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A family of pseudo-Anosov maps

Mark F. Demers∗ Maciej P. Wojtkowski†

June 11, 2009

Abstract

We study a family of area-preserving maps of the 2-torus and show that they are
pseudo-Anosov. We present a method to construct finite Markov partitions for this
family which utilizes their common symmetries. Through these partitions we show
explicitly that each map is a tower over a first return map, intimately linked to a toral
automorphism. This enables us to calculate directly some dimensional characteristics
of the dynamics.

1 Introduction

Let us consider the following class of area preserving maps of the torus H : T2 → T2

H

[
x
y

]
=

[
x + y + g(x)

y + g(x)

]

where (x, y) are mod 1 coordinates on T2, and g(x) is a continuous periodic function with
period 1.

This map can also be considered on the cylinder T1×R. If the map has an invariant curve
of the form y = ϕ(x) for some periodic function ϕ(x) then by necessity

∫ 1

0
g(x)dx = 0. For

g(x) = K sin 2πx we obtain the Chirikov-Taylor standard map. For g(x) = K(|x|− 1
4
),−1

2
≤

x ≤ 1
2

we get its piecewise linear version studied in [W1, W2, Bu]. In particular it was
shown in [W1] that for K = 2, i.e., for g(x) = 2|x| − 1

2
, outside of an invariant parallelogram

the map is nonuniformly hyperbolic (and mixing [LW]). The stable and unstable leaves are
piecewise linear; however, they are well-defined only almost everywhere and their direction
varies only measurably. Cerbelli and Giona [CG] discovered that adding an upward shift of
1
2
, i.e., g(x) = 2|x| for −1

2
≤ x ≤ 1

2
, makes the map hyperbolic everywhere, and moreover
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the directions of stable and unstable leaves become piecewise constant. For this choice of g,
MacKay [M] provided an extensive mathematical analysis of the map, showing in particular
that the map is pseudo-Anosov, and constructing for it a geometric Markov partition.

In this paper we include the Cerbelli-Giona map in an infinite discrete family Hk : T2 →
T2, k ∈ Z, |k| ≥ 2, defined by

Hk

[
x
y

]
=

[
(k − 1)x + y + gk(x)
(k − 2)x + y + gk(x)

]

where gk(x) is a continuous periodic function with period 1, gk(x) = k|x|, −1
2
≤ x ≤ 1

2
.

We show that the maps share many properties and construct a symmetric Markov parti-
tion for each member of the family (Sections 2 and 3). In Section 4, we show explicitly how
the maps can be viewed as towers over Markov return maps, which in turn generate Markov
processes identical to those induced by a corresponding family of toral automorphisms. This
structure allows us to calculate some dimensional characteristics of the dynamics for all val-
ues of k in a simpler way compared with the calculations in [M] for k = 2. Namely, we
consider the level sets of the positive Lyapunov exponent. Their Hausdorff dimension is an
analytic function for which we obtain a fairly simple description. Since our system is piece-
wise linear and it has a Markov partition, we can use for that purpose the classical theorem
of Billingsley [B].

2 The family and its symmetries

There is another way to represent the map H . Let us make the following change of variables
u = x − y, v = x. In these variables the map H becomes

T

[
u
v

]
=

[
v

−u + G(v)

]

with G(v) = 2v + g(v). It is straightforward to check that T defines an area-preserving
homeomorphism of the torus for any circle map G, G(v) = kv + g(v) for an integer k and a
periodic function g(v).

Let us consider the involution S(u, v) = (v, u). The reflection S satisfies

S ◦ T = T−1 ◦ S,

i.e., the map T is reversible with respect to S. The advantage of this representation of the
map comes from the fact that this symmetry is “skewed” in the original coordinates, and
hence less visible.

We also introduce another involution C(u, v) =
(

1
2
− u, 1

2
− v

)
. The map C is the rotation

by π around the point
(

1
4
, 1

4

)
, as viewed on the plane. On the torus the map C has four fixed

points at
(
±1

4
,±1

4

)
, and hence it can be considered equally well as the rotation by π around

any of them. The map T has additional symmetry with respect to C, namely

C ◦ T = T ◦ C, (1)

provided that the function G satisfies

G(1
2
− v) = −G(v), mod 1. (2)
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2.1 A 1-parameter family of maps

The family of maps T = Tk we shall study in this paper is defined by choosing Gk(v) =
kv + g(v) where k is allowed to assume any integer value k, |k| ≥ 2, and g(v) is the periodic
function g(v) = k|v|, −1

2
≤ v ≤ 1

2
, i.e,

G(v) = Gk(v) =

{
0 for − 1

2
≤ v ≤ 0

2kv for 0 ≤ v ≤ 1
2

.

Such piecewise linear maps for k = 0,±1 were studied in [CW]. For k = 2 we get the
Cerbelli-Giona map, [CG]. Our functions Gk do satisfy (2) so that the maps Tk enjoy the
self-symmetry given by (1). In (x, y) coordinates, the mappings Tk are equal to the mappings
Hk from the introduction.

We use the square [−.5, .5]× [−.5, .5] as our fundamental domain for T2 and partition it
into quadrants using the coordinate axes. We use the numbering of quadrants Q4, Q1, Q2, Q3
starting with the positive quadrant and progressing clockwise about the origin. The reason
for this numbering scheme will become clear once we define our Markov partitions.

