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Two-proton correlations at small relative momentum q were studied in the eA�3He; 4He;C; Fe� !
e0ppX reaction at E0 � 4:46 GeV using the CLAS detector at Jefferson Lab. The enhancement of the
correlation function at small q was found to be in accordance with theoretical expectations. Sizes of the
emission region were extracted, and proved to be dependent on A and on the proton momentum. The size
of the two-proton emission region for He was measured in eA reactions for the first time.

DOI: 10.1103/PhysRevLett.93.192301 PACS numbers: 13.60.Rj, 21.65.+f, 25.10.+s, 25.30.Rw

One of the outstanding issues in nuclear physics is
the nature of dense nuclear matter [1]. There are experi-
mental indications [2,3] that density fluctuations of
nuclear matter manifest themselves in so-called ‘‘cumu-
lative processes,’’ in which particles are produced in the
kinematic region forbidden to interactions with a single
motionless nucleon. Cumulative particle spectra remain
unexplained when finite-temperature Fermi-gas momen-
tum distributions are taken into account [4], leading to
the association of the reaction strength in this kinematic
region with density fluctuations or correlations. These
objects can be described in various ways [5,6], but all
authors consider them to be fluctuations. In this Letter, we
will not rely on a specific model, and, following Ref. [5]
and others, we will refer to this type of object as a
‘‘flucton.’’ The electroproduction from nuclei of an ener-
getic nucleon pair with small relative momentum is also
an example of a cumulative process: it cannot be due to
the interaction of the virtual-photon with a single nucleon
followed by rescattering of the first nucleon on a second,
since this leads to large angles (and hence large relative
momenta) between the two nucleons. Therefore, such a
process can be used to study the flucton—its size (den-
sity), in particular.

Cascade calculations [7] fail to describe the whole set
of experimental data, but rescattering can affect experi-
mental spectra and particle correlations. The relative

importance of rescattering processes depends on the
mass number A of the nucleus.We believe that an extrapo-
lation to the smallest A will provide reliable information
on the true properties of the flucton.

To estimate the density of the flucton, one needs to
measure its size and the number of contributing nucleons,
the minimum number of which can be determined from
the kinematics. The flucton size is expected to be com-
mensurate with the size of a nucleon [5].

Two-particle correlations at small relative momenta
~q � ~p1 � ~p2 ( ~p1 and ~p2 are the individual proton mo-
menta in the pair rest frame) are sensitive to the source
size [8–10] (see also the reviews [11]). We will use the
term ‘‘femtoscopy’’ (1 fm � 10�15 m) for the study of
source sizes within nuclei in analogy with microscopy.

Two-proton correlations at small q were theoretically
described in [9,10]. The interference of identical particles
[8], as well as Coulomb and strong final-state interactions
(FSIs) [12], were taken into account. Strong FSIs are
dominant, causing an increase of the pair production
cross section near q� 0:04 GeV=c. The intensity of
this effect depends inversely on the root mean square
radius rrms of the source from which the protons are
emitted.

Here we understand the FSIs to be only the interactions
in the two-proton system at small relative momenta. The
interaction time in this system is much larger than the
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characteristic collision time, and so this system can
be considered in isolation of other particles and described
by the same wave function as in the scattering problem.
For proton interactions with other particles during
the collision process we use the term ‘‘rescattering.’’
Rescatterings are essentially localized, and can be con-
sidered as new emission points. FSIs are our ‘‘tool’’ for
measuring the flucton size, while the rescatterings wash
out the original emission region, and thus distort this
measurement.

Although femtoscopy has been used widely to study a
number of processes (hh; e�e�; AA [11]), this is not the
case for the cumulative process. Hadroproduction data
exist for carbon and heavier nuclei [3,13], but lepton-
nucleus data are scarce in any kinematical domain
[14,15]. In Ref. [14] the size of the pion emission region
was studied in high-energy �D interactions. In Ref. [15]
data on two-proton and two-pion correlations were ob-
tained in e16O interactions at 5 GeV. However, the scat-
tered electron was not identified, the transferred 4-
momentum squared Q2 was small, and the transferred
energy � was about 1.5 GeV. The measured source-size
proved to be commensurate with the nuclear size, and
showed a tendency to decrease with particle momenta.

We present here our study of the correlation between
two detected protons with small relative momenta in
eA�3He; 4He; 12C; 56Fe� ! e0ppX reactions, for an inci-
dent electron energy of 4.46 GeV. The measurements
were performed with the CEBAF Large Acceptance
Spectrometer (CLAS) [16] in Hall B at the Thomas
Jefferson National Accelerator Facility. The CLAS detec-
tor is a six-sector toroidal magnetic spectrometer. The
detection systems consist of drift chambers to determine
the trajectories of charged particles [17], scintillation
counters to measure time-of flight [18], Cherenkov coun-
ters to distinguish between electrons and pions [19], and
electromagnetic shower calorimeters to identify electrons
and neutrons [20]. The CLAS was triggered on scattered
electrons detected in the calorimeter with energies above
1 GeV.

