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Abstract

This paper presents an integrated approach for modeling several ocean test
problems on adaptive grids using novel boundary techniques. The adaptive
wavelet collocation method solves the governing equations on temporally and
spatially varying meshes, which allows higher effective resolution to be ob-
tained with less computational cost. It is a general method for the solving a
large class of partial differential equations, but is applied to the shallow water
equations here. In addition to developing wavelet-based computational mod-
els, this work also uses an extension of the Brinkman penalization method to
represent irregular and non-uniform continental boundaries. This technique
is used to enforce no slip boundary conditions through the addition of a term
to the field equations. When coupled with the adaptive wavelet collocation
method, the flow near the boundary can be well resolved. It is especially
useful for simulations of boundary currents and tsunamis, where flow and
the boundary is important, thus, those are the test cases presented here.
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1. Introduction

Two numerical techniques are used for the solution of the shallow wa-
ter equations for a variety of test cases. The first technique is the adaptive
wavelet collocation method, which is a general solution technique for solving
differential equations on adaptive, collocated grids. This method uses wavelet
properties to determine, on the fly, significant points needed for an accurate
solution. The second is the shallow water formulation of the Brinkman penal-
ization method, which is an immersed boundary method used to define solid
boundaries of arbitrary complexity. Four test cases are presented to validate
these methods. Test Cases I and II study the effect of using the adaptive
wavelet collocation method on the shallow water model. These cases include
rotating waves on a beta-plane and a wind-driven single gyre in a square
basin. Test Cases III and IV study the effect of using the combination of the
wavelet method and Brinkman penalization. These cases include a North
Atlantic simulation and a tsunami simulation.

2. Adaptive Wavelet Collocation Method

The adaptive wavelet collocation method is a general method for the so-
lution of a large class of linear and nonlinear partial differential equations
(Vasilyev and Bowman, 2000; Vasilyev, 2003; Vasilyev and Kevlahan, 2005;
Regele and Vasilyev, 2009). The method has already been successfully ap-
plied in wide range of fluid mechanics problems, e.g., Vasilyev et al. 1997;
Vasilyev and Kevlahan 2002; Kevlahan et al. 2007; Reckinger et al. 2010;
Schneider and Vasilyev 2010. In this section, the methodology is briefly
reviewed.

The benefit of using wavelets is that they are localized in both space
and time. They are ideal for use in complex flows where localized structures
exist in the solution. The wavelet collocation method takes advantage of
wavelet compression properties (Vasilyev et al., 1997). Functions with local-
ized structures or regions with sharp transitions are well compressed using
wavelet decomposition. This compression is achieved by keeping only the
wavelets with coefficients that are greater than an a prior i threshold param-
eter. This allows high resolution computations to be carried out only in the
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regions where it is necessary. It also allows a solution to be obtained on a
near optimal grid for a given accuracy. Figure 15 shows an example of a sim-
ulation of the 2010 Chile Tsunami using the Adaptive Wavelet Collocation
Method to solve the shallow water equations with real variable bathymetry
(ETOPO2, 2010). The right side of the figure shows that the grid is localized
near the tsunami and near all the continental boundaries.

level 5 level 6 level 7 level 8 level 9

Figure 1: Results from 2010 Chile Tsunami simulation, with sea surface height on the
left and the adaptive grid (colored by level) on the right using the Adaptive Wavelet
Collocation Method.

Any function u(x) in an n-dimensional space can be decomposed as (Chui,
1997; Daubechies, 1992; Mallat, 1998)

u(x) =
∑

k∈K0

c0
k
φ0
k
(x) +

+∞
∑

j=0

2n−1
∑

µ=1

∑

l∈Lµ,j

dµ,j
l
ψµ,j
l

(x), (1)

where φ0
k
(x) are scaling functions on the lowest level of resolution and ψµ,j

l
(x)

are the wavelet basis functions. Also, c0
k
and dµ,j

l
are the scaling and wavelet

coefficients, respectively. The wavelet coefficients, dµ,j
l
, are small except

near areas with large gradients. Equation 1 can be decomposed into two
terms whose wavelet coefficients are above and below a chosen threshold
parameter ε,

u(x) = u≥(x) + u<(x), (2)

where

u≥(x) =
∑

k∈K0

c0
k
φ0
k
(x) +

+∞
∑

j=0

2n−1
∑

µ=1

∑

l ∈ Lµ,j

|dµ,j
l

| ≥ ε‖u‖

dµ,j
l
ψµ,j
l

(x), (3)
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u<(x) =
+∞
∑

j=0

2n−1
∑

µ=1

∑

l ∈ Lµ,j

|dµ,j
l

| < ε‖u‖

dµ,j
l
ψµ,j
l

(x), (4)

Donoho (1992) was able to show that for a regular function the error is
bounded as

‖u(x)− u≥(x)‖ ≤ C1ε‖u‖, (5)

which means that the number of grid points needed to solve a numerical
problem can be significantly reduced while still retaining a prescribed level
of accuracy determined by the threshold parameter ε.

