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Abstract—Most of the literature pertaining to target tracking
assumes that the sensor data are corrupted by measurement
noises that are zero mean (i.e., unbiased) and with known
variances (accuracies). However in real tracking systems, mea-
surements from sensors exhibit, typically, biases. For angle-only
sensors, imperfect registration leads to Line Of Sight (LOS)
measurement biases in azimuth and elevation. In this project we
propose a new methodology that uses an exoatmospheric target
of opportunity seen in a satellites borne sensor’s field of view
to estimate the sensor’s biases simultaneously with the state of
the target. The first step is to formulate a general bias model for
synchronized optical sensors; then we use a Maximum Likelihood
(ML) approach that leads to a nonlinear least-squares estimation
problem for simultaneous estimation of the 3D Cartesian position
and velocity components of the target of opportunity and the
angle measurement biases of the sensors (two in the present
study). Each satellite is equipped with an IR sensor that provides
LOS measurements (azimuth and elevation) to the target. The
measurements provided by these sensors are assumed to be noisy
and biased but perfectly associated, i.e., it is known perfectly that
they belong to the same target. The sensor bias and the target
state estimates, obtained via Iterative Least Squares (ILS), are
shown, by the simulation, to be unbiased.

Index Terms—Bias estimation, space tracking, observability,
composite measurements, maximum likelihood.

I. INTRODUCTION

A single-target tracking IR system will, typically, attempt
to keep the target centered in the sensor field of view and
provide measurements of target LOS angles to an algo-
rithm that estimates a target state such as position, velocity,
and acceleration. Methods to enhance sensor LOS accuracy
and resolution of target state dynamics will minimize track
uncertainties and enhance track state estimation. A space-
based tracking system provides many advantages for missile
defense as well as space situational awareness as a part of
a system of systems that contribute to an overall picture. It
can cover gaps in terrestrial radar coverage and expand the
capabilities of a Ballistic Missile Defense System (BMDS),
allow interceptors to engage enemy missiles earlier in their
trajectories, discriminate between warheads and decoys, and
provide warhead hit assessment. However, systemic errors in
sensing systems hinder accurate threat identification and target
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state estimation, and, in this way, the space-based tracking
systems present some unique challenges [6].

Multisensor systems use fusion of data from multiple sen-
sors to form accurate estimates of a target track. To fuse
multiple sensor data the individual sensor data must be ex-
pressed in a common reference frame. A problem encountered
in multisensor systems is the presence of errors due to sensor
bias. Bias error in a spacecraft and sensors can result from a
number of different sources, including: errors in spacecraft po-
sition (spacecraft navigation bias); errors in spacecraft attitude
(wheel assembly controller error, coordinate system translation
round-off error); errors in sensor calibration (residual pointing
error, degradation of sensor alignment); and errors in timing
caused by bias in the clocks of the sensors. In [7] time
varying bias estimation based on a nonlinear least squares
formulation and the singular value decomposition using truth
data was presented. An approach using maximum a posteriori
(MAP) data association for concurrent bias estimation and
data association based on sensor-level track state estimates
was proposed in [8] and extended in [9].

For angle-only sensors, imperfect registration leads to LOS
angle measurement biases in azimuth and elevation. If not
corrected, the registration errors can seriously degrade the
global surveillance system performance by increasing the
tracking errors and even introducing ghost targets. In [5] the
effect of sensor and timing bias error on the tracking quality
of a space-based infrared (IR) tracking system that utilizes
a Linearized Kalman Filter (LKF) for the highly non-linear
problem of tracking a ballistic missile was presented. This was
extended in [6] by proposing a method of using stars observed
in the sensor background to reduce the sensor bias error. In
[3] simultaneous sensors bias and targets position estimation
using fixed passive sensors was proposed. A solution to the
related observability issues discussed in [3] is proposed in [4]
using space based sensors.

The new bias estimation algorithm developed in this paper,
is validated using a hypothetical scenario created using System
Tool Kit (STK) [1]. The tracking system consists of two optical
sensors (space based) tracking a ballistic target. We assume the
sensors are synchronized, their locations are known, and the
data association is correct; and we estimate their orientation
biases while simultaneously estimating the state of the target



(position and velocity).
Section II presents the problem formulation and solution

in detail. Section III describes the simulations performed and
gives the results. Finally, Section IV gives the conclusions and
future work.

II. PROBLEM FORMULATION

An important prerequisite for successful multisensor inte-
gration (fusion) is that the data from the reporting sensors are
transformed to a common reference frame free of systematic
or registration errors (biases). The fundamental frame of
reference used in this paper is the Earth Centered Inertial ECI
Coordinate System.

