# A COMPLETE REDESIGN OF FRESHMEN ENGINEERING COURSE

Professor Ryan Munden, Electrical Engineering Professor Shanon Reckinger, Mechanical Engineering

Fairfield University's Center for Academic Excellence Collaborations for Empowerment and Learning Innovative Pedagogy & Course Redesign 12th Annual Summer Conference May 29th-31, 2013 | Fairfield University, CT

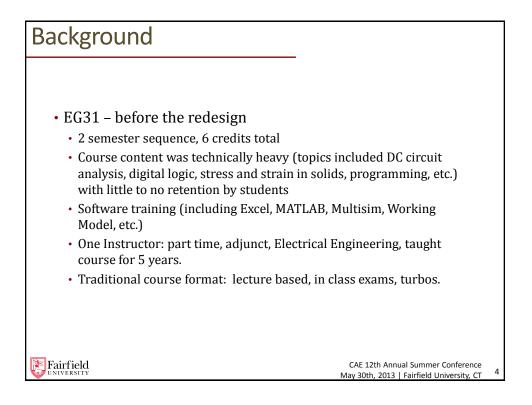
Fairfield

# **Motivation**

EG31 – Fundamentals of Engineering

- First engineering course for all undergraduate engineering majors (Mechanical, Electrical, Software, Computer)
- Freshmen and mostly traditional students (very few part-time, adult students)
- Cornerstone course
- Many students are declared "undecided engineering"
- · Some students are undecided, in general

How can we develop this course for maximum learning and make it most useful for the students?

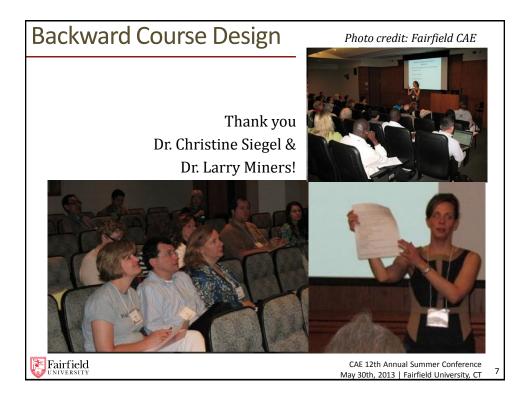



Fairfield

# Outline

- Background of EG31
- CAE's Summer Institute on Integrative Learning 2012
- EG31's Backward Design Process
  - Course Goals
  - Course Outcomes
  - Assessment
  - Curriculum
- Linking Course Goals
- Reflections on the Redesign

Fairfield




# Background

| Old EG31                                | New EG31                                                                      |
|-----------------------------------------|-------------------------------------------------------------------------------|
| 2 semester sequence, 6 credits          | 1 semester, 3 credits, no turbos!                                             |
| Content Technically Heavy               | No "Technical Content", links to math & physics                               |
| Software Training                       | No Software*                                                                  |
| 1 Instructor, adjunct                   | 2 Instructors, full time, multidisciplinary                                   |
| Mostly lecture based, traditional exams | Active learning, based off of education research, hands on, project oriented  |
| *this training now takes place in EG1   | 45, a new course taught by Professor Reckinger                                |
| Fairfield                               | CAE 12th Annual Summer Conference<br>May 30th, 2013   Fairfield University, C |

# Where it all began... 2012 CAE's Summer Institute on Integrative Learning! • Munden (EE), Reckinger (ME), and Yoo (SE) participated • Many ideas were implemented in redesign of EG31 • Learned about techniques for course design Photo credit: Fairfield CAE

6



- Course Goals
  - What will the students take away from the course 5+ years from now?
- Course Outcomes
  - What do we expect the students to learn?
- Assessment
  - How will we know the students have learned?
- Curriculum
  - Through what experiences will the students learn best?



8

• What will the students take away from the course 5+ years from now?

- Course Outcomes
  - What do we expect the students to learn?
- Assessment

Course Goals

- How will we know the students have learned?
- Curriculum
  - Through what experiences will the students learn best?

Fairfield



Course Goals

- What will the students take away from the course 5+ years from now?
- Course Outcomes
  - What do we expect the students to learn?
- Assessment
  - · How will we know the students have learned?
- Curriculum
  - Through what experiences will the students learn best?

Fairfield

CAE 12th Annual Summer Conference May 30th, 2013 | Fairfield University, CT 11

# **Course Outcomes**

What do we expect the students to learn?

- Understand the roles of engineers in different fields and different industries.
- Be familiar with the different engineering majors at Fairfield.
- Develop an awareness of modern technology and its use in the engineering field.
- Develop skills in:
  - Oral communication
  - Technical writing
  - Team work
  - Project and time management
  - Problem Solving
  - Engineering ethics & best practices

Fairfield

# **Course Outcomes**

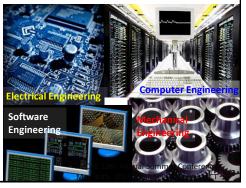
What do we expect the students to learn?

- Understand the roles of engineers in different fields and different industries. (I)
- Be familiar with the different engineering majors at Fairfield.
- Develop an awareness of modern technology and its use in the engineering field.
- Develop skills:
  - Oral communication
  - Technical writing
  - Team work

Fairfield

- Project and time management
- Problem Solving
- Engineering ethics & best practices




CAE 12th Annual Summer Conference May 30th, 2013 | Fairfield University, CT 13



### **Course Outcomes**

What do we expect the students to learn?

- Understand the roles of engineers in different fields and different industries.
- Be familiar with the different engineering majors at Fairfield.(I)
- Develop an awareness of modern technology and its use in the engineering field.
- Develop skills in:
  - Oral communication
  - Technical writing
  - Team work
  - Project and time management
  - Problem Solving
  - Engineering ethics & best practices



Fairfield

# **Course Outcomes**

What do we expect the students to learn?