In the wavelet collocation method there is a one-to-one correspondence
between grid points and wavelets. This makes calculation of nonlinear terms
simple, and allows the grid to adapt automatically to the solution at each
time step by adding or removing wavelets. In addition to the points with
significant wavelet coefficients, several other checks are performed to ensure
the resolution is sufficient for the given simulation. The way the method
works is, at the beginning of each time step, the wavelet coefficients are
calculated. Wavelets with significant coefficients are identified, which are
those larger than ε. Next, to account for the evolution of the solution over
time, the nearest neighbor wavelet coefficients in position and scale are also
added (Liandrat and Tchamitchian, 1990). After these significant and adja-
cent points are kept, the wavelets that are below the threshold ε and are not
in the adjacent zone are removed. It can be shown that the L∞ error for this
approximation is bounded by ε. This allows the grid to automatically follow
the evolution of the solution. Then, reconstruction points are added, which
are points needed to compute the wavelet transforms. Lastly, ghost points
are added, these are points needed to calculate spatial derivatives. The spa-
tial derivatives are calculated using finite differences. Since our simulations
uses second generation wavelets (Sweldens, 1998), the order of the wavelet
(and also finite difference) can be easily varied.

Figure 2 shows a one-dimensional example of a solution (top) and its
adaptive grid (bottom). The vertical lines show the magnitude of the wavelet
coefficients at each location in space for each level of resolution. It is clear
that at the location in the center of the x-axis where the solution has a sharp
gradient, there is localized refinement on the grid.

There are some additional computational costs associated with the use of
the adaptive multi-resolution wavelet method. Currently, the cost per grid
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Figure 2: A one dimensional example of grid adaptation using the Adaptive Wavelet
Collocation Method. Top plot shows function. Bottom plot shows wavelet coefficients,
with height of each dot indicating magnitude of the coefficient.

point is approximately three to five times greater than the cost of a standard
non-adaptive method. However, in cases of large compressions (Kevlahan
and Vasilyev, 2005), the compression greatly outweighs this cost. There is
also some memory savings associated with using adaptive methods, which
allows higher resolution simulations with the same computational resources.

In summary, the dynamically adaptive wavelet collocation method is an
adaptive, variable order method for solving partial differential equations with
localized structures that change their location and scale in space and time.
Since the computational grid automatically adapts to the solution (in posi-
tion and scale), we do not have to know a priori where the regions of high
gradients or structures exist. The wavelet method was recently extended for
massively parallel architectures (Nejadmalayeri, 2012). The simulations re-
ported in this paper use the parallel adaptive wavelet collocation solver with
dynamic load balancing.

3. Shallow Water Formulation of the Brinkman Penalization Method

The numerical technique used for representation of continental and ir-
regularly shaped boundaries is an extension of the Brinkman penalization
technique developed for use in the shallow water equations (Reckinger et al.,
2012). This method was developed through the extension of the compressible
formulation of Brinkman penalization developed by Liu and Vasilyev (2007).
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Adapting this Brinkman penalization to the shallow water equations gives

∂η

∂t
= −

[

1 +

(

1

φ
− 1

)

χ

]

∇ · (ηu), (6)

∂u

∂t
+ u · ∇u+

1

Ro
f ′k̂× u = − 1

Fr2
∇η− χ

ηpen
u, (7)

where Ro = U/Lf , f ′ = 1 + βy, and Fr = U/
√
gH following the non-

dimensionalization following Pedlosky (1987). The two added parameters
for penalization are Brinkman penalization parameter, ηpen � 1, and the
porosity parameter, φ� 1.

χ(x, t) =

{

1 if x ∈ Oi(x),
0 otherwise,

(8)

which is called a masking function. Oi(x) is the set of all obstacles, or, in the
case of shallow water ocean simulations, is the continental boundary. The
terms added for penalization are colored red in Equations 6 and 7. The term
added to the momentum equation enforces the no slip boundary condition.
Since ηpen � 1, the penalized term dominates the equation and the solution
is a decaying exponential, where ηpen is a time scale which controls the rate
of decay to zero within the boundaries. The term added to the continuity
equation ensures conservation of mass. It does so by modeling the Brinkman
zone as a porous medium. As the lim φ→ 1, the porous medium approaches
the limit of a solid boundary.

It is important to note that the shallow water equations are mathemati-
cally equivalent to the compressible gas dynamic equations in the adiabatic
or isothermal limit. Since the compressible formulation of the Brinkman pe-
nalization was developed for the full compressible gas dynamic equations, a
unique treatment of the added parameters is necessary for the shallow water
formulation of the Brinkman penalization method. A detailed analysis of
these equations and the numerical testing of the parameters can be found in
Reckinger et al. (2012). All of the guidelines set out for setting parameters
has been followed in the test cases presented here.

4. Testing and Validation

As a first step of investigating ocean circulation modeling using the adap-
tive wavelet method, the shallow water equations are chosen. There are
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several reasons. First, it is necessary to test the wavelet methodology in
two dimensions. Therefore, the two dimensional modeling could take two
directions: the barotropic vorticity equation or the shallow water equations.
The shallow water governing equations were chosen because they represent
a wider variety of wave modes for testing. Also, by using the shallow water
equations, the shallow water formulation of Brinkman penalization could be
used.

Four test cases will be presented in this section. The first test case is
rotating waves on a beta-plane, which demonstrates the advantage of having
an on-the-fly adaptive mesh. The second test case is a single wind-driven
gyre in a square basin, which shows a range of grid resolutions. Results from
this test case are compared to published results to validate the adaptive
wavelet collocation method accuracy. Both of these first two cases focus on
verifying the wavelet method and do not use the shallow water formulation
of Brinkman penalization, since they both have straight vertical, traditional
boundaries implemented directly as edges of the computational domain. The
third case is a simplified ocean gyre in the North Atlantic, with realistic
continental boundaries. The fourth case is a simulation of the 2010 Chile
tsunami with realistic continental boundaries and bathymetry. These last
two cases give some insight on the strength of coupling the adaptive wavelet
collocation method and the Brinkman penalization method used in ocean
circulation problems.