Run conditions are described in detail in Ref. [21].
Events with � between 0.5 and 3.5 GeV, Q2 between 0.6
and 5 �GeV=c�2, and protons momenta between 0.3 to
1:0 GeV=c were selected for the analysis. Only events
with at least two detected protons were accepted, and all
proton-pair combinations in an event were included in the
analysis. Misidentification of electrons or protons was
negligible.

In this article we shall use a mixing procedure [8] for
calculating the correlation function (CF), i.e.,

R�q; p� �
Nr�q; p�
Nm�q; p�

; (1)

where q � j ~qj, p � j ~pj, and ~p � � ~p1 � ~p2�=2; Nr and Nm
are the numbers of proton pairs from the real events and

those combined from protons taken from different events,
respectively. Secondary particles are boosted in the di-
rection of the virtual-photon momentum. We select the
mixed-pair protons from events for which the magnitude
of the momentum difference of the scattered electrons
j ~pe1 � ~pe2j is less than q0. We studied the dependence of
the Nm distribution on q0, and found it to be negligible for
q0 < 0:2 GeV=c. Therefore, we used q0 � 0:2 GeV=c.
Pairs of tracks hitting a single scintillator were not in-
cluded in our analysis because they have ambiguous time-
of-flight values.

The ability to detect two tracks with a small relative
momentum is limited because both particles hit the same
or neighboring detector cells. A detailed study of the
close-track efficiency "�q� has been done in Ref. [22]. It
depends on track curvature and then, for a fixed nominal
magnetic field, on the proton momentum and emission
angle in the laboratory system. The dependence of "�q�
for the mean momentum and emission angle is shown in
the inset of Fig. 1.

Figure 1 shows R�q� for the 3He, 4He, and Fe data
corrected for close-track efficiency "�q�, ‘‘long-range’’
correlations (LRC), and momentum resolution. For se-
lected ranges, the correlation function does not depend
within errors on � andQ2. The data in Fig. 1 are averaged
over proton momenta. LRCs arise mainly from momen-
tum conservation for real events which is not a require-
ment for mixed pairs. They cause a smooth increase of R
with q, which reflects the fact that due to momentum
conservation the probability of two particles emitted in
the same direction is smaller than that of two particles
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FIG. 1. The two-proton correlation function R for 3He, 4He
and Fe nuclei. Curves are calculated for rrms � 1:6 fm (He) and
rrms � 3:0 fm (Fe). The inset shows the close-track efficiency
"�q� and its uncertainty �"=".
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emitted in opposite directions. Empirically, LRCs can be
parametrized by R / exp�b cos �, in which  is the angle
between the two protons and b is a constant [23]. The
parameter b was fit versus A and p for q > 0:2 GeV=c.
The corrections to the data were made by introducing a
weight w � exp�b cos � for mixed pairs, which reprodu-
ces the LRCs in the Nm distribution.

The proton momentum resolution within the selected
kinematic range is estimated to be �p=p� 2%. Since �p
is typically smaller than the width of the effects under
study, the measured correlation functions are only
slightly smeared out by the momentum resolution. The
momentum resolution corrections were made by applying
the smearing procedure n times to the measured CF and
then extrapolating the results to n � �1. This correction
changes rrms by less than 1%.

Figure 1 also shows the theoretical dependencies of
R�q� as calculated within a model [10], which takes into
account quantum statistics and FSIs in the two-proton
system. The theoretical correlation function is then calcu-
lated as a square of the wave function (corresponding to
the scattering problem) averaged over the relative dis-
tances of the emitters in the pair rest frame. We assume
a Gaussian distribution of the emission coordinates char-
acterized by a dispersion r20 � r2rms=3. The curves in Fig. 1
correspond to rrms � 1:6 and 3.0 fm. We neglect here the
emission duration which is effectively absorbed in the
parameter rrms. Since the contemporary theoretical ap-
proaches do not consider the relation between extracted
source-size parameters and the real value of R at large q,
both correlation functions and the theoretical curves are
normalized to unity for 0:17< q< 0:35 GeV=c. Theory
predicts [9,10] that the enhancement of R at small q is
inversely related to the measured size parameter. The
peak at q � 0:04 GeV=c results mainly from the inter-
play between the attractive s-wave strong final-state in-
teraction and the Coulomb repulsion. We compared the
results of calculations of the CF for different proton-
proton potentials [9,10,24]: i.e., the spherical wave ap-
proximation (scattered wave �1=r) and a simple square
well potential, as well as the more realistic Reid [25] and
Tabakin [26] potentials. For large rrms values, the corre-
lation function is mainly determined by the solution of
the scattering problem outside the range of the strong
interaction potential, and is therefore independent of the
actual form of the potential, provided that it correctly
reproduces the scattering amplitudes [10,24]. Our results
start to depend on the potential choice for rrms < 2 fm. If
rrms < 2 fm, the calculated curves for different potentials
look similar, but the best value of rrms depends on the
version of the potential. The results for rrms are presented
for the realistic Reid potential, with the difference be-
tween Reid (with core) [25] and Tabakin (without core)
[26] ( � 3% in rrms for the He data) taken as the theo-
retical uncertainty.