- Understand the roles of engineers in different fields and different industries.
- Be familiar with the different engineering majors at Fairfield.
- Develop an awareness of modern technology and its use in the engineering field. (I)
- Develop skills in:
  - Oral communication
  - Technical writing
  - Team work

Fairfield

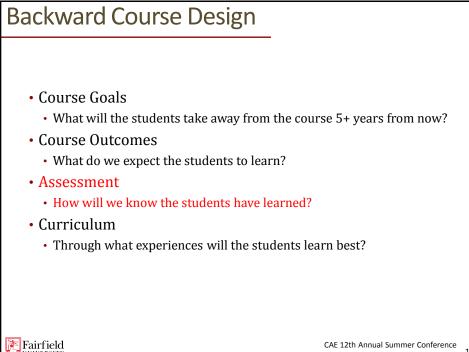
- Project and time management
- Problem Solving
- Engineering ethics & best practices





# **Course Outcomes**

What do we expect the students to learn?


- · Understand the roles of engineers in different fields and different industries.
- Be familiar with the different engineering majors at Fairfield.
- Develop an awareness of modern technology and its use in the engineering field.
- Develop skills in:

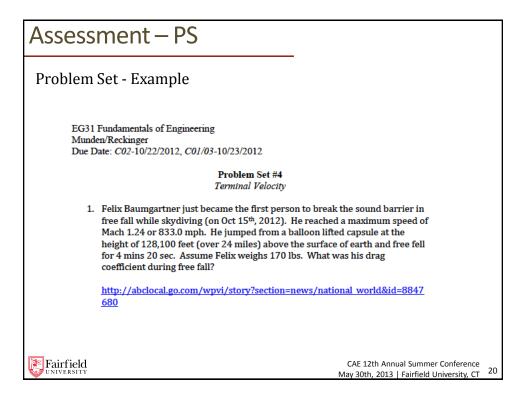
Fairfield

- Oral communication (III)
- Technical writing (III)
- Team work (II,III)
- Project and time management (III)
- Problem Solving (II)
- Engineering ethics & best practices (III)



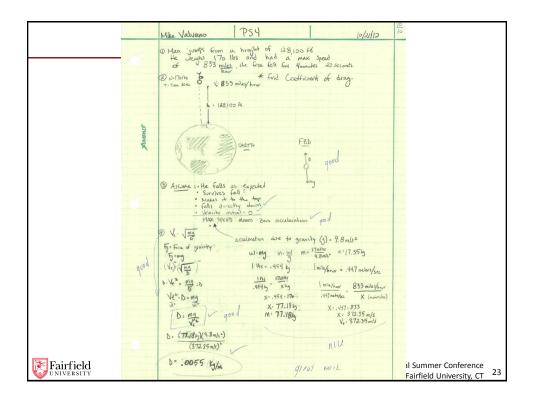
CAE 12th Annual Summer Conference 17 May 30th, 2013 | Fairfield University, CT

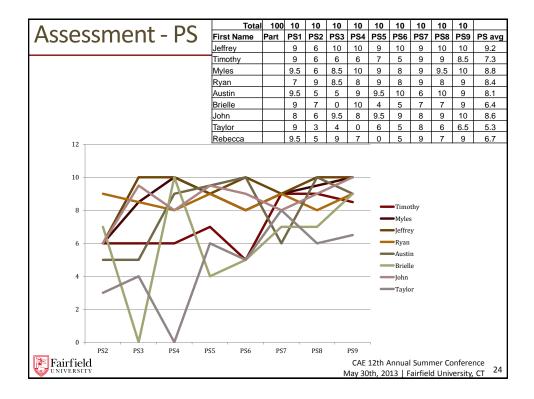



18 May 30th, 2013 | Fairfield University, CT

### Assessment

How will we know the students have learned? (code for: how did we grade them)


- Regular Assignments
  - Weekly problem set (PS) (CO8)
  - Weekly writing assignment (WA) (C01-5,9)
- Projects
  - Individual Technical Writing Piece (ITW) (C05)
  - Individual Technical Oral Presentation (ITP) (CO4)
  - Team Final Design Project (TDP) (CO6-7)

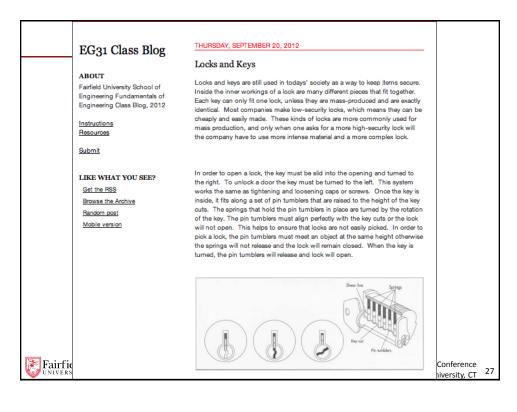

**Fairfield** 



Problem set #4 10 Anne Kennedy what are V=833mph= 3712:44m/5  $0 = 0 \text{ m/s}^2 \rightarrow \text{maximum velocity} = n0$  acceleration d = 128,100 ft = 39,044.88 m += 4 min 205= 2605 W= 170 10 = 77.11 kg h+ assume: sky diver is left = 1.823 m tan ?  $C_{d} = \frac{2 m q}{V^2} S_{A}^{2}$  (assume equation is correct) in  $5A = .007184 W^{+25} h^{-725}$  (assume equation is correct) no wind  $^{2}$  while A  $5A = .007184 W^{+425} h^{-725} W = mg$ Ca = 2mg A Ca: 2w . .007184 w.425 h.725 writh don't  $C_{d} = \frac{2(77.11)(2)}{(372.4 \text{ wh})^2} \cdot \frac{.007184(77.11.42)^{-42.5}(1.823.5)^{-72.5}}{2}$ habith Cd = 5.06 × 10-5 Fairfield Conference 21 iversity, CT