The shallow water equations are non-dimensionalzed in two different
ways for the four test cases. Test Cases I and IV use the following non-
dimensionalization (the other non-dimensionalization will be presented in a
later section),

∂η

∂t
= −∇ · (ηu), (9)

∂u

∂t
+ u · ∇u+

1

Ro
f ′k̂× u = − 1

Fr2
∇η + 1

Re
∇2u+ Fwind. (10)

In these non-dimensional equations η is the sea surface height, u and v are
the horizontal components of velocity, f ′ = 1 + βy is the Coriolis force,
Ro ∼ U/f0L is the Rossby number, U is the velocity scale, L is the length
scale, Fr =

√
gH/U is the Froude number, H is the depth scale, Fwind is the

analytic wind forcing function, T ∼ L/U is the time scale, and Re = UL/νe
is the Reynolds number. The Re is not representative of molecular viscosity.
It is used as a parameterization of turbulent processes (an eddy viscosity
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turbulent model). It models not only the effects of eddies, but also all the
processes which would remove vorticity from the basin at the boundary, such
as bottom topography effects.

4.1. Test Case I: Rotating Waves on a Beta-Plane

Test Case I focuses on demonstrating the advantage of using the adaptive
wavelet collocation method to solve problems with dynamics that change
rapidly in space and time. For this, rotating waves on a beta-plane are
studied. Equations 9 and 10 are used for this test case. Rotating waves can
be best described by linear wave dynamics of an inviscid, homogenous fluid
under rotation on a beta plane. The dimensional equations in the Ro → 0
and Re→ ∞ are

∂η

∂t
= −H

(

∂u

∂x
+
∂v

∂y

)

, (11)

∂u

∂t
− (f0 + β0y)v = −g ∂η

∂x
, (12)

∂v

∂t
+ (f0 + β0y)u = −g∂η

∂y
. (13)

The first dispersion relation that can be derived from this set of equation is

ω = −β0R2 l

1 +R2(l2 +m2)
, (14)

where ω is the frequency, l and m are wavenumbers, and R =
√
gH/f0 is

the deformation radius. These waves are called Rossby or planetary waves.
They are very slow waves, which always have negative zonal phase speed,
cx = −β0R2/[1+R2(l2+m2)]. These waves have a phase propagation to the
west. These waves only arise when there are spatial variations in background
vorticity (they are not present for f-plane or no rotation).

There are several other modes that can be described by Equations 11 -
13. Ignoring the beta effect, the following dispersion relation results,

ω =
√

f 2 + gHk2. (15)

This is the dispersion relation for inertia-gravity waves, or Poincare waves.
The name comes from exhibiting a mixed behavior of both gravity waves and
inertial oscillations. For large wavenumbers (k2 � f 2/gH), or wavelengths
much shorter than the deformation radius, the waves become classical gravity
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waves (ω = k
√
gH). This is because the waves are too short to be affected

by the rotation of the earth. Also, in the opposite limit of low wavenumbers
(k2 � f 2/gH), the rotation effects dominate (ω = f), and the flow is virtu-
ally all uniform with each fluid particle moving in unison, each describing a
circular inertial oscillation.

[PRINT VERSION: Figure 3 shows a series of snapshots in time of the
rotating wave.] [ONLINE VERSION: Video 4.1 shows an animation of the
rotating waves through time.] The sea surface height is initialized as a Gaus-
sian bump. At the beginning of the simulation, gravity waves are created,
propagate out, hit the no slip boundary walls, and reflect back and forth until
they eventually dissipate as a result of numerical dissipation. At this same
time, the entire flow is exhibiting behavior of inertial oscillations with the
velocity vectors spiraling cyclonically. This behavior is most evident in the
beginning of simulation. These initial waves are all fairly fast and are created
and die on the gravity wave timescale of the simulation. After a long time,
only the Rossby wave mode remains, which is manifest as a nearly geostroph-
ically balanced high surface that propagates slowly westward. The clockwise
circulation pattern sits in the center of the domain and slowly creeps west
until it eventually hits the western wall.

PLACE Vid1.mov HERE.
The time series of rotating waves demonstrates the advantage of the adap-

tive wavelet method. The grid is constantly adapting to whatever modes are
present in the simulation. Initially, when the gravity waves are created, the
grid has many points to properly resolve those gravity waves. They even-
tually dissipate out, leaving the grid to adapt only on the slowly westward
moving clockwise circulation pattern (and to the boundaries until they are
no longer needed).

4.1.1. Wavelet Compression

The effective resolution for the simulation is 1024× 1024. [PRINT VER-
SION: The percentage of points used for each snap shot (from left to right, top
the bottom) is 3.37%, 5.39%, 3.78%, 1.35%, 0.46%, 0.55%.] [ONLINE VER-
SION: The percentage of points used at any give time in the simulation ranges
from 0.55% to 5.39%.] That is a maximum compression rate of 99.56% and
a minimum of 94.61%.
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Figure 3: Results and their associated adaptive grids for the rotating waves under the
beta plane approximation test problem.