The curves in Fig. 1 represent the best fit of the theo-
retical curves to the data with rrms as a free parameter.
The fits in Fig. 1 are quite reasonable (�2=DF� 1 if only
statistical errors are taken into account). The dependen-
cies of R on q for 3He and 4He (and the best value for rrms)
are the same within errors; the enhancement of R at small
q for Fe is much smaller. This means that rrms is larger for
Fe than for He. The results for carbon (not shown in the
figure) lie between He and Fe.

Experimental systematic errors on rrms arise from the
close-track efficiency correction ( � 2%), the correction
for long-range correlations ( � 2%), and the correction
for momentum resolution ( � 1%). A potential back-
ground in the measured CF, which comes from noniden-
tified � ! p� decays, is estimated to be smaller than
1%. The total systematic experimental errors on rrms is
about 3%.

The dependence of rrms on p � j ~p1 � ~p2j=2 for differ-
ent nuclei is shown in Fig. 2. The data are averaged over
emission angles. Statistical and systematic errors have
been added in quadrature. For 3He the momentum depen-
dence looks flat, while for carbon and iron it decreases
with increasing pair momentum. Our results for carbon
are in good agreement with the data [15] for electron-
oxygen interactions. The values of rrms approach the size
of the nucleus for the lowest value of pair momentum,
which seems to be due to the rescattering of protons in
nuclear matter. The importance of rescattering decreases
with proton momenta in the chosen momentum range due
at least in part to the decrease in the NN cross section.

We estimate the size of the flucton rf under the as-
sumption that both the primordial source-size, and its
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FIG. 2. The size parameter rrms as a function of the mean
pair momentum p � j ~p1 � ~p2j=2. Data [15], which correspond
to e16O interactions at initial energy 5 GeV and Q2 <
0:1�GeV=c�2, are shown for comparison.
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modification due to rescattering, contribute to the mea-
sured size. In the case of helium, the probability of
rescattering is much smaller than in heavy nuclei. The
extracted rrms values for 3He and 4He are about the same,
which is additional evidence that rescattering does not
affect the helium data within the errors ( � 0:1 fm).
Therefore, rrms in helium ( � 1:6 fm) is an upper estimate
of rf.

To take into account the possible influence of the re-
scattering process for helium, we can extrapolate the
measured sizes as a function of A to the minimum pos-
sible target mass, where rescattering is not possible. This
will provide a lower estimate of rf, because rescattering
can only increase the measured size. The minimal target
mass (in nucleon mass units) for the electroproduction
of protons (the so-called cumulative number XS [27])
is determined by the kinematics of the process e� XS �
mp ! e0 � p�mc and is given by

XS �
Q2

2� � Ep � Pp cos#p$
�����������������������
1�Q2=�2

p

�1� Tp=��mp
; (2)

in which Ep, Pp, mp, and Tp are the full energy, momen-
tum, mass, and kinetic energy of the proton, #p$ is the
angle between the proton and virtual-photon momenta,
and mc is determined by conservation of baryon number.
In the limit of large �, XS approaches the sum of the
Bjorken variable xBj � Q2=2mp� and the light cone vari-
able ) � �Ep � Pp cos#p$�=mp. For a proton-pair at
small relative momentum, XS is given by Eq. (2) in which
Ep, Pp, Tp, and #p$ now refer to the pair.

Cumulative production is defined to occur when XS is
larger than unity. Half of our proton pairs are produced
with XS > 2; the remaining events are still close to the
kinematic boundary in the reaction where the mass of the
target is the two-nucleon mass. An extrapolation of the
measured sizes to A� XS yields 1:2
 0:1 fm, where the
error arises mainly from the extrapolation uncertainty.
The extracted rrms could be affected by background from
the decay of short-lived resonances like the �. Since the
proton velocity in the � decay reference frame is small
(v� 0:2c) and the lifetime is roughly c+ � 2 fm, this
background contribution to the measured size is less than
0.1 fm. Given the maximum possible value of this back-
ground, the lower estimate for the flucton size is 1 fm.
Therefore, we estimate the flucton size as rf �
1:3
 0:3 fm, which is an average of the 1 fm lower
estimate and the measured value for He of 1.6. The flucton
size estimate in [5] was indirect, rather imprecise, and
based on the model for fitting inclusive data only. Yet it
agrees reasonably with our direct measurement of the
flucton size.

Correlations between protons produced in eA interac-
tions at 4:46 GeV have been investigated. The data clearly
show a narrow structure in the correlation function in the

region of small relative momenta (q < 0:1 GeV=c) with a
peak at q� 0:04 GeV=c which is in accordance with
theoretical expectations. Helium data on two-proton cor-
relations at small relative momenta in eA interactions
have been obtained for the first time. The measured size
of the emission region rrms depends on A and the pair
momentum. By extrapolating to the minimum A (in the
limit where there is no rescattering), we estimate the
flucton size to be rf � 1:3
 0:3 fm. Using the well-
known radii of 3He (1.90 fm) and 4He (1.68 fm) [28],
we find that the flucton density is 3 times that of 3He and
1.7 times that of the relatively dense 4He.
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