|            |        |                              | and so have a little                                                    |                                                                | 7/10           |                    |
|------------|--------|------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|----------------|--------------------|
|            |        | Ariel Mirarch                | 004.23,2022                                                             | E G-31                                                         | 110            |                    |
|            |        |                              |                                                                         |                                                                |                |                    |
|            |        | Problem Set 4                |                                                                         |                                                                |                |                    |
|            |        | 7 5 . 12                     | into because and count a                                                | an in the set the set of                                       |                |                    |
|            |        | In Free Par while Sterding 1 | Ye reached a maximum so                                                 | san to break the saind burrier<br>ced of \$33.0 Mph. Ite Junye | and -          |                    |
|            |        | the height of 1 2000 A       | , above the surface of ear                                              | th and Free fear For 4 mins                                    | and            |                    |
|            |        | 20 Sec. Assure he wer        | ighs 270 165. What was his o                                            | Ing coefficient during free to                                 | и?             |                    |
|            |        | 2 Prog Forec                 |                                                                         |                                                                |                |                    |
|            |        | S Img 905                    | 1                                                                       |                                                                |                |                    |
|            |        | TTT do                       | 0                                                                       |                                                                |                |                    |
|            |        | 5 tring                      |                                                                         |                                                                |                |                    |
|            |        |                              |                                                                         |                                                                |                |                    |
|            |        | Loa                          |                                                                         |                                                                |                |                    |
|            |        | 3. Assumptions:              |                                                                         |                                                                |                |                    |
|            |        | 200 2000 = 390               | 44 88 M =5                                                              | 170115-077 75-10                                               | ~              |                    |
|            |        | 833 milestra 2,340           | 0,580.22 mar VE = VTacum                                                | "                                                              | $(\lambda)$    |                    |
|            |        | time = 4 min                 | and 20 sec. MIS                                                         | notic                                                          | VE             |                    |
|            |        | V, is zero mph               | according at 9.8 m/s2                                                   | Abroughout the fail. "                                         | art.)          |                    |
|            |        | SUFFACE Area & Fricti        | by Arm his clothes have ,                                               | no affect on the drag cach                                     | sweather Note) |                    |
|            |        | Feilx's weight is equa       | 90 his Mass times the                                                   | construct on the drag coch                                     | mit not        |                    |
|            |        | 4. Physical Law Needed       | /:                                                                      |                                                                | true           |                    |
|            |        | W= Mg -0 270                 | Ibszm.a VI)                                                             |                                                                |                |                    |
|            |        | -                            |                                                                         |                                                                |                |                    |
|            |        | (At Max) =                   | <u>M-9</u>                                                              | 1                                                              |                |                    |
|            |        | Current V                    | V                                                                       | V V                                                            |                |                    |
|            |        | Drag Coefficient             | (D) = M.g/                                                              | Vyerminai ]                                                    |                |                    |
|            |        | 5                            | $(D) = m \cdot g /$                                                     |                                                                |                |                    |
|            |        | D=m.g/                       | 1/2                                                                     |                                                                |                |                    |
|            |        |                              |                                                                         | 1 L.                                                           |                |                    |
|            |        | Mg= 170 165                  | . ) itc'                                                                | why with va                                                    |                |                    |
|            |        | Vierament, 340, 580 M.       | Inr Unit                                                                | IN A L                                                         |                |                    |
|            |        | 15.55                        |                                                                         | 10 7 5                                                         |                |                    |
|            |        | 14 D= (270) ns/ (            | 2,340 580 m/hr)                                                         | W.K.                                                           |                |                    |
|            | - West | = 9 41                       | (1)<br>(2,340 580,00/hr) <sup>2</sup><br>(2,340 580,00/hr) <sup>2</sup> |                                                                |                |                    |
| Fairfield  |        | 1.45 E                       |                                                                         |                                                                |                | nmer Conference    |
| UNIVERSITY |        |                              |                                                                         |                                                                |                | eld University, CT |

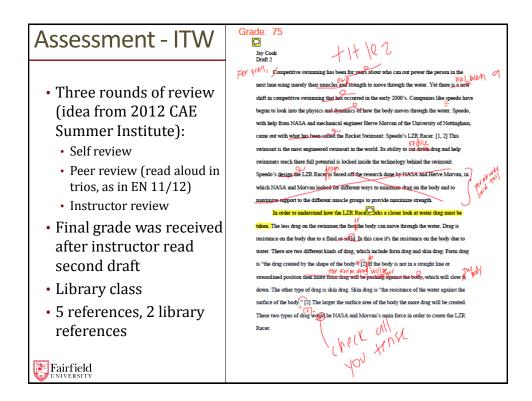




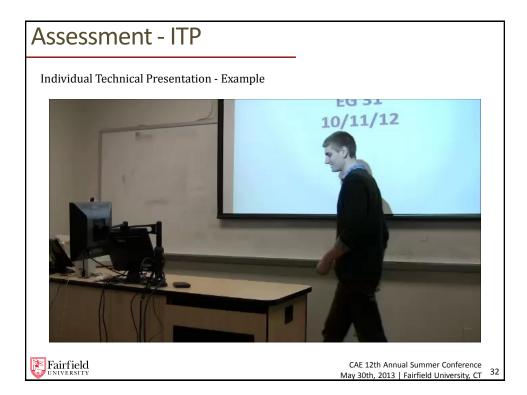

# Assessment – WA

- WA1: Interview an engineer and explain where they fit in to the field, role and industry discussed in class. (CO1)
- WA2: Explain how something works. (CO3)
- WA3: Tell about a time you learned the most or were most fascinated by a speaker. Explain why. (CO4)
- WA4: Reflective writing on what you learned about technical writing from your own writing or your peers. (CO5)
- WA5: Reflective writing on three things you could do to improve your presentation skills. (CO4)
- WA6: Review Popular Science article. (CO3)
- WA7: Find a photo that represents each Computer and Electrical Engineering and write 1-2 sentences about it. (CO2)
- WA8: Find a photo that represents each Mechanical, Automation and Software Engineering and write 1-2 sentences about it. (CO2)
- WA9: Reflect on the industry visits and the class field trip. (CO1)