4.2. Test Case II: Single Wind-Driven Gyre

In order to validate the accuracy of the wavelet method in a more nonlin-
ear scenario, a comparison study is done based on the work by Fox-Kemper
and Pedlosky (2004). The model test case is a rigid lid, homogeneous density,
single-gyre ocean model on a beta plane with viscosity. The single gyre wind
forcing is intended to roughly model a northern hemisphere subtropical gyre.
Double gyre models are also often used. The importance of the double-gyre
model is discussed in Fox-Kemper (2004).
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To directly compare test cases, the governing equations are made di-
mensionless in such a way that the boundary layer width parameters are
explicit. The Fox-Kemper model solves the barotropic vorticity equations.
The barotropic vorticity equations are a subset of the shallow water equa-
tions in the infinite Froude number limit which filters out the gravity waves.
The derivatives taken to derive the barotropic vorticity equation remove the
effect of hydrostatic pressure, thus, eliminating shallow water gravity wave
modes from the solution. For comparison, the barotropic vorticity equation
model used in Fox-Kemper and Pedlosky (2004) is

∂ζ

∂t
+ δ2I

(

∂Ψ

∂x

∂ζ

∂y
− ∂Ψ

∂y

∂ζ

∂x

)

+
∂Ψ

∂x
= −sin(πy) +∇δ3M∇ζ, (16)

ζ = ∇2Ψ. (17)

To derive the shallow water equations with the equivalent non-dimensionalization,
start with the dimensional shallow water equations, including all the forcing
terms,

∂η?

∂t?
+∇ · (η?u?) = 0, (18)

∂u?

∂t?
+ u? · ∇u? + f k̂× u? = −g∇η? + ν∇2u? − f0LWE

Dπ
cos(

πy?

L
). (19)

The non-dimensionalized quantities are

t? = t
βL
, x? = Lx, y? = Ly,

η? = Dη, f = f0 + βLy?, u? = WEf0
βD

u,
(20)

where the time scale is approximately several hours, and the velocity is scaled
in such a way that the streamfunction of the Sverdrup solution would have a
maximum of Ψ = 1 were it to fill the dimensions of the basin (as is determined
by Fox-Kemper and Pedlosky (2004)). Plugging in all the quantities gives
the full set of non-dimensional equations,

∂η

∂t
+ δ2I∇ · (ηu) = 0, (21)

∂u

∂t
+ δ2Iu · ∇u+

(

1

Pl
+ y

)

k̂× u = − δ2I
Fr2

∇η + δ3M∇2u− 1

π
cos(πy)̂i, (22)

where,
δ2I = WEf0

β2DL2 , δ3M = ν
βL3 ,

F r = U√
gD
, P l = βL

f0
,

(23)
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where U = (WEf0)/(βD). In this formulation, the parameters, δI and δM ,
are the Charney (1955) and Munk (1950) boundary layer scales, respectively.
The viscosity parameter, δ3M , is proportional to the dimensional viscosity and
plays a similar role in the nondimensional equations. The Reynolds number
of the boundary layer is defined as δ3I/δ

3
M , although others use a Reynolds

number approximate to a basin-wide flow, defined as δ2I/δ
3
M . For all results

presented, the value of δI is fixed at 0.02. This value corresponds to 80 km
inertial boundary current scale in a 4000 km basin with a velocity scale of
0.1 m/s.

In the barotropic vorticity equation, there are only two non-dimensional
constants to be set, δI and δM . In the shallow water equations, two additional
constants need to be set, including the Froude number, Fr, and the Plan-
etary number, Pl. These parameters are chosen such that the limit of the
barotropic vorticity model is approached without a requirement for unduly
short time steps to resolve gravity waves (Fr = 0.001 and Pl = 0.1).

The zonal boundaries are at x = 0 and x = 1 and the meridional bound-
aries are at y = 0 and y = 1. The eastern and western boundaries have no
slip boundary conditions (u = 0 and v = 0). The northern and southern
boundaries have slip boundary conditions (v = 0 and ∂u/∂x = 0).

4.2.1. Analytic Initial Conditions

For wind-driven, single gyre problems in a square basin, zero initial con-
ditions are often used. Since zero initial conditions satisfy the boundary con-
ditions and are solutions to the governing equations without forcing, they are
often the best choice. However, when working with adaptive grids, resolving
the initial boundary layer that is created by the instantaneous forcing can
be expensive. To avoid the initial resolution requirement, analytic functions
are occasionally used for initial conditions,

η = sin(πy)
[

cos(π(2x + 1))
]

, (24)

u = −cos(πy)
[

cos(π(2x + 1))
]

, (25)

v = −2πsin(πy)
[

sin(π(2x + 1))
]

. (26)

All variables are approximately O(1) but can be rescaled as needed. This
solution satisfies the boundary conditions discussed above. They also reduce
the computational cost of developing and resolving a boundary layer. These
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types of initial conditions are not required, but do speed up the time it takes
to reach a steady circulation pattern. Figure 4 shows η, u, v in graphical
forms.
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Figure 4: Analytic initial conditions for wind-driven single gyre problems.

4.2.2. Results

In order to test the accuracy and stability of the wavelet method with
the boundary layer non-dimensionalization model (Equations 21 and 22), two
different cases are considered. Using the boundary layer Reynolds number
discussed earlier, Re = 0.5 and 1 cases are compared to the results published
in Fox-Kemper and Pedlosky (2004) (see Figure 5).

Since all the Fox-Kemper results are given in the form of streamfunctions,
all of the results from the wavelet model are presented in terms of sea surface
height, which for the shallow water equations in geostrophic balance (thus,
any wind-driven gyre) is nearly equivalent to streamfunction. When flow is
in geostrophic balance, the dominating balance is

f × u = −g∇η. (27)

When streamfunction definitions are substituted in (u = ∂ψ/∂y and v =
−∂ψ/∂x ), the following relationship is obtained, ψ = −(g/f)η. Thus, quali-
tatively, the streamfunctions and sea surface height can be used interchange-
ably for flow in geostrophic balance.

