

burr-free and smooth finish. Possible high material removal rate, non-contact machining with no 

tool wear, independent of material hardness, and avoidance of subsurface damage are of primary 
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reasons for developing this technology. The objectives of this paper are to (i) present the 

collaborative case that involves international partners, and (ii) the developed µECM system and 

its preliminary results. 

 

Multiple partners have been involved in this collaboration due to the complexity and 

interdisciplinary nature of the project. 

• Texas A&M University (TAMU) coordinates the collaboration among different partners 

while developing the laboratory prototypes. 

• Agilent Technologies provides raw materials, precision tooling, specialized electronic 

and metrology equipment for this study. Agilent also funds a graduate student to 

spearhead the effort for this novel technology development. 

• Centro de Investigacion y Desarrollo Tecnologico en Electroquimica (CIDETEQ) in 

Mexico recommends electrochemical techniques for selected materials. 

• National Science Foundation (NSF) covers student stipends and their related expenses. 

• Consejo Nacional de Ciencia y Tecnologia (CONACyT) in Mexico provides seed 

funding for the study while encouraging inter institutional collaboration between TAMU 

and CIDETEQ. 

 

Collaboration 

 

This project was successful after careful planning of activities to cover schedule, funding, 

equipment and resource sharing, people power, and cross-cultural communication. TAMU took 

the initiative to define the project, identify participating partners, and secure funding. The 

program leveraged from the strength of each committed partner. CIDETEQ covers 

electrochemistry, Agilent provides end-user specifications and precision tooling, CONACyT 

provides seed funding for equipment and travel, and NSF funds participating students. Mutual 

visits of key personnel were made during the project. The initial face-to-face meetings were 

essential to layout the expectations while smoothening cultural differences. In addition to 

electronic emails and phone conversation, web-based meetings have been very effective for live 

viewing while discussing of engineering documents (http://agilent.webex.com). Although 

language barrier was a challenge for international collaboration, an open mind for cross-cultural 

understanding, tactfulness, and patience are necessary to overcome the issues. Minutes of 

meeting are essential to keep everyone in focus.  

 

The following result is part of the collaborative work of TAMU, CIDETEQ, and Agilent. 

 

 Literature Review 

 

MicroECM has taken increasing interest from industry during last decade due to its multifarious 

advantages which have been practiced in numerous applications 
1, 2, 3, 4

. The process works with 

all electrochemically active materials such as metals and semiconductors 
5
. Electrolyte is among 

the factors affecting both material removal rate (MRR) and quality of finished profiles. Common 

electrolyte, such as a concentrated salt solution, is pumped through the electrode gap to carry the 

electrons causing the anode workpiece to dissolve selectively. The flow also assists in carrying 

the reaction products away and reduces temperature of the electrode due to exothermic chemical 

reaction 
6, 7

.  
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Applied voltage plays another important role in defining profile and surface finish quality of 

electrochemical machined parts. In the last decade, ultra short pulse has been used with µECM 

systems 
8, 9

. At a gigahertz frequency range, the electrochemical reactions are restricted to 

regions in close electrode proximity exceeding far beyond the 0.1 mm limited spatial DC voltage 

resolution 
5
. The high frequency increases accuracy of material removal at the expense of 

reduced material removal efficiency 
6
. To promote anodic dissolution localization, the tool 

electrode is carried to the proximity of workpiece electrode and the inter electrode gap should be 

small enough to be within the limits of actuators resolution. Specific gap of 10-25 µm is typical 

and can be further reduced to sub-micron range with the use of piezo-driven stages 
5
. However, 

use of smaller tools and localized machining reduces the MRR and requires higher-level control 

to enhance accuracy and reduce machining time. 

 

To achieve both accuracy and efficiency concurrently, higher feed rates have been employed as 

open-loop actuation, but this causes a possible electrode contact in an unstable fluidic and heated 

environment yielding short circuiting 
10

. If the rate is too slow, the profiles will have round edge 

problem at the opening and tapered inner sidewalls due to excessive machining even if the tool 

electrode is side insulated to prevent sidewall current distribution 
11

. The lack of accurate control 

at that point could end up with an undesired increase in machining time. 

 

System Development 

 

Both open loop and closed loop control scheme are evaluated. Feedback signals acquired from 

an ammeter and laser displacement sensor are used to control the current and tool position in the 

closed loop system. The communication is procured over serial communication ports through a 

serial instrument controller interface board. The output signal is manipulated as per data acquired 

and sent to actuators to complete the required action. Figure 1 shows the schematic of the control 

system 
12

 while Fig. 2 shows the actual lab prototype. 

 

The basic model for micro ECM is based on Ohm’s law and Faraday’s concept for a system 

running with a direct current. When pulse current is used to micromachining an alloy comprising 

of different elements, the material removal rate (MRR) in micro ECM has been derived to be 
13

: 
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Where MRR : material removal rate (µm
3
/s) 

  E : applied voltage (V) 

  A : surface area of electrode (mm
2
) 

  Ĳ : pulse duration (s) 

  xi : weight fraction of the i
th

 element in workpiece material 

  zi : number of valence electrons of the i
th

 element in workpiece material 

  Ai : atomic mass of the i
th

 element in workpiece material 

  ȡ : density of workpiece (g/cm
3
) 

  F : Faraday’s constant = 96,500 coulomb/mole 

  g : electrode gap (mm) 

 r : electrolyte resistivity (ȍ.mm) 
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Figure 1. Current and position controlled setup. 