For v < 0, the map T is clockwise rotation by π/2 about the origin, i.e., T (u, v) = (v,−u).
So Q1 and Q2 are mapped into Q2 and Q3 respectively. Moreover Q1 is mapped under T 2

into Q3 so that T 2 there corresponds to clockwise rotation by π.
For v > 0, the map T = Tk is the same clockwise rotation by π/2 followed by a vertical

shear

Tk

[
u
v

]
= Ak

[
u
v

]
where Ak =

[
0 1

−1 2k

]
=

[
1 0

2k 1

] [
0 1

−1 0

]

So the squares Q3 and Q4 are mapped onto the union of Q4 and Q1. The linear map is
hyperbolic there since det(Ak) = 1 and tr(Ak) = 2k and we have the restriction |k| ≥ 2. The
eigenvalues of Ak are λk and λ−1

k , where |λk| = |k| +
√

k2 − 1 > 1 and sign(λk) = sign(k).
For each k, the map is clearly continuous, piecewise linear and preserves Lebesgue mea-

sure. From these considerations, one easily computes that the positive Lyapunov exponent
along an orbit is equal to s log |λk| where s is the frequency of visits to Q3 ∪ Q4. Once we
establish the ergodicity of T , we get immediately that s = 1

2
Lebesgue-almost-everywhere.

Although the maps Tk and T−k are not topologically conjugate (as will be explained in
Section 3.2), they are related in the following way. Let D(u, v) =

(
1
2
− u, v

)
and E(u, v) =(

u, 1
2
− v

)
be the reflections across the vertical line u = 1/4 and the horizontal line v = 1/4,

respectively. We have that D ◦E = E ◦D = C. The relation between the maps Tk and T−k

is given by the following

D ◦ Tk ◦ D = E ◦ Tk ◦ E = C ◦ T−k. (3)

Hence although the maps Tk and T−k are not topologically conjugate, their factors by the
symmetry C are. This fact will explain the symmetric connection between the Markov
partitions for the maps Tk and T−k.
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3 Dynamical Properties

In this section we explore some of the dynamical properties of the maps Tk, |k| ≥ 2, by
constructing finite Markov partitions and analyzing the associated symbolic dynamics. As
a by-product, we establish that the maps in this family are pseudo-Anosov.

3.1 Invariant foliations

We use the stable and unstable eigenvectors of the matrix Ak to define two invariant piecewise
linear foliations F+ and F− for T = Tk. Note that in view of the S-reversibility of the map
T , and hence also of the linear map Ak, the stable and unstable eigenvectors are exchanged
by the reflection S.

We define the foliation F− outside of the square Q2 to be comprised of segments parallel
to the unstable eigenvector of Ak, extended until they intersect the boundary of Q2. Inside
of the square Q2, we define F− to be the segments perpendicular to the unstable eigenvector
of Ak. Clearly F− is invariant on the finite orbits which do not enter Q2. The orbits that
enter Q1 are rotated clockwise by π/2 and enter Q2. They then immediately leave Q2 via
the same rotation by π/2, which gives us the invariance of the foliation.

Similarly, we define the stable foliation F+ by segments, respectively, parallel outside Q2
and perpendicular inside Q2 to the stable eigenvector of Ak. The stable foliation F+ can
also be obtained from the unstable foliation F− by the reflection map S, as should be the
case in view of the S-reversibility of the map T . These foliations will allow us to establish
that the maps are pseudo-Anosov, as was shown by MacKay, [M], for the case k = 2.

We postpone the discussion of the transverse measures required in the definition of
pseudo-Anosov maps until we have constructed the Markov partitions.

3.2 Nature of the singularities

The four corners of Q2 are singularity points for T , for each value of k. The points (0, 0) and
(−1/2,−1/2) are fixed points while (−1/2, 0) and (0,−1/2) make an orbit of period two.

We recall the definition of an n-prong singularity. An isolated singularity p of T is
called an n-prong singularity, n = 1, 3, 4, . . . , if the local stable and unstable leaves at p are
homeomorphic to the curves Re(zn/2) = const and Im(zn/2) = const respectively near z = 0
in C. Note that n = 2 is not included.

From our definition of the stable and unstable leaves, it follows that the four points
mentioned above are singularity points for T . For k ≥ 2, the two fixed points are 1-prong
singularities and the two points of period two are 3-prong singularities. For k ≤ −2, the
nature of the singularities reverses: the two fixed points are 3-prong singularities and the two
points of period two are 1-prong singularities. Since the type of singularity is a topological
invariant we can see that the maps for k and −k cannot be topologically conjugate.

There are other fixed points for T which are not singular. In fact, the number of fixed
points for T increases with |k|. By symmetry, fixed points lie on the line v = u and so are
easy to find. There are |k| + 2 fixed points for k ≤ −2, and k fixed points for k ≥ 2. This
again implies that the maps for opposite values of k are not topologically conjugate.
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3.3 The Markov partition

In [M], a Markov partition with 6 elements was constructed for the map H conjugate to
T2. This was further refined in [G] where it was shown that in fact H admits a 4 element
partition. Our Markov partition for Tk also has 4 elements, but it is not generating and is
not a generalization of the partitions used in [M, G]. Its advantage lies in its symmetry and
universal applicability for all values of k.

The boundaries of our partition elements consist entirely of pieces of the unstable mani-
folds of the 1-prong singularities and stable manifolds of the 3-prong singularities, which are
either fixed points or points of period 2 (depending on the sign of k). This is the basis for
the Markov property, just as in the case of Markov partitions for hyperbolic 2-dimensional
toral automorphisms, [KH].

We will denote the elements of the partition P = Pk by P1, P2, P3, P4, where the num-
bering is chosen in such a way that P2 and P3 cover mostly (but not exactly) Q2 and Q3
respectively.

To define P3 we extend the stable leaves of the two 3-prong singularities, which lie outside
Q2, until their first intersection with the unstable leaves of the 1-prong singularities. The
set P3 is the parallelogram bounded by the four segments and lying mainly in Q3.

We have the symmetry C(P3) = P3. It is a simple geometric fact that independent of the
value of k the area of P3 is the same as the area of Q3, i.e., it is equal to 1/4. This follows
from the fact that the stable and unstable directions are symmetric under the reflection S.

We now define P2 = T−1(P3) and P4 = T (P3). The set P1 is the complement of the union
P2 ∪ P3 ∪ P4 (more exactly the closure of the complement). Since T is area-preserving, by
construction all the elements of our partition have the same area (equal to 1/4). For clarity,
we include figures of the Markov partition and its image for k = −2 in Figure 1.

Notice that each of the four pieces of the partition P is centered at one of the fixed points
of C and enjoys the same symmetry C(Pi) = Pi.