#### Fairfield


|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                               |    |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----|
| EG31 Class Blog                                                                         | FRIDAY, SEPTEMBER 21, 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |    |
| 0                                                                                       | WA2 How a wind turbine works by Kevin Willson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |    |
| ABOUT<br>Fairfield University School of                                                 | How a wind turbine works                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |    |
| Engineering Fundamentals of<br>Engineering Class Blog, 2012                             | Finding alternate forms of renewable energy, or "green energy", is very hot<br>topic in many parts of the world today. With each passing year the fossil fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |    |
| Instructions<br>Resources                                                               | reserves are quickly diminishing. The use of wind turbines to produce wind<br>energy as a power source is a good alternative to non-renewable resources,<br>mainly fossil fuels. There are two types of wind turbines, horizontal axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |    |
| Submit                                                                                  | turbines and vertical axis turbines. Most horizontal axis turbines have three<br>blades. Most utility turbines need a wind speed of 10 mph or more to start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 |    |
| LIKE WHAT YOU SEE?<br>Get the RSS<br>Brows the Archive<br>Random post<br>Mobile version | turning the blades. The blades on a turbine are connected to a drive shaft,<br>which is connected to an electric generator. Once wind turns the blades, the<br>blades turn the drive shaft, which creates mechanical energy. This energy is<br>gathered in the electrical generator and transferred to electricity. This electricity is<br>then carried through wires and collected, given to the local power grid to be<br>used for energy. To make these turbines more efficient, the turbines have a<br>computer system that monitors wind speed and direction, and adjust the<br>blades accordingly. Small wind turbines will usually create around 100 kilowatts<br>of energy, while big turbine farms can crank out several megawatts of energy<br>which in-turn help energize many people in various towns and cities. |                                 |    |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |    |
|                                                                                         | Posted at 9:57 AM <u>Permalink ∞ 1 Comment</u><br>Tage: <u>WA2</u> submission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | er Conference<br>University, CT | 26 |






#### 14

| EG31                                                              | Class Blog                                                                                                               | FRIDAY, OCTOBER 26, 2012   |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| ABOUT<br>Fairleid<br>Engineer<br>Instructio<br>Resource<br>Submit | University School of<br>ng Fundamentais of<br>ng Class Biog, 2012<br>2015<br>88<br>HAT YOU SEE?<br>Its Archive<br>1.0051 | <text><text></text></text> |  |
|                                                                   |                                                                                                                          |                            |  |



| Ass        | essi                | mer                 | nt - I                | TP                          |                               |                                                     |        |          |              |    |
|------------|---------------------|---------------------|-----------------------|-----------------------------|-------------------------------|-----------------------------------------------------|--------|----------|--------------|----|
| • Pi<br>ai | resenta<br>nd refle | tions w<br>ct on tł | vere vide<br>neir owr | eo taped, so<br>1 presentat | o students coul<br>ion skills | ey wrote about<br>Id watch thems<br>structor review | selves | -        | iting        |    |
|            | Materials           |                     | unications            | Student Work                | Grade Book Tools              | Assessment Tools                                    | Setup  | lentor   |              |    |
|            |                     | gnments<br>ective   |                       | OWN SUMMARY                 |                               |                                                     |        |          |              | -  |
|            | Portf               | folios              | Reviewee Se           | ees: Summary Data, In       | dividual Reviewer Data        |                                                     |        | St       | now Comments |    |
|            | ີດ Test             |                     | Student Rev           | viewers                     |                               | Rubric                                              | Score  | Include  | 🗹 Display    |    |
|            |                     | 0,3                 | Blanca Aca-           | Tecuanhuehue                |                               |                                                     | 0.00   | ₫        | <b></b> ∠    |    |
|            | Blog                | Posts               | Jason Alder           | isio                        |                               | View Rubric                                         | 89.33  | 1        | <b>₫</b>     |    |
|            |                     |                     | Evan Apano            | vitch                       |                               | View Rubric                                         | 86.67  | ø        |              |    |
|            | Proje               | ects                | Christopher           | Calitri                     |                               |                                                     | 0.00   | Z        | <b>₫</b>     |    |
|            |                     |                     | William Carl          | ,                           |                               | View Rubric                                         | 84.00  | 2        | 2            |    |
|            |                     |                     | Jorge Chilui          | sa                          |                               |                                                     | 0.00   | <b>₫</b> | <b>₫</b>     |    |
|            |                     |                     | Jeffrey Cook          |                             |                               |                                                     | 0.00   | 2        | 2            |    |
|            |                     |                     | Timothy Des           |                             |                               |                                                     | 0.00   | 0        | 1            |    |
|            |                     |                     | Oliver Dumo           |                             |                               |                                                     | 0.00   | ✓        | 2            |    |
|            |                     |                     | Brandon Dw            |                             |                               | View Rubric                                         | 90.67  | 0        | 2            |    |
|            |                     |                     | Michael Ger           |                             |                               | View Rubric                                         | 88.00  | ✓        | <b></b> ∠    |    |
|            |                     |                     | Tayler Golds          |                             |                               | View Rubric                                         | 89.33  | 2        | 2            |    |
|            |                     |                     | Myles Golyn           |                             |                               |                                                     | 0.00   | ø        |              |    |
|            |                     |                     | Ryan Hirsch           |                             |                               |                                                     | 0.00   | 2        |              |    |
| 下 Fa       |                     |                     | Austin Hlibo          |                             |                               |                                                     | 0.00   | <b>I</b> | 2            |    |
| UNI UNI    |                     |                     | Nathan Hoe            | у                           |                               | View Rubric                                         | 90.67  | <b>I</b> |              | 31 |



# Assessment - TDP

#### **Design Goal:**

Teams must design a system that propels a single person (the "operator") across the entire length of the RecPlex swimming pool with a walking or running motion above water.