The series of plots from Fox-Kemper and Pedlosky (2004) in Figure 5 are
the time-averaged results from the last half of each of the runs. The time
unit, (βL)−1, is approximately equivalent to about 3.5 hours. They are run
to an integration time of about 10,000 time units, which is approximately 4
years. Additionally, the results from Fox-Kemper and Pedlosky (2004) uses
a resolution of 257× 257 Chebyshev modes.
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Figure 5: Qualitative Comparison of results from Fox-Kemper and Pedlosky (2004) to
cases run using the wavelet method. All solutions are time-averaged over the last half of
the simulation time.

The results from all cases (Re = 0.2, 0.5, 1) using the adaptive wavelet
method are in excellent agreement with the results found in Fox-Kemper
and Pedlosky (2004). A quantitative comparison was also done on two cases
(Re = 0.5, 1). Since the streamfunction and the sea surface height are not
exactly equivalent, the zonal and meridional velocities will be compared in-
stead. This quantitative comparison was done for two different Reynolds
number and for both horizontal velocity components for each Reynolds num-
ber, which results in four error calculations and are shown in Figure 6.

The quantitative comparison in Figure 6 shows that the Fox-Kemper and
the adaptive wavelet code results are in excellent agreement. The plots of
relative error shows that the large difference between the two cases are in the
center of the strong cyclones and anti-cyclones. Since the Fox-Kemper results
were obtained using the barotropic vorticity equation and the results from
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the adaptive wavelet code were obtained using the shallow water equations,
these differences are exactly what is expected. Cyclones should be a bit
stronger when using the shallow water model and that anticyclones should
be a bit weaker compared to barotropic vorticity equations. Table 1 shows
the relative L2 errors for each of these cases. Considering the differences
between the two sets of equations solved, the interpolation error associated
with getting each set of data on the same grid, and the error associated with
getting both data in terms of velocities, these L2 errors are expected.

Re = 0.5 Re = 1
Relative L2 Error for u 0.0143 0.0250
Relative L2 Error for v 0.0072 0.0286

Table 1: The relative L2 errors between the adaptive wavelet collocation method and Fox-
Kemper results. L2 errors were calculated for two different Reynolds numbers for both
horizontal velocities.

Additionally, there are two more non-dimensional constants present in the
shallow water formulation of the non-dimensionalization of the two sets of
equations. These parameters include Fr and Pl (as seen from Equations 21
and 22). One way to check the accuracy of the adaptive wavelet collocation
method results is to make sure they are approximately O(Fr) or O(Pl), which
ever is larger. In the two cases used for direct comparison the Fr = 0.001
and Pl = 0.1.

4.2.3. Time Step Restriction

The Fox-Kemper model solved the barotropic vorticity equations. Since
gravity waves are filtered out in these equations, a larger time step is allowed,
since the timescale of the gravity waves does not need to be resolved. For
the shallow water equations, there is a very restrictive time step to satisfy
the CFL condition. Several different techniques are investigated to mitigate
this issue.

One technique is to resolve the gravity waves generated initially as the
gyre is first formed from initial conditions. Then, once all the generated
gravity waves are dissipated, increase the time step and no longer resolve the
gravity wave timescale. This technique is often used successfully with the
compressible Navier-Stokes equations, to deal with the acoustic waves that
are generated. However, with the shallow water equations, stability issues
arise if the CFL condition is not satisfied at any point in the simulation.
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Even after the solution reaches a somewhat steady state (and even if the
solution is well behaved and laminar), the gravity wave CFL condition needs
to be satisfied. It is determined that the fast modes (gravity wave modes,
inertia-gravity wave modes, etc.) are too easily and often excited to get away
with not satisfying the CFL requirement.

The second technique is to not have fast gravity waves, but to set the
Fr high enough where the CFL requirement is not restrictive. The CFL
requirement is
CFL = |δ2I u+ δ2I /Fr|(dt/dx). This is also unsuccessful since slow gravity
waves interact incorrectly with the other modes. The condition, δ2I /Fr > .3,
must be met, which is why Fr = 0.001 is used in all the simulations.

4.2.4. Effects of Sloping Bottom Bathymetry

In the past, the study of wind-driven circulation has been dominated by
theory based on models with flat bottoms and vertical sidewalls (Jackson
et al., 2006). The impact of the coastline orientation and bottom topogra-
phy on the western boundary current patterns has not yet been sufficiently
addressed (Ozgokmen et al., 1997). However, for some time now there has
been belief that the response of the ocean may be strongly controlled by
the shape of the ocean bottom. Features, such as Gulf Stream separation,
meandering, and variable transport may all be related to topographic effects
(Holland, 1967).

The success of Stommel’s model (Stommel, 1948), which describes the
important features of ocean circulation using the simplest model possible,
has left the impression that bottom topography effects are not crucial to
accurately modeling wind-driven gyres. Stommel’s model is a wind-driven,
flat-bottomed, barotropic, rectangular basin with linear flow and only linear
bottom friction. This model shows that the beta plane is necessary to pro-
duce western intensification. To further support the idea that topography is
unimportant, Munk’s model (Munk, 1950) is solved under the assumption
that the interior flow does not penetrate deep enough to even reach the bot-
tom. Even though no reasoning is given for the assumption, the results are
assumed valid since the solutions matched expectations. There have been
several other studies since that acknowledge the ideas initiated by Stommel
and Munk while simultaneously accentuating the need to understand more
complex topographic effects (Hughes and deCuevas, 2001).