To see that P is in fact a Markov partition for T , first consider the following description
of its boundary.

(a) The unstable boundaries of the four elements lie entirely on segments of the unstable
leaves of the two 1-prong singularities. These segments can be described as follows.
The unstable leaf is extended until it crosses the boundary of Q2. It stops at its
first intersection inside Q2 with the stable manifold of one of the 3-prong singulari-
ties. Incidentally these segments constitute the complete unstable boundaries of the
“longest” element P1. At the 1-prong singularities the boundary of P1 has a “fold”
which we prefer to consider as cut open.

(b) The stable boundaries of the four elements lie entirely on segments of the stable leaves
of the 3-prong singularities. These segments are obtained by extending the stable
leaves until their first intersection outside of Q2 with the unstable manifold of the
1-prong singularities. In this case all of the stable boundaries are contained in the
stable boundaries of P2 and P3.

Remark 3.1. Although Figure 1 shows P for k = −2, the structure of P remains essentially
the same for each value of k. The modifications for other values of k are as follows.

As |k| increases, so does |λk| and the unstable leaves of Ak outside of Q2 become close
to vertical and the stable leaves become close to horizontal. Hence for large |k|, P3 almost

5



(a)

3

2

4

12

3 4 3

21

(b)

4’

1’

3’

4’ 4’

1’

3’ 2’

1’

4’

1’

4’

1’

3’

3’ 2’ 3’

1’ 1’

4’ 4’

2’ 3’

1’

4’

1’

1’

Figure 1: (a) A 4 element Markov partition for k = −2 and (b) its image.

(a) The partition elements follow the numbering described above so that T (3) = 4,
T (2) = 3 and element 1 is the complement of the first three. The dotted square represents
the boundary of Q2 where F+ and F− change direction by π/2. Its corners are the 4
singularity points and the emphasized dot represents the origin.
(b) The image of each element j is labeled j′.
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coincides with the square Q3. The slopes of the stable and unstable leaves are positive for
k ≥ 2 and negative for k ≤ −2.

P4 and P1 become longer as |k| increases so that P4 runs past |k| copies of the square Q2
while P1 runs past |k| + 1 copies of Q2. The images of P1 ∩ Q4 and P4 ∩ Q4 are expanded
by a factor of |λk| so that the number of intersections with Q2 increases linearly with |k|.

We recall the two defining features of a Markov partition in two dimensions: (1) Each
element of P has a local product structure: the local stable and unstable manifolds of any
two points in a given element have a unique point of intersection in that element; (2) The
boundary of the partition is a union of stable and unstable leaves, denoted ∂P+ and ∂P−

respectively, satisfying: T (∂P+) ⊂ ∂P+ and T−1(∂P−) ⊂ ∂P−.
For our partition, the first condition follows immediately from the fact that the boundary

of each element of P has four “sides,” an alternating arrangement of two stable and two
unstable curves. The second condition is also fairly straight forward. For k ≥ 2, we use the
unstable manifolds of the fixed points for ∂P− so it is automatic that T−1(∂P−) ⊂ ∂P−.
For k ≤ −2, we use the unstable manifolds of the points of period two so that one unstable
segment is mapped into the other by T−1. But since they begin with comparable lengths
and each shrinks by a factor of λ−1, they do map strictly inside one another. Similar
considerations show that the stable manifolds of the 3-prong singularities map inside one
another under the action of T .

A second way to check that P is Markov is to use the fact that T (P3) = P4 and T (P2) =
P3. So the F+ (stable) boundaries of P2 and P3 automatically satisfy requirement (2) for a
Markov partition. But the F+ boundaries of P1 and P4 are contained in those of P2 and P3 by
(b) above so there is nothing left to check for ∂P+. For ∂P−, the fact that T−1(P3) = P2 and
T−1(P4) = P3 implies that the F− (unstable) boundaries of P3 and P4 satisfy requirement
(2). The only part of ∂P− left to check are two short unstable segments coming out of
the 1-prong singularities before they intersect one of the stable sides of P3. Since these two
segments have the same length (by symmetry) and are each contracted by a factor of λ−1

in one application of T−1, they map strictly inside one another if k ≤ −2 and strictly inside
themselves if k ≥ 2.

The partition P also enjoys the following symmetry. Recall that the nature of the 1 and
3-prong singularities is reversed when we switch from positive to negative k. Thus if we
follow the change in 1 and 3-prong singularities and switch the roles of stable and unstable
manifolds in our partition for Tk, we get the corresponding partition for T−k.

To be precise, once the Markov partition Pk = {P1, P2, P3, P4} for a given value of k
is constructed, we obtain the Markov partition of the map for the opposite value −k by
applying the reflection D (or E), i.e, P−k = {D(P1), D(P2), D(P3), D(P4)}. The Markov
property of one follows from the Markov property of the other using the symmetries (1) and
(3). Indeed D takes stable leaves of T−k into stable leaves of Tk, and unstable into unstable.

3.3.1 Connectivity matrix

Once the existence of a finite Markov partition has been established, we know that T is nearly
conjugate to a topological Markov chain whose dynamics are described by a connectivity
matrix. Since the partition is not generating, we count the number of connected intersections
with the image of each piece separately.
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From Figure 1, we can easily read off the connectivity matrix and notice the pattern for
the family of maps Tk since the structure of the partition remains essentially unchanged (see
Remark 3.1). Indeed, the connectivity matrix is given by

Mk =




|k| |k| + 1 0 0
0 0 1 0
0 0 0 1

|k| − 1 |k| 0 0




where the (i, j)th entry of Mk, denoted Mk(i, j), is the number of connected components of
T (Pi) ∩ Pj. The simple structure of the matrix follows from the fact that T (P2) = P3 and
T (P3) = P4.

The characteristic polynomial is t4 − |k|t3 − |k|t + 1 and the top eigenvalue is given by

αk =
|k| +

√
k2 + 8 +

√
−8 + 2k2 + 2|k|

√
k2 + 8

4
. (4)

It follows immediately that the topological entropy of Tk is given by htop(Tk) = log αk for
each k.