In a multisensor scenario, sensor platform s has a sensor
reference frame associated with it (measurement frame of
the sensor) defined by the orthogonal set of unit vectors
(eξs , eηs , eζs). The origin of the measurement frame of the
sensor is a translation of the ECI origin, and its axes are
rotated with respect to the ECI axes. The rotation between
these frames can be described by a set of Euler angles. We
will refer to these angles φs +φn

s , ρs + ρn
s , ψs +ψn

s of sensor
s, as roll, pitch and yaw respectively, where φn

s is the nominal
roll angle, φs is the roll bias, etc.

Each angle defines a rotation about a prescribed axis, in
order to align the sensor frame axes with the ECI axes. The
xyz rotation sequence is chosen, which is accomplished by
first rotating about the x axis by φn

s , then rotating about the
y axis by ρn

s , and finally rotating about the z axis by ψn
s . The

rotations sequence can be expressed by the matrices

Ts(ψ
n
s , ρ

n
s , φ

n
s) =Tz(ψ

n
s )Ty(ρn

s)Tx(φn
s)

=

 cosψn
s sinψn

s 0
− sinψn

s cosψn
s 0

0 0 1


·

 cos ρn
s 0 − sin ρn

s

0 1 0
sin ρn

s 0 cos ρn
s


·

 1 0 0
0 cosφn

s sinφn
s

0 − sinφn
s cosφn

s

 (1)

Assume there are NS synchronized passive sensors, with
known positions in ECI coordinates,
ξs(k) = [ξs(k), ηs(k), ζs(k)]′ s = 1, 2, ..., NS ,
k = 0, 1, 2, ...,K, tracking a single target at unknown positions
x(k) = [x(k), y(k), z(k)]′, also in ECI coordinates.

With the previous convention, the operations needed to
transform the position of the target location expressed in ECI
coordinates into the sensor s coordinate system (based on its
nominal orientation) is

xn
s(k) = T (ωs(k))(x(k)− ξs(k))

s = 1, 2, ..., NS , k = 0, 1, 2, ...,K (2)

where ωs(k) = [φn
s(k), ρn

s(k), ψn
s (k)]′ is the nominal orienta-

tion of sensor s, T (ωs(k)) is the appropriate rotation matrix,
and the translation (x(k) − ξs(k)) is the difference between

z

x

y

αs(k)

LOS
εs(k)

Fig. 1. Optical sensor coordinate system with the origin in the center of the
focal plane.

the vector position of the target and the vector position of the
sensor s, both expressed in ECI coordinates. The superscript
“n” in (2) indicates that the rotation matrix is based on the
nominal sensor orientation.

Each passive sensor provides LOS measurements of the
target position. As shown in Figure 1, the azimuth angle αs(k)
is the angle in the sensor xz plane between the sensor z axis
and the line of sight to the target, while the elevation angle
εs(k) is the angle between the line of sight to the target and
its projection onto the xz plane, i.e.,

[
αs(k)
εs(k)

]
=

 tan−1
(
xs(k)
zs(k)

)
tan−1

(
ys(k)√

x2
s(k)+z2s(k)

)  (3)

The model for the biased noise-free LOS measurements is then[
αbs(k)
εbs(k)

]
=

[
h1(x(k), ξs(k),ωs(k),bs)
h2(x(k), ξs(k),ωs(k),bs)

]
∆
= h(x(k), ξs(k),ωs(k),bs) (4)

where h1 and h2 denote the sensor Cartesian coordinates-
to-azimuth/elevation angle mapping that can be found by
inserting (2) and (3) into (4), and the bias vector of sensor
s is

bs = [φs, ρs, ψs]
′ (5)

At time k, each sensor provides the noisy LOS measure-
ments

zs(k) = h(x(k), ξs(k),ωs(k),bs) + ws(k) (6)

Let z be an augmented vector consisting of the batch stacked
measurements from all the sensors up to time K

z = [z1(1), z2(1), ..., zNS (1), ..., z1(K), z2(K), ..., zNS (K)]
(7)

and
ws(k) = [wαs (k), wεs(k)]

′ (8)

The measurement noises ws(k) are zero-mean, white Gaussian
with

Rs =

[
(σαs )2 0

0 (σεs)
2

]
s = 1, 2, ..., NS (9)



and are assumed mutually independent. The problem is to
estimate the bias vectors for all sensors and the state vector
(position and velocity) of the target of opportunity

θ = [x(K), y(K), z(K), ẋ(K), ẏ(K), ż(K),b′1, ...,b
′
NS ]′

(10)
from

z = h(θ) + w (11)

where

h(θ) =[h11(θ)′, h21(θ)′, ..., hNS1(θ)′, ...,

h1K(θ)′, h2K(θ)′, ..., hNSK(θ)′] (12)

w =[w1(1)′,w2(1)′, ...,wNS (1)′, ...,

w1(K)′,w2(K)′, ...,wNS (K)′] (13)

and the covariance of the stacked process noise (13) is the
(NsK ×NsK) block-diagonal matrix