#### **Project/Competition Rules:**

1. All systems must fit in single regulation sized swimming lane.

2. Total project cost must not exceed \$100. However, no materials will be provided so it is encouraged that you find spare, unused, and recycled materials to work with.

3. If the operator falls into the water they must either: (a) get back up in that location unassisted or (b) return to the start and have their team help them remount.

4. Absolutely no cardboard or paper can be used in the design of the WOW system. Be considerate and do not use any materials that could potentially cause damage to pool drains.

5. The operator must be able to swim and we highly recommend that you wear a helmet.

Fairfield

CAE 12th Annual Summer Conference May 30th, 2013 | Fairfield University, CT 33

# YOUR TURN: What would YOU design?

#### **Design Goal:**

Teams must design a system that propels a single person (the "operator") across the entire length of the RecPlex swimming pool with a walking or running motion above water.

#### **Project/Competition Rules:**

1. All systems must fit in single regulation sized swimming lane.

2. Total project cost must not exceed \$100. However, no materials will be provided so it is encouraged that you find spare, unused, and recycled materials to work with.

3. If the operator falls into the water they must either: (a) get back up in that location unassisted or (b) return to the start and have their team help them remount.

4. Absolutely no cardboard or paper can be used in the design of the WOW system. Be considerate and do not use any materials that could potentially cause damage to pool drains.

5. The operator must be able to swim and we highly recommend that you wear a helmet.

Fairfield

# Assessment - TDP



Fairfield

CAE 12th Annual Summer Conference May 30th, 2013 | Fairfield University, CT 35

# Assessment – Outcomes Connection

|        |                         | Homework - Writi | ng Assignments |                |       | Homework - Prob | lem Sets       |        |                           |              |                            |              |              |
|--------|-------------------------|------------------|----------------|----------------|-------|-----------------|----------------|--------|---------------------------|--------------|----------------------------|--------------|--------------|
|        |                         | 1                | 3              | 9              |       | 8               |                | 3      | 3 5                       | 4            | 6.7.8                      |              |              |
| D      | Attendance - Attendance | Homework - WA1   | Homework - WA2 | Homework - WA9 | Grade | Homework - PS1  | Homework - PS9 | Grade  | Paper -<br>Individ<br>ual | Presentation | Project<br>- Final<br>Team | Calc Percent | Final Percer |
|        | 0.20                    | C                | 0              | 0              | 0.2   | C               |                | 0.     | 2 0.1                     | 0.1          | 0.2                        | 1            | N/A          |
| 103445 | 100                     | 100              | 100            | 80             | 97.78 | 75              | 9              | 5 89.4 | 100                       | 96.95        | 80                         | 93.14        | 93.          |
| 102439 | 100                     | 90               | 90             | 70             | 85.56 | 95              | 9              | 86.6   | 7 75                      | 87.96        | 90                         | 88.74        | 88.          |
| 20677  | 92                      | 100              | 0              | 100            | 66.67 | 100             | 9              | 91.1   | 1 85                      | 92.32        | 75                         | 82.69        | 82.          |
| 99446  | 96                      | C                | 100            | 80             | 83.33 | 95              | 8              | 79.4   | 4 90                      | 88.36        | 80                         | 85.59        | 85.          |
| 98522  | 96                      | 90               | 100            | 95             | 96.11 | 70              | 10             | 84.4   | 4 95                      | 88.38        | 70                         | 87.65        | 87.          |
| 100168 |                         | 80               | 0 0            | 60             | 76.67 | 90              | 9              | 78.8   | 9 75                      | 92.79        | 50                         | 74.89        | 74.          |
| 40467  |                         | C                |                |                |       |                 |                |        |                           |              | ) (                        |              |              |
| 106775 | 96                      | 90               | 80             | 80             | 84.44 | 90              | 10             | 92.2   | 2 80                      | 94.54        | 95                         | 90.99        | 90.          |
| 101637 | 96                      | 100              | 100            | 90             | 97.78 | 90              | 8              | 5 72.7 | 3 90                      | 90.27        | 100                        | 91.34        | 91.          |
| 40542  | 92                      | 100              | 80             | 0              | 47.78 | 70              |                | 34.4   | 4 85                      | 84.36        | 70                         | 65.78        | 65.          |
| 95822  | 100                     | C                | 0 0            | 20             | 41.11 | 60              |                | 23.3   | 3 80                      | 85           | 80                         | 65.39        | 65.          |
| 101935 |                         | 90               | 90             | 80             | 84.44 | 85              |                |        |                           |              |                            |              | 80.          |
| 98427  |                         | 100              |                |                |       | 95              | 9              | 87.2   | 2 95                      | 96.42        | 95                         | 92.43        | 92.          |
| 102865 | 100                     | 100              | 100            | 100            | 98.89 | 95              | 10             | 88.3   | 3 90                      | 94.99        | 80                         | 91.94        | 91.          |
| 95452  |                         | 70               |                |                |       |                 |                |        |                           |              |                            |              | 92.          |
| 97810  |                         | 90               |                |                | 87.78 |                 |                |        |                           |              |                            |              | 81.          |
| 82396  |                         | 70               |                |                | 72.22 |                 |                |        |                           |              |                            |              | 7            |
| 109757 |                         | 100              |                |                | 98.89 | 90              | 9              | 0 64.4 | 1 90                      | 88.07        | 70                         |              | 83.          |
| 99589  |                         | 90               |                |                | 81.11 | 80              |                |        |                           |              |                            |              | 9            |
| 99664  |                         | 100              |                |                | 56.67 | 90              |                |        |                           |              |                            |              | 75.          |
| 104564 | 92                      | 100              | 90             | 60             | 65.56 | 85              | 8              | 5 83.3 | 3 100                     | 88.83        | 90                         | 85.06        | 85.          |