In addition, Lebesgue measure is the SRB measure of the system. In Section 4.2 we will
establish that its metric entropy is equal to hm(Tk) = 1

2
log |λk| so that Pesin’s formula holds.

3.4 Maps Tk are pseudo-Anosov

3.4.1 Definition of pseudo-Anosov

Recall that a homeomorphism f of a compact surface is called pseudo-Anosov if it possesses
a uniformly transverse pair of foliations F+ and F− with transverse measures µ+ and µ−

which are expanded by a constant factor α > 1 at each iteration of f and f−1, respectively.
In addition, f has a finite nonempty set of n-prong singularities.

Pseudo-Anosov maps were introduced by Thurston [T] and have well-established prop-
erties. In particular, it is known that such maps possess finite Markov partitions, are topo-
logically mixing with positive topological entropy, htop(f) = log α, and possess a measure
of maximal entropy µ which is the product of the two transverse measures µ± (for further
properties, see also [Bo, CB]). Pseudo-Anosov homeomorphisms with quadratic α and even-
pronged singularities are known to be semi-conjugate to a hyperbolic toral automorphism
[FR]; note that for our Tk, α is quartic (4) and our singularities are odd-pronged.

3.4.2 Description of transverse measures

The invariant foliations F+ and F− required by the definition of pseudo-Anosov are the
stable and unstable foliations, respectively, defined in Section 3.1. We have already seen in
Section 3.2 that the 4 singularities of Tk are of the type required for a pseudo-Anosov map.
It remains to provide the transverse measures µ+ and µ−. Since we have already constructed
the Markov partition for our maps we can use the standard procedure as in [M] adapted to
a nongenerating partition.

8



We define µ+ on F+ as follows. Since M = Mk is a nonnegative, mixing matrix for each
|k| ≥ 2, we know from Perron-Frobenius theory that there exists a unique positive right
eigenvector ~p corresponding to the largest eigenvalue α = αk, given by (4). There also exists
a unique positive left eigenvector ~q corresponding to α. We assume both are normalized so
that their components sum to one.

On each element of P, we define µ+(Pi) = ~p(i), i.e. the set of all (local) leaves in F+

crossing Pi has weight equal to the ith component of the vector ~p.
We define the weight of an arbitrary subinterval I of leaves of F+ crossing a given region

in terms of cylinder sets.
We call R a u-subset (resp. s-subset) if R lies entirely in one of the elements Pi of P and

has the property that any unstable (stable) leaf in R extends fully across Pi.
Let R = [i0, . . . , ir] be a cylinder set with respect to

∨r
j=0 T−jP, i.e. R =

⋂r
j=0 T−jPij .

The cylinder R is an s-subset in Pi0 corresponding to a subset of (local) leaves F+. The
number c(R) of connected components of R can be expressed in terms of the connectivity
matrix, namely

c(R) = M(i0, i1) · · ·M(ir−1, ir).

We put µ+(R) = α−rc(R)~p(ir). Further we give the weight of α−r~p(ir) to the set of (local)
leaves comprising each of the c(R) components of R. It follows immediately from this
description that µ+ is expanded uniformly by a factor of α at each iterate of T .

It is straightforward to check that µ+ is additive on cylinder sets. Since [i0, . . . , ir−1] =⋃4
i=1[i0, . . . , ir−1, i], we have

4∑

i=1

µ+([i0, . . . , ir−1, i]) =

4∑

i=1

α−rM(i0, i1) · · ·M(ir−1, i)~p(i)

= α−rM(i0, i1) · · ·M(ir−2, ir−1)α~p(ir−1) = µ+([i0, . . . , ir−1])

where in the last line, we have used the fact that ~p is a right eigenvector for M .
Similarly, one defines µ− on F− using as weights the entries of the left eigenvector ~q.

Since the connectivity matrix for T−1 is the transpose of M , α remains the top eigenvalue
and the measure µ− enjoys the same uniform expansion as µ+ by a factor of α at each iterate
of T−1. Alternatively, since F− is simply F+ reflected across the line u = v, one can define
µ− from µ+ by applying the reflection S.

Remark 3.2. The measure µ+ can be realized as the limit of various dynamical quanti-
ties. One is the following: Fix r and let R ∈ ∨r

j=0 T−jP. For n ≥ 0, let ζn(k), k =
1, 2, . . ., be the finite sequence of labels of the elements of P completely crossed in the un-
stable direction by T n(R), repeated according to the number of crossings. Then µ+(R) =
limn→∞ α−n

∑
k ~p(ζn(k)). The proof of this is standard (c.f. [KH, Chapter 4]). We give two

more equivalent characterizations in the next section.

3.4.3 Connection to a physical measure

The transverse measures µ+ and µ− represent the asymptotic distributions of long segments
of leaves in F+ and F− respectively, which goes back to Margulis [KH]. Let us make this
connection explicit.
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It is a standard consequence of the Perron-Frobenius theorem (see, for example, [KH])
that

lim
n→∞

α−nMn(i, j) = ~p(i)~q(j)/
(∑

i

~p(i)~q(i)
)
. (5)

We define a type of counting measure ν+ as follows. For a point z let i(z) be its label,
i.e., z ∈ Pi(z) and let ω0(z) be an element of F+|Pi(z)

, i.e. a full stable leaf in Pi(z). We
consider the long segments of leaves in F+, ωn(z) = T−nω0(T

nz) and define its asymptotic
distribution as follows. Let

Nn(Pj) = # of times ωn(z) crosses Pj

and notice that Nn(Pj) = Mn(j, i(T nz)) since the connectivity matrix for T−1 is the trans-
pose of M . Let Nn =

∑4
j=1 Nn(Pj) denote the total number of crossings by ωn(z). Then the

asymptotic proportion of the number of crossings of Pj by the complete stable leaf through
z is given by

ν+(Pj) = lim
n→∞

Mn(j, i(T nz))∑4
r=1 Mn(r, i(T nz))

= lim
n→∞

α−nMn(j, i)

α−n
∑4

r=1 Mn(r, i)
=

~p(j)~q(i)∑4
r=1 ~p(r)~q(i)

= ~p(j)

where we have split the sequence into subsequences with constant value of i(T nz) = i, and
used (5) to evaluate the limit.