R =


R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 · · · 0 RNS

 (14)

A. Space target dynamics

The state space model for a discrete-time stochastic system
is of the general form

x(k + 1) = f [x(k),u(k),v(k)] k = 0, 1, 2, ...,K (15)

Although the motion of ballistic missiles in orbit about
the Earth is nonlinear, with small time steps (≤ 10s) we
can approximate the motion model with a discrete-time linear
dynamic equation

x(k + 1) = Fx(k) +Gu(k) +Gv(k) (16)

where x(k) is the 6 dimensional state vector at time k denoted
as

x(k) = [x(k), y(k), z(k), ẋ(k), ẏ(k), ż(k)]′, k = 0, 1, 2, ...,K
(17)

F is the state transition matrix, u is a known input representing
the gravitational effects acting on the target, and v is the
process noise (white noise acceleration) with covariance Q.
The state transition matrix for a target with acceleration due
to gravity is

F =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (18)

and the known input gain matrix (multiplying the appropriate
components of the gravity vector) is

G =


∆t2/2 0 0

0 ∆t2/2 0
0 0 ∆t2/2

∆t 0 0
0 ∆t 0
0 0 ∆t

 (19)

where ∆t is the sampling interval. The gravity term is given
by

u = g
xp

a(xp)
(20)

where xp is the position part of the state x in (15), g = 9.8
m/s2, and

a =
√
x(k)2 + y(k)2 + z(k)2 (21)

is the distance from the target to the origin of the coordinates
system. For simplicity we assume g to be constant. The ratio
xp/a yields the components of the gravity. of the target and
provides the scaling factor for the gravity term. The process
noise v accounts for the inaccurate modeling of the true system
dynamics and is added to the state to model possible missile
accelerations due to maneuvers with a covariance matrix Q,

Q =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
z

 (22)

We shall obtain the maximum likelihood (ML) estimate
of the augmented parameter vector (10) consisting of the
(unknown) target position, velocity and sensor biases (under
the assumption Q = 0), by maximizing the likelihood function
(LF) of θ based on z

Λ(θ; z) = p (z|θ) (23)

The ML estimate (MLE) is then

θ̂(z)
ML

= arg max
θ

Λ(θ; z) (24)

In order to find the MLE, one has to solve a nonlinear least
squares problem. This will be done using a numerical search
via the Batch Iterated Least Squares (ILS) technique.

B. Requirements for Bias Estimability

The necessary and sufficient requirement of bias estimability
is the invertibility of the Fisher Information matrix (FIM).
In order to have parameter observability, the FIM must be
invertible. If the FIM is not invertible (i.e., it is singular),
then the CRLB (the inverse of the FIM) will not exist — the
FIM will have one or more infinite eigenvalues, which means
total uncertainty in a subspace of the parameter space, i.e.,
ambiguity [2].

For the example of bias estimability discussed in the sequel,
to estimate the biases of 2 sensors (6 bias components) and
6 target state components (3 position and 3 velocity compo-
nents), i.e., the search is in an 12-dimensional space. As stated



previously, the FIM must be invertible, so the rank of the FIM
has to be equal to the number of parameters to be estimated
(6+6=12, in the above example). The full rank of the FIM
is a necessary and sufficient condition for estimability. There
exists, however, a subtle unobservability for this example that
will necessitate the use of more measurements than the strict
minimum number of measurements.

C. Iterated Least Squares for Maximization of the LF of θ

Given the estimate θ̂j after j iterations, the batch ILS
estimate after the (j + 1)th iteration will be

θ̂j+1 = θ̂j +
[
(Hj)′R−1Hj

]−1
(Hj)′R−1[z − h(θ̂j)] (25)

where

h(θ̂j) =[h11(θ̂j)′, h21(θ̂j)′, ..., hNS1(θ̂j)′

, ..., h1K(θ̂j)′, h2K(θ̂j)′, ..., hNSK(θ̂j)′]
(26)

where

Hj =
∂h
(
θj
)

∂θ

∣∣∣∣∣
θ=θ̂j

(27)

is the Jacobian matrix of the vector consisting of the stacked
measurement functions (26) w.r.t. (10) evaluated at the ILS es-
timate from the previous iteration j. In this case, the Jacobian
matrix is, with the iteration index omitted for conciseness,