The goal in this work is to look at how the sloping bottom affects the
parameter study of a wind-driven, single gyre in a square basin. Each of
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the cases run to compare against the Fox-Kemper results is also run with
the effects of sloping bottom. The equations used to apply sloping bottom
effects are

∂η

∂t
+ δ2I∇ · ((η +H − b)u) = 0, (28)

∂u

∂t
+ δ2Iu · ∇u+

(

1

Pl
+ y

)

k̂× u = − δ2I
Fr2

∇η + δ3M∇2u− 1

π
cos(πy), (29)

where η is the variation of the sea surface height from the mean height, H,
and b is bathymetry. The exact equation used to define the bottom boundary
is

b(x, y) = 1−
(

0.07+0.93
[

1−exp (−400(x−0)2)−exp (−400(x−1)2)
])

, (30)

which is constant in the y direction. A y-slice is plotted in Figure 7 and
shows how the bottom is flat in the interior of the domain, but the bottom
smoothly slopes up along the east and west boundaries similarly to a ocean
basin with continents on either side.

It is evident from Figure 5 that there is a difference in the circulation
pattern between a flat ocean bottom and a sloping ocean bottom. This dif-
ference can be explained through the understanding of a simplified version
of the shallow water equations called the potential vorticity equation. Start-
ing with the dimensional shallow water equations with numerical viscosity
and wind forcing and taking a curl gives the following potential vorticity
equation,

D

Dt

(

ζ + f

h

)

=
F

h
, (31)

where ζ = k · w?, w? = ∇ × v, v = (u, v) (the horizontal velocity compo-
nents), and h = H + η is the total depth of the ocean. F represents friction
and forcing. The term, (ζ + f)/h, is called the potential vorticity in a rotat-
ing system and is a conserved quantity. The ζ is the relative vorticity with
f being the vorticity that the fluid has by virtue of the background rotation.
However, if the relative vorticity is neglected and potential vorticity is domi-
nated by the rotation of the earth, then potential vorticity is simply f/h. In
the flat bottom case, the potential vorticity contours are simply horizontal
lines since there is no x variation in the potential vorticity. However, for the
sloping bottom case, which has variations in the x direction, the potential
vorticity contours converge to the southwest corner of the basin and have
strong x variations.
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For the flat bottom case, the streamfunction is advected westwards along
the f/h contours, spreading diffusively as it goes. The western boundary
layer is created as a consequence of the f/h contours colliding with the
western wall and needing to satisfy no slip boundary conditions. For the
sloping bottom case, the streamfunction is advected pseudowestwards, i.e.
along the potential vorticity contours. Just like in the flat bottom case where
friction is needed to move the flow in the meridional direction, in the sloping
bottom case, friction is necessary for the flow to cross f/h contours. This
explains why there is a kink in the southwest corner of the streamfunction
solution for a sloping bottom case, which is because the flow is following the
potential vorticity contours (Jackson et al., 2006).

Well resolving the kink that is present in the solutions with a sloping
bottom is a difficult task when using a uniform grid. However, as seen in
the sloping bottom solutions in Figure 8, the adaptive wavelet method auto-
matically adds the necessary resolution to the southwest corner to guarantee
an accurate representation of the small scale kink feature. This is a crucial
component of modeling this effect.

The importance of the sloping bottom effect is evident from the pres-
ence of the kink in the real ocean observations of western boundary currents
(Zhang and Vallis, 2007). It is small features like this that motivate the need
for adaptive, non-uniform grids in ocean modeling. The results presented
here show how accurately and efficiently these results can be obtained using
the adaptive wavelet collocation method approach.

4.2.5. Wavelet Compression

Figure 8 shows some instantaneous results and grids for two cases when
Re = 0.5, one with a flat bottom and the other with a sloping bottom. The
flat bottom case for this particular time uses 4033 points. The effective res-
olution is 2048 by 2048, which is 4,184,304 points. Therefore, only 0.1% of
the total points are used, resulting in a 99.9% compression. In the sloping
bottom case, there are 16260 active points, which is only 0.4% of the points,
resulting in a 99.6% compression. For steady-state results, like a wind-driven
gyre, the maximum level of resolution decreases over the course of the sim-
ulation. Initially, during the transient time, the highest level of resolution
is required. After the solution reaches steady-state, the finest level of res-
olution is often two or three levels below what it was initially. Therefore,
the compression can be calculated based on the highest level of resolution
needed over the entire integration time of the problem or can be the highest
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level of resolution of the instantaneous solution. In most of these boundary
problems, the compression is so high in either calculation, so the difference
is negligible.

4.3. Test Case III: North Atlantic Simulations

The third test case is a wind-drive single gyre in the North Atlantic
basin. The computations are based on the shallow water model for the
non-dimensionalization in Equations 28 and 29. The results are for a low
Reynolds number flow, Re = δ3I/δ

3
M = 0.2. With these parameters, the

flow is laminar and steady, but still serves as a useful preliminary test of
combining Brinkman and sloping bottom techniques.