Notice that the limit is independent of the choice of z and that it agrees with µ+ on
partition elements.

We now establish that ν+ and µ+ are equal on connected s-subsets and are therefore equal
as measures. Let S be an s-subset which is a connected component of an (r + 1)-cylinder,
R = [i0, . . . , ir].

We must count the number of times ωn(z) crosses S. Notice that the number of cross-
ings of R by ωn(z) is equal to the number of crossings of Pir by ωn−r(z) multiplied by
c(R) = M(i0, i1) · · ·M(ir−1, ir), the number of connected components in R. Thus for a
single connected component, Nn(S) = Nn−r(Pir).

ν+(S) = lim
n→∞

Nn−r(Pir)

Nn
= lim

n→∞
α−r αr−nMn−r(ir, i(T

n−rz)

α−n
∑4

j=1 Mn(j, i(T n−rz)

= α−r~p(ir) = µ+(S)

where again we have used (5).

Remark 3.3. The measure ν+ is obtained by growing the local stable leaf of a single point.
The same measure is also defined by applying T−n to a single stable leaf and measuring its
asymptotic distribution. In the notation above, fix ω ∈ F+|Pi

and let Nn
i (Pj) denote the

number of times T−nω crosses Pj. The calculations of ν+(Pj) and ν+(S) follow as above.

3.4.4 Quantification of multifractality

We can quantify the fractality of the measure µ+ in the same way as was done in [M]. Let
us fix a smooth transversal J to the stable foliation F+, say a piece of unstable leaf. For
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a point x ∈ J , let Jn(x) be the interval corresponding to the connected component of the
cylinder set [i0, ii, . . . , in] containing x. It follows from the definition of µ+ that

lim
n→+∞

1

n
log µ+(Jn(x)) = − log αk.

On the other hand for the Lebesgue measure of the interval |Jn(x)| and the positive Lyapunov
exponent χ(x), we have

lim
n→+∞

1

n
log |Jn(x)| = −χ(x).

It follows that the pointwise dimension δ(x) of µ+ is given by,

δ(x) = lim
n→+∞

log µ+(Jn(x))

log |Jn(x)| =
log αk

χ(x)
.

For Lebesgue-almost-every point x ∈ J , the Lyapunov exponent χ(x) = log |λk|
2

and hence the

pointwise dimension is δ(x) = 2 log αk

log |λk|
. Using (4), one can easily calculate that this pointwise

dimension is larger than 1 and increases to 2 as the shearing coefficient k tends to infinity.

4 Simplified Analysis via Reduction to Two States

In this section we describe explicitly the connection between T and a related family of toral
automorphisms. By rectifying the elements of our Markov partition P, we show that T can
be viewed as an extension of a map T̃ which is metrically equivalent to and generates the
same Markov process as the toral automorphism defined by its transition matrix. This in
turn allows us to compute directly the Hausdorff dimensions of the level sets of the positive
Lyapunov exponent.

4.1 Rectification of the Markov partition

The element P3 is a parallelogram, the other pieces are not. This is consistent with the
fact that the stable and unstable leaves are piecewise linear, but not linear. However both
P2 = T−1(P3) and P4 = T (P3) can be considered as being geometric parallelograms. The
map T itself, being piecewise linear, provides the geometric coordinates in which the “ends”
of P2 and P4 can be straightened. There is another way to achieve the same goal: the two
ends in P2 \ Q2 can be sheared into position so that the stable and unstable leaves in P2

become straight and the piece turns into a parallelogram. By a shear we mean a linear map
with a double eigenvalue 1. Note that we have not changed the element in the “middle”, i.e.,
P2 ∩Q2 stays the same. The resulting parallelogram is congruent to P3 under the clockwise
rotation by π/2 about its center. We will rotate the rectified piece by this angle, and denote
the obtained parallelogram by R2. In the same way the element P4 can be turned into the
parallelogram R4 by shearing. We do not rotate R4.

We claim that P1 also can be turned into a parallelogram by shearing. Since this is
obviously the most complex of the pieces to rectify, we will describe this procedure precisely
and give an argument which is independent of k. For clarity, Figure 2 illustrates the process

11



in the case k = −2. Indeed, it suffices to give the details for one end of P1 since the other end
can be rectified following the same steps by symmetry. We will refer to the named points of
Figure 2 throughout the following construction.

B C

A D

E

F

(a)

E’

D

CB

G H

A

E

F

(b)

G H

C

E’’ A’
B’

(c)

D

Figure 2: One end of P1 and its image after each shear.

(a) One end of P1 showing the cut along segment DE. The stable boundary is given
by BAE; BC and the two segments extending downwards from C and D belong to the
unstable boundary. As in Figure 1, the dotted square represents the boundary of Q2.
(b) △ADE after the first shear has become △ADE′. The stable boundary has been
straightened.
(c) Quadrilateral DCBE′ has been sheared into DCB′E′′, straightening both unstable
boundaries simultaneously. Edge B′E′′ is now parallel to the stable direction of T outside
of Q2. The dash-dot line DA′ represents the image of the boundary of the domain on
which the first shear acted; DC is the boundary of the domain for the second shear.

Step 1. We first cut open P1 along the singular unstable leaf of the 1-prong singularity
from point D to point E (Fig. 2(a)). Our goal is to shear △ADE so that segment AD is
kept invariant and the image E ′ of E lies on the segment BF which is an extension of BA.
Thus we are straightening the stable boundary BAE. Notice that by definition of F+, BF
is perpendicular to AE.

The stable eigenvector of Ak is ~vs =

[
1

λ−1

]
and by definition of F+, this gives the

direction of AE. Recall that λ satisfies

λ2 − 2kλ + 1 = 0 so λ + λ−1 = 2k. (6)

For the first shear, we consider A as the origin of our coordinate system and let

L1 =

[
1 −2k
0 1

]
.