H =
[
H11 H21 HNS1 · · · H1K H2K HNSK

]′
(28)

where

Hsk =

 h1s(k)
∂x(k)

h1s(k)
∂y(k)

h1s(k)
∂z(k)

h1s(k)
∂ẋ(k)

h1s(k)
∂ẏ(k)

h1s(k)
∂ż(k)

h1s(k)
∂bα1

h1s(k)
∂bε1

h1s(k)
∂bρ1

... h1s(k)
∂bαNS

h1s(k)
∂bεNS

h1s(k)
∂bρNS

h2s(k)
∂x(k)

h2s(k)
∂y(k)

h2s(k)
∂z(k)

h2s(k)
∂ẋ(k)

h2s(k)
∂ẏ(k)

h2s(k)
∂ż(k)

h2s(k)
∂bε1

h2s(k)
∂bε1

h2s(k)
∂bρ1

... h2s(k)
∂bεNS

h2s(k)
∂bεNS

h2s(k)
∂bρNS

 (29)

The appropriate partial derivatives are given in [4].

D. Initialialization
In order to perform the numerical search via ILS, an initial

estimate θ̂0 is required. Assuming that the biases are null,
the LOS measurements from the first and the second sensor
α1(k), α2(k) and ε1(k) can be used to solve for each initial

Cartesian target position, in ECI coordinates, using (30)–
(32). The two Cartesian positions formed from (30)–(32)
can then be differenced to provide an approximate velocity.
This procedure is analogous to two-point differencing [2] and
will provide a full six-dimensional state to initialize the ILS
algorithm.

x(k)0 =
ξ2(k)− ξ1(k) + ζ1(k) tanα1(k)− ζ2(k) tanα2(k)

tanα1(k)− tanα2(k)
(30)

y(k)0 =
tanα1(k) (ξ2(k) + tanα2(k) (ζ1(k)− ζ2(k)))− ξ1(k) tanα2(k)

tanα1(k)− tanα2(k)
(31)

z(k)0 =η1(k) + tan ε1(k)

∣∣∣∣ (ξ1(k)− ξ2(k)) cosα2(k) + (ζ2(k)− ζ1(k)) sinα2(k)

sin (α1(k)− α2(k))

∣∣∣∣ (32)

III. SIMULATIONS

In this paper we used a hypothetical scenario to test our
new methodology. The missile and satellite trajectories are
generated using System Tool Kit (STK). The sensor satellites
are in a circular orbits of 600 km and 700 km altitude with
0◦, 60◦ degrees inclination, respectively. The target modeled
represents a long range ballistic missile with a flight time of
about 20 minutes. STK provides the target and sensor positions
in three dimensional Cartesian coordinates at 1 s intervals.
The measurement noise standard deviation σs (identical across
sensors for both azimuth and elevation measurements, σαs =
σεs = σs) was assumed to be 30 µrad. The target launch time
was chosen so that the satellite sensors were able to follow
the missile trajectory throughout its flight path. As shown in
Figure 3, these satellite orbits enabled maximum visibility of

the missile trajectory from multiple angles. The missile and
satellite trajectories displayed in Figure 3 represent 5 minutes
of flight time. In order to establish a baseline for evaluating
the performance of our method, we also ran the simulations
without biases and with biases, but without bias estimation.
As discussed in the previous section, the three sensor biases
were roll, pitch and yaw angle offsets. Table I summarizes the
bias values (in mrad).

TABLE I
SENSOR BIASES (MRAD).

ψ ρ φ

Sensor 1 5.7596 4.3633 -3.8397
Sensor 2 4.8869 5.4105 -5.0615
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Fig. 3. Target and satellite trajectories for the two-sensor case

The RMS errors for the target position and velocity are
summarized in Table II. In this table, the first estimation
scheme was established as a baseline using bias-free LOS
measurements to estimate the target position and velocity.
For the second scheme, we used biased LOS measurements
but we only estimated target position and velocity. In the
last scheme, we used biased LOS measurements and we
simultaneously estimated the target position, velocity, and
sensor biases. Once again, bias estimation yields significantly
improved target RMS position and velocity errors in the
presence of biases.

TABLE II
SAMPLE AVERAGE RMSE (M) FOR THE TARGET POSITION AND VELOCITY,

OVER 100 MONTE CARLO RUNS, FOR THE 3 ESTIMATION SCHEMES.

Scheme Position RMSE Velocity RMSE

1 107.44 5.16
2 47,161.10 25,149.32
3 494.49 19.55

IV. CONCLUSIONS AND FUTURE WORK

In this paper we presented a new algorithm that uses a
target of opportunity for estimation of measurement biases
together with target state. The first step was formulating
a general bias model for synchronized space-based optical
sensors at known locations. The association of measurements
is assumed to be perfect. Based on this, we used an ML
approach that led to a batch nonlinear least-squares estimation
problem for simultaneous estimation of the 3D Cartesian
position and velocity components of the target of opportunity
and the angle measurement biases of the sensors. For future
work we plan to evaluate the statistical efficiency of the
algorithm.
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