37

# Assessment – Outcomes Connection

#### To provide "graded" course outcomes

|     | rse Outcom<br>inderneath | ne Calculation:<br>1) | s (ABET |       |     |       |     |        |                           |     |
|-----|--------------------------|-----------------------|---------|-------|-----|-------|-----|--------|---------------------------|-----|
|     | 2                        | 7                     | 6       | 8     | 9   | 4     | 54, | 5      | 1                         | 3   |
|     | n/a                      | с                     | d       | е     | f   | g     | g   | g      | h                         | i,j |
|     | 100                      | 80                    | 80      | 89.44 | 80  | 96.95 | 100 | 98.475 | 100.00                    | 100 |
|     | 90                       | 90                    | 90      | 86.67 | 70  | 87.96 | 75  | 81.48  | 85.00                     | 90  |
|     | 100                      | 75                    | 75      | 91.11 | 100 | 92.32 | 85  | 88.66  | 50.00                     | 50  |
|     | 100                      | 80                    | 80      | 79.44 | 80  | 88.36 | 90  | 89.18  | 45.00                     | 95  |
|     | 100                      | 70                    | 70      | 84.44 | 95  | 88.38 | 95  | 91.69  | 90.00                     | 100 |
|     | 90                       | 50                    | 50      | 78.89 | 60  | 92.79 | 75  | 83.895 | 85.00                     | 45  |
|     | 0                        | 0                     | 0       | 0     | 0   | 0     | 0   | 0      | 0.00                      | 0   |
|     | 90                       | 95                    | 95      | 92.22 | 80  | 94.54 | 80  | 87.27  | 90.00                     | 80  |
|     | 100                      | 100                   | 100     | 72.78 | 90  | 90.27 | 90  | 90.135 | 100.00                    | 100 |
|     | 0                        | 70                    | 70      | 34.44 | 0   | 84.36 | 85  | 84.68  | 50.00                     | 40  |
|     | 0                        | 80                    | 80      | 23.33 | 20  | 85    | 80  | 82.5   | 40.00                     | 45  |
|     | 90                       | 65                    | 65      | 66.11 | 80  | 93.03 | 85  | 89.015 | 85.00                     | 85  |
|     | 100                      | 95                    | 95      | 87.22 | 90  | 96.42 | 95  | 95.71  | 95.00                     | 95  |
|     | 100                      | 80                    | 80      | 88.33 | 100 | 94.99 | 90  | 92.495 | 100.00                    | 100 |
|     | 100                      | 95                    | 95      | 83.89 | 100 | 90.15 | 90  | 90.075 | 85.00                     | 95  |
|     | 90                       | 70                    | 70      | 81.11 | 70  | 89.83 | 75  | 82.415 | 90.00                     | 90  |
|     | 90                       | 50                    | 50      | 85    | 80  | 92.53 | 100 | 96.265 | 75.00                     | 45  |
|     | 100                      | 70                    | 70      | 64.44 | 90  | 88.07 | 90  | 89.035 | 100.00                    | 100 |
|     | 0                        | 100                   | 100     | 84.44 | 70  | 96.85 | 95  | 95.925 | 95.00                     | 100 |
|     | 0                        | 85                    | 85      | 52.78 | 80  | 89.85 | 90  | 89.925 | 90.00                     | 40  |
|     | 90                       | 90                    | 90      | 83.33 | 60  | 88.83 | 100 | 94.415 | 50.00                     | 45  |
| eld |                          |                       |         |       |     |       |     |        | 2th Annual<br>h, 2013   F |     |