Since by (6),

L1~vs = −λ−1

[
−λ + 2k

−1

]
= −λ−1

[
λ−1

−1

]
,

12



which is perpendicular to ~vs, we know that AE ′ lies on AF as required.
Due to the symmetries of P, we also have the following important lemma.

Lemma 4.1. DE ′ is parallel to BC.

Proof. Recall that BC is perpendicular to DE by definition of F−. Since AD is invariant

under L1 and DE is parallel to the unstable eigenvector ~vu =

[
1
λ

]
, the direction of DE ′

must be given by L1~vu. This is

L1~vu =

[
1 − 2kλ

λ

]
= λ

[
−λ
1

]

again using (6). Thus DE ′ is perpendicular to DE and so parallel to BC.

The importance of this lemma lies in the fact that since DE ′ is parallel to BC, a single
shear will align both segments with HC and GD, which otherwise might not have been
possible (see Figure 2(b)).

Step 2. Our goal in this step is to use a single shear which will simultaneously straighten
HCB and GDE ′ while aligning BE ′ with the stable direction given by ~vs. (See Figure 2(b)
and (c).)

For the second shear, we consider D to be the origin of our coordinate system and let

L2 =

[
1 0
2k 1

]
.

Since DE ′ is parallel to

[
λ
−1

]
, its image under L2, DE ′′, must be parallel to

L2

[
λ
−1

]
=

[
λ

2kλ − 1

]
= λ

[
1
λ

]

which is parallel to ~vu. Thus GDE ′′ is a straight line.
Since BC is parallel to DE ′ and DC is invariant under L2 in our chosen coordinates, the

image B′C of BC is also parallel to ~vu. Thus HCB′ is also a straight line.
It remains to show that B′E ′′ is parallel to ~vs. Recall from Step 1 that BE ′ is parallel to[

λ−1

−1

]
. Now

L2

[
λ−1

−1

]
=

[
λ−1

2kλ−1 − 1

]
= λ−1~vs,

again using (6). Thus B′E ′′ is parallel to ~vs as required.

The net result after shearing both ends of P1 is a parallelogram, which we denote by R1,
with two sides parallel to ~vu and two sides parallel to ~vs.

Thus we get four parallelograms R1, R2, R4 and R3 = P3, which we place apart, i.e.,
with no mutual intersections, in one plane so that the stable boundaries (and unstable
boundaries) of the four pieces are parallel. Choosing the scalar product appropriately we
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can make the stable boundaries and unstable boundaries perpendicular to each other. For
example the stable boundaries are horizontal and the unstable boundaries are vertical. The
parallelograms become rectangles.

The map T in this representation is still piecewise linear. Up to translations and/or
rotation by π/2 these are the same linear maps as before. Moreover, in our new coordinates
the linear map Ak is diagonal with λ and λ−1 on the diagonal. To see this, it is useful to
invoke the following lemma, which we state without proof.

Lemma 4.2. An invertible area preserving map from a rectangle in R2, with horizontal and
vertical sides, into R2 which takes horizontal segments into horizontal segments and vertical
segments into vertical segments, must be linear.

By the lemma the map T is linear on each separate rectangle in Ri ∩ T−1Rj . It is
also linear on each of the pieces which were sheared, or left alone, during the process of
rectification described above. Since these two ways of partitioning the rectangles have no
common pieces (see Figure 2(c)), we are able to make the following conclusions:

1. The map T translates R2 onto R3 because to obtain R2 we have rotated P2 clockwise
by π/2. Hence the derivative of T on R2 is equal to the identity I.

2. On R3 the derivative of T is equal to A.

3. On R4 ∩ T−1R1 the derivative is A while on R4 ∩ T−1R2 it is equal to minus identity
−I (the rotation by π), since R2 is the rectified P2 rotated clockwise by an additional
angle of π/2.

4. On R1 ∩ T−1R2 the derivative of T is −I while on R1 ∩ T−1R1 it is A.

These relations are summarized in Figure 3.

R3

4R

R2 R1

A

A

I

A

−I

−I

Figure 3: Schematic of the map T on 4 rectangles.
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4.2 A return map for T

According to Figure 3, we consider R1, R2, R3 and R4 as forming a tower of height 2 over
the base R1 ∪ R2. We define the return map T̃ : R1 ∪ R2 	 by T̃ |R1 = T and T̃ |R2 = T 3. It
is again piecewise linear. Its derivative can be obtained directly from of the determination
of the derivative of T above. In particular for p ∈ R1 ∩ T̃−1R1, the derivative DpT̃ = A. On

R2 ∩ T̃−1R1 it is equal to A2 while on R1 ∩ T̃−1R2 it is equal to −I. Finally on R2 ∩ T̃−1R2,
the derivative is equal to −A.

The return map T̃ is a Markov map on the two rectangles R1 ∪ R2. We can find the
connectivity matrix M̃ = M̃|k| directly from the matrix Mk given in Section 3.3.1 for the 4
element partition:

M̃|k| =

[
|k| |k| + 1

|k| − 1 |k|

]
,

where the (i, j)th entry of M̃ , is the number of connected components of T̃ (Ri) ∩ Rj . The
larger eigenvalue of this matrix is the same as that of Ak (up to sign).

Let us change variables in R1 one more time. Namely we identify R1 with R̂1 = A−1R1.
We will consider this identification to be just a change of coordinates (the coordinates in
R2 stay the same), and we will denote the resulting rectangle again by R1. In these new

coordinates the derivative of the mapping T̃ is equal to:

−A on R1 ∩ T̃−1R2 and R2 ∩ T̃−1R2; and A on R2 ∩ T̃−1R1 and R1 ∩ T̃−1R1. (7)

We have thus achieved that the derivative of T̃ is equal to ±A. We see immediately that
the metric entropy of T̃ (with respect to area measure) is equal to log |λ|. Since the average
return time to R1 ∪ R2 is equal to 2, it follows from the Abramov formula that the metric
entropy of T is equal to 1

2
log |λ|.