 

 
 

Figure 2. Closed-loop microECM setup. (1) Stepping actuator, (2) ultrashort pulse generator, (3) 

laser displacement sensor, (4) ammeter, (5) microECM cell, (6) oscilloscope. 
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Experiments 

 

In the prototype system (Fig. 2), a bidirectional manipulator using stepper motors with 2.5µm 

step size and 250mm travel distance (VXM, Velmex, Inc.) was used as actuator mechanism. A 

316L stainless steel pin, Ø500 µm, with ground and polished flat end, was rigidly clamped into a 

tool holder. Environmentally friendly NaNO3 electrolyte was preferred over acidic solutions. The 

concentration was kept at 30 g/L. The electrolyte was pumped and submerged tool electrode in a 

columnar flow. The workpiece materials were 0.5mm-thick 316L stainless steel or Cu 2%Be 

sheets. A high frequency function generator (33250A, Agilent) supplied the system with pulsed 

square wave in the range of 500 Hz – 5 MHz. A digital oscilloscope (TDS 1002B, Tektronix, 

Inc.) provided online signal evaluation and an ammeter (Model 45, Fluke Electronics) was used 

to monitor current change in the cell for feedback signal. A 0.2µm resolution laser displacement 

sensor (LK-G157, Keyence) was utilized to measure the displacement between the tool electrode 

workpiece. All the communications were provided using a serial communication board (PCI-

8432/4, National Instruments). 

 

Open-loop experiments were first tested with constant feed rate and displacement commands on 

stepper motors. Machined features were quantified with an optical measuring microscope 

(STM6, Olympus, 0.1 µm resolution). The material removal rate was calculated from removed 

weight over time and measured with a high precision weight balance (LE26P, Sartorius, 1µg 

resolution). Closed-loop experiments were carried out in a parametric method. The pulsed 

voltage amplitude was varied in the range 16 - 24 V peak-to-peak with a minimum of -4 V for all 

experiments. Partial inverse polarity was required to promote the possible dissolution of plated 

product on the tool electrode during an inverse pulse 
14

. An electrical square wave signal with 

50% duty cycle was chosen so that there would be sufficient off-time to dissipate heat from the 

electrolyte and any gas at the electrode. All open loop experiments were run at a constant speed 

of 5 µm/s. Hole depths and diameters were measured after 60 s machining time. Eighty holes 

were machined with eight different frequencies, five repeats on both closed and open-loop 

systems. Same profiles were quantified for diameter, depth and removal rates. 

 

Results and Discussions 

 

Figure 3 shows the relationship between current density and electrode gap. The alternative 

current is normalized as current density by dividing the current into the tool electrode frontal 

area. When advancing the electrode toward a workpiece, a sudden current density jump is 

observed when the electrode gap is about 20µm. Therefore, the machining current density limits 

were determined to be on an effective range from 450 to 650 mA/mm
2
. Figures 4a and 4b exhibit 

the relationship of hole diameter and hole depth versus frequency. An increasing of frequency 

yields quantitative decrease in both features due to (i) less effective time to remove materials and 

(ii) high inertia of metal ions in the small gap between electrodes. The open-loop control creates 

larger hole openings on the surface since uncertain amount of time is spent in between actuation 

steps using constant velocity, bringing an undesirable enlargement at the orifice and resulting in 

a non-uniform hole profile. Profile disparity can also be noticed on the data point variations. On 

the other hand, the closed-loop control achieves remarkably deeper profiles. The controlled tool 

position and speed increase the efficiency in reaching much higher aspect ratios when combined 

with the smaller diameter holes. Figure 5 superimposes data for the MRR calculated from 
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equation (1) and from experiments. The closed-loop control with current and position feedback 

results in deeper hole profiles and shorter machining time. The data for closed-loop MRR agree 

with theoretical values, more economical, and are more consistent. Equation (1) predicts a linear 

proportional of MRR with applied voltage E. An increasing of applied voltage would increase 

the electrical field strength between electrodes, therefore, improving the material removal rate 

(Fig. 6) at the expense of feature sharpness. The closed-loop system, therefore, is more desirable 

since it produces features with high degree of repeatability with less variation. 

 

 

 
Figure 3: Current density as a function of electrode gap. 

 

 

 

  
(a) (b) 

Figure 4: Effect of frequency on machined feature sizes. 
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Figure 5. Effect of frequency on material removal rate for both open-loop and closed-loop 

controls. 

 

 
Figure 6. Effect of applied voltage and frequency on material removal rate in closed-loop 

control. 

 

Conclusions 

 

Cross-cultural understanding and communication are essential for the success of committed 

international partners. A µECM system with closed-loop current-position feedback control was 

developed with synergistic collaborations from international institutions and industry. It was 

found that: 

 

1) MicroECM can be effectively used to fabricating microcomponents of any conductive 

materials. 

2) Closed loop control using current and position feedback provided accurate and consistent 

data. 

3) High frequency pulse voltage improved hole profiles at the expense of material removal 

rates. 

 

Theory 
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