The mask is created from data obtained from NOAA’s National Geo-
physical Data Center using GEODAS Grid Translator. The finest resolution
available for the domain of interest is used. To create the masking func-
tion, χ, the bathymetry data are normalized to ones and zeroes, filtered
and smoothed to guarantee numerical stability. Figure 9 shows the masking
function for the North Atlantic. For the definition of bathymetry, the same
data are non-dimensionalized and smoothed, as seen in Figure 10. As dis-
cussed in previous sections, the effect of topography plays an important role
in the solution, so the effects of the realistic North Atlantic bathymetry are
incorporated.

Figure 11 shows sea surface height results for low Reynolds number (Re =
0.2). These smooth, laminar North Atlantic simulations demonstrate proof-
of-concept for running basin-scale boundary currents using realistic conti-
nental topography. The low Re is necessary in order for numerical stability
and for computational efficiency. The results, however, do show the western
intensification of North Atlantic circulation. The solution is missing all the
mesoscale eddies and turbulence present in realistic flow.

4.3.1. Wavelet Compression

Figure 12 shows the adaptive grid colored by the different levels of reso-
lution for the North Atlantic simulation. The total number of points on the
finest level of resolution is 5888 × 2560, which is 15,073,280 points. There
are only 0.2% of the total points active, which comes out to a 99.8% com-
pression. As can be seen on the grid, the majority of the adaption occurs
near the continental boundaries, especially along the western boundary, the
only location where the highest level of resolution is used. Once larger Re
solutions can be run, the grid will also adapt to mesoscale eddies which will
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be created at various locations where different currents collide. The strength
of the adaptive wavelet collocation method will be even more prevalent in
these turbulent cases.

4.4. Test Case IV: 2010 Chile Tsunami

On February 27th, 2010, a tsunami was generated by an 8.8 magnitude
earthquake that occurred near Concepcion, Chile. This tsunami was modeled
to round out the fourth and final test case. Since tsunamis are gravity waves,
their duration is much more suitable for the shallow water model and for the
temporally adaptive grid than the slow Rossby wave and equilibrated gyres.

4.4.1. Tsunami Generation/Initial Conditions

Tsunami generation by an earthquake is modeled by sea surface height
displacement identical to the vertical deformation of the ocean bottom due
to faulting. Usually the horizontal deformation from the earthquake is ne-
glected, unless it is sitting on a steep slope and horizontal displacement
is large relative to the vertical displacement. Several assumptions are made
when converting the displacement of the ocean bottom to a sea surface height
displacement. First, tsunamis are assumed to be long, shallow water gravity
waves, which is accurate since the wavelength of a tsunami is much larger
than the depth of the ocean. As a result of this assumption, the vertical
acceleration of the water particles is neglected compared to the gravitational
acceleration. Therefore, the water mass that is lifted is assumed to move
uniformly in the horizontal direction. Second, the vertical deformation of
the bottom surface of the ocean is assumed to be instantaneous. This is also
quite accurate since the phase velocity of a tsunami is much slower than the
timescale of the earthquake rupture. Lastly, it is assumed that any horizontal
movement in the ocean bottom due to the earthquake is negligible (Tanioka
and Satake, 1996).

The most widely used model for tsunami generation is the Okada fault
model (Okada, 1985). Earthquake fault data can be obtained from United
States Geological Survey (USGS). After retrieving data from a previous
earthquake, the fault parameters can be entered into the Okada fault model,
which is publicly available on the MATLAB file exchange website. The Okada
fault model uses the fault parameters (fault parameters for 2010 Chile earth-
quake are shown in Table 2) to determine what the vertical displacement of
the bottom of the ocean is for a particular earthquake using analytic func-
tions derived from theory of a surface deformation induced by an arbitrarily
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oriented rectangular open-mode dislocation Okada (1985). It is then assumed
the water is displaced the same amount as the bottom surface of the ocean
and that is how sea surface height initial conditions are set. After entering
in the right domain and normalizing, Figure 13 shows the sea surface height
initial conditions and the data used to generate the 2010 Chile Tsunami. As
seen in the plot, the earthquake occurred right off the coast of Chile, which
is where the displaced sea surface height is shown.

Fault Parameters Value
Location of Epicenter 35.846◦ S, 72.719◦ W

Moment Magnitude Scale, Mw 8.8
Fault Length 400 km
Fault Width 100 km
Dislocation 15 m

Strike 16◦

Dip 14◦

Slip 104◦

Depth of Fault 35 km

Table 2: List of 2010 Chile Earthquake fault parameters. Source:USGS (2010)

Realistic Pacific Ocean bathymetry is used for the tsunami simulation.
Since the gravity wave speed is strongly dependent on the depth of the ocean,
the effects of realistic bathymetry are important for accurately simulating a
tsunami. Figure 14 shows the bathymetry used for the Pacific Ocean.

4.4.2. Results

The adaptive wavelet method has proven to be best suited to simulating
tsunamis among the test cases presented here. Combined with Brinkman
penalization for representing the complex continental topology, it is an effi-
cient model. PRINT VERSION: [Figure 15 shows several snapshots of the
tsunami traveling through the Pacific ocean.] ONLINE VERSION: [Video
4.4.2 shows the tsunami traveling through the Pacific ocean.] On the left,
sea surface height is shown, while on the right is the adaptive grid, colored
by level of resolution. The Re = 2000 for this simulation and uses the non-
dimensionalization found in Equations 9 and 10. This Re is still too small to
be able to compare these results to observations or to other tsunami models,
but the high data compression of the wavelet method should allow for much
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higher Re runs in the future, now that the tsunami case has been found most
suitable. Near the end, the tsunami waves start to dissipate (due to numer-
ical viscosity). Therefore, a higher Re number simulation needs to be done
in order to compare wave heights.