4.2.1 Connection to a toral automorphism

The matrix M̃ = M̃|k| is an integer matrix with determinant one and eigenvalues equal
to |λ| and |λ|−1. Hence it defines a hyperbolic toral automorphism which we denote by

m : T2 → T2. There is an affinity between the mapping T̃ and the toral automorphism
m. Indeed since their metric entropies with respect to the area measure are equal and both
are metrically isomorphic to Bernoulli systems, then by Ornstein’s Theorem they must be
metrically isomorphic. There is actually an even stronger connection.

The mapping T̃ , the partition {R1, R2}, and the normalized area define a stochastic
process which we denote by ξ. The process ξ is the double sided stationary Markov chain
obtained from the connectivity matrix M̃ by the Parry recipe. Indeed let us denote by p1, p2

the lengths of the unstable (vertical) and by q1, q2 the lengths of the stable (horizontal) sides
of R1 and R2 respectively. Then for any sequence (i0, i1, . . . , in) of 1’s and 2’s the cylinder
set

Ri0 ∩ T̃−1Ri1 ∩ · · · ∩ T̃−nRin

is the union of M̃n(i0, in) horizontal rectangles with area equal to |λ|−nqi0pin, where M̃n(i0, in)

is the (i0, in) element of M̃n. Further, the shapes of R1 and R2 can be read off from M̃ .
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Namely, ~p = (p1, p2) is the right eigenvector and ~q = (q1, q2) is the left eigenvector of M̃ ,

with eigenvalue |λ|. To see this, note that since DT̃ = ±A by (7), the lengths of the unstable

sides are multiplied by |λ| under the application of T̃ . This yields the equations

|λ|p1 = |k|p1 + (|k| + 1)p2 and |λ|p2 = (|k| − 1)p1 + |k|p2. (8)

Similarly the lengths of stable sides are multiplied by |λ|−1 under the application of T̃ and
we get the equations

q1 = |k||λ|−1q1 + (|k| − 1)|λ|−1q2 and q2 = (|k| + 1)|λ|−1q1 + |k||λ|−1q2. (9)

Direct calculation shows that the eigenvectors are ~p =
(√

|k| + 1,
√
|k| − 1

)
and ~q =

(√
|k| − 1,

√
|k| + 1

)
(both equalities up to a scalar factor). Thus the rectangles R1 and R2

can be made congruent by the rotation by π
2

(scaling appropriately the stable and unstable
sides).

Note that the Markov chain ξ is only a factor of T̃ , since the partition is not generating.

Proposition 4.3. There is a Markov partition for the toral automorphism m consisting of
two rectangles linearly equivalent to R1 and R2 such that the resulting Markov chain is equal
to ξ.

Proof. By a theorem of Adler [A, Theorem 8.4], m has a (nongenerating) Markov partition

Q = (Q1, Q2) such that Q1 and Q2 are parallelograms and the matrix M̃ itself is the con-
nectivity matrix for this partition. The normalized area is the measure of maximal entropy
for m. This measure, the partition Q and m define a stochastic process equal to the Parry
Markov chain obtained from M̃ , and hence equal to ξ.

Equations (8) and (9) apply equally well to the sizes of the stable and unstable sides of
Q1 and Q2. Hence R1 and R2 can be taken onto Q1 and Q2 by the same linear map, i.e.,
they are linearly equivalent.

By the last Proposition we can consider both the mapping T̃ and the toral automorphism
m as defined on the union of the same two rectangles R1 and R2. The stochastic processes
defined by the partition and T̃ and m, respectively, are identical. In particular, for any
sequence (i0, i1, . . . , in) of 1’s and 2’s the sets

Ri0 ∩ T̃−1Ri1 ∩ · · · ∩ T̃−nRin and Ri0 ∩ m−1Ri1 ∩ · · · ∩ m−nRin

are unions of M̃n(i0, in) horizontal strips inside Ri0 (each of area |λ|−nqi0pin). However these
sets are not equal. They differ in the placement of the horizontal strips. In particular,
for both maps, R1 and R2 are split into 4|k| horizontal strips which form a generating
Markov partition. Each horizontal strip is mapped into a vertical strip. The vertical strips
are individually isometric for the two maps, but their placements in R1 and R2 differ by a
permutation and possibly a rotation by π, depending on the sign of k. Figure 4 shows the 8
horizontal strips and their images for T̃ and m in the case k = −2. The figure reveals the
symmetry enjoyed by our maps T̃k, which is not shared by m.
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Figure 4: The generating partition and its image for (a) T̃ and (b) m in the case k = −2. The
elements of the partition are labeled a-f while the numbers indicate whether each element
is mapped into R1 or R2. The image of each element is indicated by a prime.

4.3 Dimensional characteristics of the dynamics

MacKay [M] used his Markov partition to explain various features of the map T observed by
Cerbelli and Giona, [CG]. In particular he considered the one dimensional map U defined
on the “skeleton”. The skeleton is obtained by collapsing to a point the stable leaves in
each element of the Markov partition. Using the thermodynamic formalism for U , MacKay
obtains an implicit expression for the Hausdorff dimension D(χ) of the subset L(χ) of the
skeleton (or any smooth transversal of the stable foliation) comprised of points with positive
Lyapunov exponent equal to χ.