# Assessment – Outcomes Connection

| Whic    | ch we  | ere ı | ultima | ately | conve | rted ir | nto AF | BET o | ut | come    | rubric scores                                                                                                                                          |            |
|---------|--------|-------|--------|-------|-------|---------|--------|-------|----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Outcome |        |       |        |       |       |         |        |       |    |         | Outcome Rubric Key                                                                                                                                     |            |
| Rubric  |        |       |        |       |       |         |        |       |    |         | Score Rubric Score Rubric                                                                                                                              |            |
| Score   |        |       |        |       |       |         |        |       |    |         | c,d,e,f,g h,i,j                                                                                                                                        |            |
| 00010   |        |       |        |       |       |         |        |       |    |         | 95 5 85 4                                                                                                                                              |            |
| с       | d      |       | е      | f     | g     | h       | i      | i     |    | Average | 85 4 70 3                                                                                                                                              |            |
| č       | u      |       | c      | •     | 8     |         | •      | ,     |    | red =   | 70 3 0 2                                                                                                                                               |            |
|         |        |       |        |       |       |         |        |       |    | tudent  | 60 2                                                                                                                                                   |            |
|         |        |       |        |       |       |         |        |       |    | it risk | 0 1                                                                                                                                                    |            |
|         |        |       |        |       | _     |         |        |       |    |         |                                                                                                                                                        |            |
| 3       |        | 3     | 4      | 3     | 5     | 4       | 4      |       | 4  | 3.75    | Outcomes c,d,e,f,g were graded objectively, so the score translates                                                                                    |            |
| 4       |        | 4     | 4      | 3     | 3     | 4       | 4      |       | 4  | 3.75    | more accurately into the rubric value. For outcomes h,I,j they wer                                                                                     |            |
| 3       |        | 3     | 5      | 5     | 4     | 2       | 2      |       | 2  | 3.25    | only measured by completion of the writing assignment, so I only                                                                                       |            |
| 3       |        | 3     | 3      | 3     | 4     | 2       | 4      |       | 4  | 3.25    | rubric values between 2-4. Any of these can be varied based on in<br>perception of student performance on an in class, unevaluated act                 |            |
| 3       |        | 3     | 4      | 5     | 4     | 4       | 4      |       | 4  | 3.875   | perception of student performance on an in class, unevaluated act                                                                                      | ivity.     |
| 1       | -      | 1     | 3      | 2     | 3     | 4       | 2      |       | 2  | 2.25    |                                                                                                                                                        |            |
| 1       | -      | 1     | 1      | 1     | 1     | 1       | 1      |       | 1  | 1       | (a) an ability to apply knowledge of mathematics, science, and en                                                                                      | gineerin   |
| 5       |        | 5     | 5      | 3     | 4     | 4       | 3      |       | 3  | 4       | (b) an ability to design and conduct experiments, as well as to ana                                                                                    |            |
| 5       |        | 5     | 3      | 4     | 4     | 4       | 4      |       | 4  | 4.125   | interpret data                                                                                                                                         |            |
| 3       |        | 3     | 1      | 1     | 3     | 2       | 2      |       | 2  | 2.125   | (c) an ability to design a system, component, or process to meet of                                                                                    |            |
| 3       |        | 3     | 1      | 1     | 3     | 2       | 2      |       | 2  | 2.125   | needs within realistic constraints such as economic, environmenta                                                                                      |            |
| 2       | 2      | 2     | 2      | 3     | 4     | 4       | 4      |       | 4  | 3.125   | political, ethical, health and safety, manufacturability, and sustaina                                                                                 | ability    |
| 5       | 5      | 5     | 4      | 4     | 5     | 4       | 4      |       | 4  | 4.375   | <ul> <li>(d) an ability to function on multidisciplinary teams</li> <li>(e) an ability to identify, formulate, and solve engineering proble</li> </ul> |            |
| 3       | 3      | 3     | 4      | 5     | 4     | 4       | 4      |       | 4  | 3.875   | <ul> <li>(f) an understanding of professional and ethical responsibility</li> </ul>                                                                    | 1115       |
| 5       | 5      | 5     | 4      | 5     | 4     | 4       | 4      |       | 4  | 4.375   | (g) an ability to communicate effectively                                                                                                              |            |
| 3       | 3      | 3     | 4      | 3     | 3     | 4       | 4      |       | 4  | 3.5     | (h) the broad education necessary to understand the impact of                                                                                          |            |
| 1       | L      | 1     | 4      | 3     | 5     | 3       | 2      |       | 2  | 2.625   | engineering solutions in a global, economic, environmental, and so                                                                                     | cietal     |
| 3       | 3      | 3     | 2      | 4     | 4     | 4       | 4      |       | 4  | 3.5     | context                                                                                                                                                |            |
| 5       | 5      | 5     | 4      | 3     | 5     | 4       | 4      |       | 4  | 4.25    | <ul> <li>a recognition of the need for, and an ability to engage in life-</li> </ul>                                                                   | long       |
| 4       | 1      | 4     | 1      | 3     | 4     | 4       | 2      |       | 2  | 3       | learning                                                                                                                                               |            |
| 4       | 1      | 4     | 4      | 2     | 4     | 2       | 2      |       | 2  | 3       | (j) a knowledge of contemporary issues                                                                                                                 |            |
|         |        |       |        |       |       |         |        |       |    |         | <ul> <li>(k) an ability to use the techniques, skills, and modern engineerin<br/>necessary for engineering practice.</li> </ul>                        | ig tools   |
|         | airfie |       |        |       |       |         |        |       |    |         | CAE 12th Annual Summer Conference<br>May 30th, 2013   Fairfield University, C                                                                          | - <u> </u> |

- Course Goals
  - What will the students take away from the course 5+ years from now?
- Course Outcomes
  - What do we expect the students to learn?
- Assessment
  - · How will we know the students have learned?
- Curriculum
  - Through what experiences will the students learn best?

Fairfield

Fairfield

CAE 12th Annual Summer Conference May 30th, 2013 | Fairfield University, CT 39

# Curriculum – In Class Design Projects

- · Hands on, Interactive, In-class design projects
  - Design a method for transferring radioactive golf balls from one location to another
  - Design a prosthetic leg
  - Program an arduino to turn on a light



# <section-header> Curriculum – Team Building Fun, teamwork, creativity activities Estimate the height of the Engineering building using only a mirror, a pencil, and a piece of paper "Cross the river" with only a few supplies Brainstorming activities

# <section-header> Curriculum – Communication Skills In-class activities to improve listening, writing, reading, and speaking skills One-minute technical speeches Writing instructions for using "technically challenging" devices (iPods, toaster ovens, microwave, hair dryer, etc.) Instructor reads technical article out loud, followed by clicker quiz to see if anyone was listening. Blind Building Witing instructions

# Curriculum – Professional Engineering

- · Various professional engineering activities
  - Mindmap of engineering industries, fields, and roles (idea from CAE Summer Institute 2012)
  - Professional Engineers gave presentations to students from Covidien, ASML, and Yale ROTC
  - Optional field trip to Sikorsky Aircraft for tour
  - Class visit from career center, resume writing, engineering ethics discussion, case studies from real engineers solving problems, intro to project management.



# YOUR TURN: Radioactive Golf Balls

• **Objective**: Using the supplies provided, design a device to see who can transfer 5 golf balls from one bag to the other in the shortest amount of time.

#### • Rules:

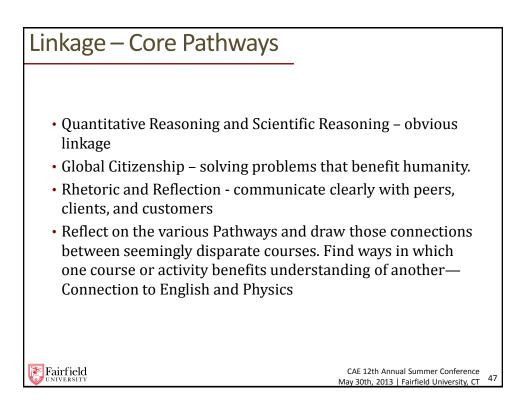
- The teams may alter the supplies in any way necessary;
- The golf balls must be moved one at a time;
- No part of a person's body or clothing may touch the golf balls. The balls must stay at least 3 inches away from any body part-notably the hand.
- If anyone touches a ball or if a ball gets dropped, there is a contamination leak! A member of the team must return the contaminated ball to bag #1;
- This is a speed competition! The team whose device successfully completes the task in the shortest amount of time wins.