PLACE Vid2.mov HERE.
There are many steps to be taken to improve the adaptive wavelet tsunami

model. First, higher resolution simulations need to be carried out in order to
allow for a higher Re and for highly inertial flow. Second, most earthquakes
have several aftershocks following the initial mainshock. These aftershocks
can be added as sea surface height forcing terms to provide a more accu-
rate model of a tsunami, rather than only forcing the tsunami through the
sea surface height initial conditions. Third, there is some reflection off the
southern numerical boundary, due to the no slip boundary conditions of the
region modeled here. Extending the domain and the masking function to
include Antarctica, would improve the reflections off the southern boundary.
Better yet, use a gentle Brinkman to damp waves without reflection. Lastly,
improved methods for on-shore effects and wetting and drying algorithms
would greatly enhance this tsunami model.

4.4.3. Wavelet Compression

The total number of points on the finest level of resolution for the tsunami
simulation is 5384×3584, which is a total of 19,267,584 points. At any given
time in the simulation less than 0.1% of the total number of grid points
is used. This is a compression greater than 99.9%, which shows how well
suited a tsunami problem is to the adaptive wavelet collocation method.
The grid is adapting the continental boundaries, as well as, the tsunami
wave propagating through the domain. The grid adaptation of the tsunami
wave is most prevalent at the beginning of the simulation before the wave
has felt too much of the effect of the numerical viscosity.

5. Analysis of Numerical Techniques

5.1. Computational Cost of Adaptive Wavelet Collocation Method

For the adaptive wavelet method, the cost per grid point is approximately
three to five times greater than with a standard non-adaptive method Kevla-
han and Vasilyev (2005). Therefore, as long as there is a minimum of an 80%
compression, the wavelet method compression outweighs the cost. In all of
the test cases presented here the compression is much higher than 80%. Out
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of the cases presented here, the least compression was 94.6% for the rotating
waves on a beta plane case and the most was 99.9% for the tsunami case.

5.2. Computational Cost of Brinkman Penalization

There is added cost associated with the implementation of Brinkman pe-
nalization. Depending on the δpen used, the computational cost to resolve and
Brinkman boundary may be higher than a traditional boundary wall. This
is unavoidable but does contribute to improving the accuracy at the bound-
aries, so in many cases it is worth the cost. The other aspect of Brinkman
penalization is the additional domain space. Adding a Brinkman zone means
the computational domain needs to be larger, which also increases the com-
putational cost. However, this can easily be minimized by making the zone
as small as possible. It is not cost effective to use Brinkman penalization to
define straight boundaries. It is a technique to accurately represent complex,
variable geometry boundaries, in which case the added computational cost
should be expected.

6. Conclusions and Future Work

Numerical model development and proof-of-concept testing is completed
for the shallow water model. The adaptive wavelet collocation method is val-
idated using Test Cases I and II. These benchmark problems include rotating
waves on a beta-plane and a wind-driven single gyre in a square basin. Both
test cases demonstrated the strength of the wavelet method in a qualitative
way and the wind-driven gyre test case was also quantitatively accurate when
compared against a results from Fox-Kemper and Pedlosky (2004).

The shallow water formulation of Brinkman penalization (Reckinger et al.,
2012) was used for representation of complex continental boundaries. Test
Case III (North Atlantic simulation) and Test Case IV (2010 Chile Tsunami
simulation) combine the adaptive wavelet method and Brinkman penaliza-
tion and provide insight on the best application of these methods. The short
time scales of tsunamis make it an excellent candidate for adaptive simu-
lations, while the complex boundaries are represented with ease using the
Brinkman method.

High resolution simulations of all the cases developed using the shallow
water model need to be carried out as a next step. Also, there are numer-
ous additions that can be made to improve the accuracy and efficiency of
these ocean application simulations. For the tsunami model, there are many
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improvements that can be done immediately, including adding aftershocks,
improving the boundary conditions on the open boundaries by either incor-
porating non-reflecting boundary conditions or by extending the domain, and
also adding in on-shore effects. The purpose of this work was to show proof
of concept simulations of these two novel numerical techniques.
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Figure 6: Quantitative Comparison of results from Fox-Kemper and Pedlosky (2004) to
cases run using the wavelet method. Plots from left to right show the wavelet method
solution, Fox-Kemper solution, and the relative error as function of space. Plots from
top to bottom show zonal velocity for Re = 0.5, meridional velocity for Re = 0.5, zonal
velocity for Re = 1, and meridional velocity for Re = 1.
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Figure 8: Adaptive grids for two Re = 0.5 cases. One has a flat bottom and the other has
a sloping bottom. These are instantaneous results and grids.
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Figure 9: Plot of North Atlantic mask.
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Figure 10: Plot of North Atlantic variable bathymetry data. (ETOPO2, 2010)
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Figure 11: Sea surface height results for a low Reynolds number simulation of the North
Atlantic
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Figure 12: Plot of the adaptive grid for simulations in the North Atlantic. The grid is
colored by different levels of resolution.
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Figure 13: Sea surface height initial conditions for the 2010 Chile tsunami simulation.

Figure 14: Bathymetry in the Pacific Ocean for the 2010 Chile tsunami simulation.
(ETOPO2, 2010)
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Figure 15: Results from 2010 Chile Tsunami simulation, with sea surface height on the left
and the adaptive grid (colored by level) on the right. The results are shown chronologically
from top to bottom.
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