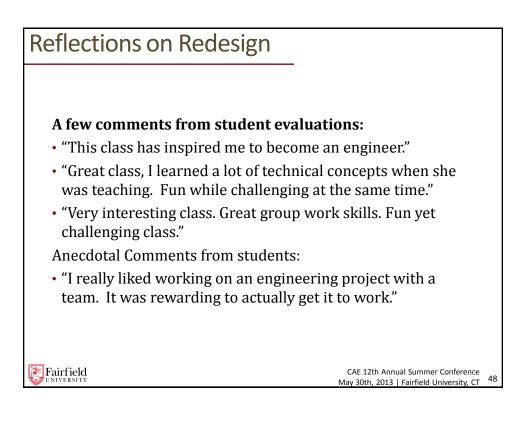
Fairfield

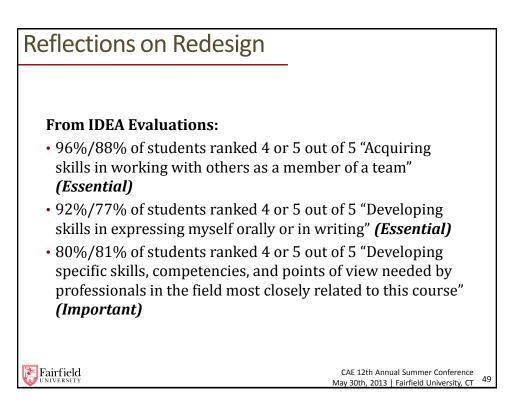
| Linking Cours                       | se Outcomes to                                     |        |    |
|-------------------------------------|----------------------------------------------------|--------|----|
|                                     |                                                    |        |    |
| Course Goals                        |                                                    |        |    |
|                                     | Board for Engineering and Technology               | (ABET) |    |
| Student Outcom                      | mes                                                |        |    |
| <ul> <li>Fairfield Unive</li> </ul> | rsity's Core Pathways                              |        |    |
|                                     | Fairfield's 6 Core Pathways                        |        |    |
|                                     | ▶ Engaging Traditions                              |        |    |
|                                     | Creative and Aesthetic Engagement                  |        |    |
|                                     | ≻ Global Citizenship                               |        |    |
|                                     | Rhetoric and Reflection     Quantitative Reasoning |        |    |
|                                     | Scientific Reasoning                               |        |    |
|                                     |                                                    |        |    |
| UNIVERSITY                          | CAE 12th Annual Sur<br>May 30th, 2013   Fairfi     |        | 45 |

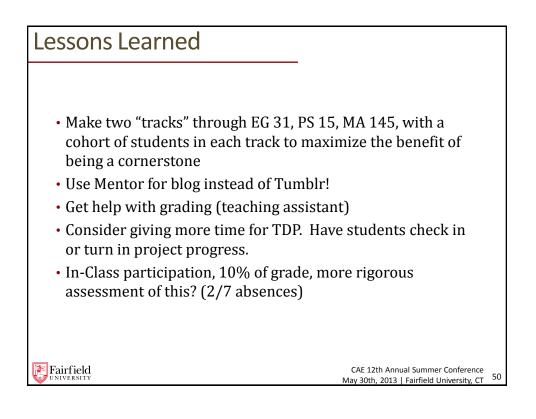
# Linkage – Goals/Outcomes & ABET

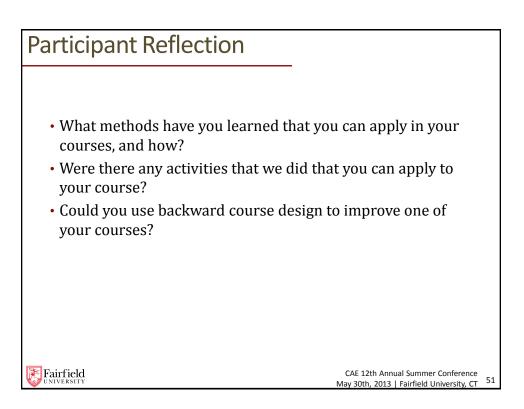
#### **Course Goals**


- I. Motivate learning of, and create a passion for, engineering.
- II. Develop an engineering mindset, problem solving skills, and critical thinking. III. Develop engineering professionalism.


#### **Course Outcomes**


- 1. Understand the roles of engineers in different fields and different industries in a global, economic, environmental, and societal context. (h)  $\left[ I \right]$
- 2. Be familiar with the different engineering majors at Fairfield. [I]
- 3. Develop an awareness of modern technology and its use in the engineering field. (i, j)  $\left[I\right]$
- 4. Demonstrate effective oral communication about technical content. (g) [III]
- 5. Demonstrate effective technical writing. (g) [III]
- 6. Be able to work in interdisciplinary teams. (d) [II,III] 7. Be familiar with project and time management. (d)
- 8. Be able to identify, formulate and solve engineering problems. (e) [II]
- 9. Develop an awareness of best practices and ethics in engineering and their use by professionals. (f) [III]


#### ABET Outcomes


- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand
- the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues











| Thank you! |                                                                                   |
|------------|-----------------------------------------------------------------------------------|
|            |                                                                                   |
|            |                                                                                   |
|            |                                                                                   |
|            |                                                                                   |
|            |                                                                                   |
|            |                                                                                   |
|            |                                                                                   |
|            | CAE 12th Annual Summer Conference<br>May 30th, 2013   Fairfield University, CT 52 |