With our representation of the dynamics as the tower over T̃ , which has the 2-element
Markov partition {R1, R2}, we can derive a formula for D(χ) for any k in a simpler way. Let

us consider the skeleton map Ũ defined by T̃ , i.e., the rectangles R1 and R2 are collapsed
into (vertical) segments I1 and I2, and Ũ is a piecewise linear map on their union I = I1∪I2,

with constant slope equal to |λ|, the eigenvalue of M̃ (and up to a sign also of A). The

lengths of the intervals p1 = |I1|, p2 = |I2| give us the right eigenvector of M̃ .
We have the symbolic dynamics Σ : I → Y = {1, 2}N and the associated cylinder sets

[i0, i1, . . . , in] = {x ∈ I | Ũk(x) ∈ Iik , k = 0, 1, . . . , n}

A cylinder set is a union of segments of equal length, |λ|−npin . Their number is equal to

M̃(i0, i1) . . . M̃(in−1, in). Let us denote by In(x) the unique segment of the cylinder set
[i0, i1, . . . , in] which contains x ∈ I.
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The positive Lyapunov exponent χ of an orbit of T is determined by the frequency f of
visits to R2 of the corresponding orbit of T̃ by the formula

χ =
log |λ|
2f + 1

. (10)

This can be read off the schematic representation of T and T̃ given in Figure 3.
Our goal is to establish the Hausdorff dimension D(χ) of the set L(χ) defined above. It

follows from (10) that D(χ) is also the Hausdorff dimension of the set of points in I which

under the iteration of Ũ visit I2 with frequency f .
We will give a formula for D(χ) using the classical theorem of Billingsley [B]. To that

end, we construct a family of measures ξu, for u ∈ R, as follows. Consider the positive
matrices W (u), u ∈ R, W (0) = M̃ , and the Markov transition matrices Π(u) obtained from
W (u) by the Parry recipe [KH],

W (u) =

[
|k| |k| + 1

eu(|k| − 1) eu|k|

]
, Π(u) =

[
|k|

ρ(u)
(|k|+1)p2(u)

ρ(u)p1(u)

eu(|k|−1)p1(u)
ρ(u)p2(u)

eu|k|
ρ(u)

]
. (11)

where ρ(u) is the larger eigenvalue of W (u) and (p1(u), p2(u)) and (q1(u), q2(u)) are its
respective right and left eigenvectors, normalized so that

∑
i piqi = 1. In particular we have,

ρ2 − (eu + 1)|k|ρ + eu = 0, eu =
ρ(ρ − |k|)
|k|ρ − 1

, and ρ(0) = |λ|. (12)

The transition matrices Π(u) define ergodic Markov chains with corresponding invariant
probability measures ηu on the symbolic space Y = {1, 2}N. We want Σ∗ξu = ηu, which de-
fines the measures ξu uniquely on cylinder sets. We complete the definition of ξu by requiring
that all the intervals that constitute a cylinder set have equal measure (this construction
was used previously in Section 3.4.2).

The measures ξu are ergodic probability measures for Ũ which immediately implies

A. For ξu-almost-every x ∈ I the frequency f of visits to I2 is equal to

f = ξu(I2) = p2(u)q2(u) =
(ρ − |k|)(|k|ρ− 1)

|k|ρ2 − 2ρ + |k| =
1

2
+

(eu − 1)|k|
2
√

(eu + 1)2k2 − 4eu
.

It follows from the form of the transition matrix Π(u) that the measure ξu(I
n(x)) is equal

up to a factor independent of n to eufnρ−n. Hence we get,

B. For ξu-almost-every x ∈ I, lim
n→∞

−1

n
log ξu(I

n(x)) = log ρ(u) − fu.

Combining B with the theorem of Billingsley [B, Theorem 14.1], we obtain,

D(χ) = lim
n→∞

log ξu(I
n(x))

log |In(x)| =
log ρ(u) − fu

log |λ| . (13)
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In light of formula (10) connecting f and χ, and using the fact that f is a monotonic function
of u by item A, we obtain a formula for D(χ).

Since the explicit formula is quite cumbersome we choose to express both χ and D(χ)
through ρ. Using again, (10), (12) and (13), we calculate

χD(χ) =
1

2f + 1
log ρ − f

2f + 1
log

ρ(ρ − |k|)
|k|ρ − 1

= log ρ − f

2f + 1
log

ρ3(ρ − |k|)
|k|ρ − 1

.

From A, we also have
f

2f + 1
=

(ρ − |k|)(|k|ρ − 1)

3|k|ρ2 − 2(|k|2 + 2)ρ + 3|k| .

The evaluation of the last expression for k = 2 gives us exactly the same function χD(χ) as
in [M] except for the name of the variable. Our ρ is hence MacKay’s parameter t.

4.4 Final remarks

Readers familiar with the thermodynamic formalism [R] will recognize that our measures ξu

are the equilibrium states for Ũ and the potential u logφ, where φ ≡ 1 on I1 and φ ≡ e on I2.
The function log ρ(u) is the topological pressure and its Legendre transform log ρ(u) − fu,

f = ρ′

ρ
is the metric entropy of Ũ with respect to the measure ξu.

Indeed, using this formalism, it is possible to make explicit the connection between our
potential u log φ on I and the canonical potential −β log |U ′| on the skeleton J where U is
defined.

First define the matrix M(β) corresponding to the potential −β log |U ′|, i.e. M(β)i,j =
Mi,j |U ′|−β. The thermodynamic formalism implies,

χD(χ) = P (β) + βχ, and P ′(β) = −χ, (14)

where eP (β) is the largest eigenvalue of M(β).
We connect the two formulas for D(χ), (13) and (14), as follows. Let νu be the extension

of ξu to the skeleton J = I1∪I2∪I3∪I4; thus νu(I1) = 1−f
2f+1

and νu(Ij) = f
2f+1

for j = 2, 3, 4.
It is immediate that νu is an ergodic invariant probability measure for U . We show that it
is also the equilibrium state for the potential −β log |U ′| for a specific value of β. Using (10)
and (13), we write,

hνu
(U) − β

∫
log |U ′| dνu =

hξu
(Ũ)

2f + 1
− β log |λ|

2f + 1
=

log ρ(u) − fu

2f + 1
− βχ = χD(χ) − βχ. (15)

This last expression is equal to P (β) for the unique β corresponding to χ via (14). This
implies that νu is the unique equilibrium state for the potential −β log |U ′|; in other words,
we could have obtained it by first applying the Parry recipe to the matrix M(β) and then
defining νu via the induced Markov process on 4 states, much as we did for ξu.

The following proposition describes the precise relations between u and β.

Proposition 4.4. Let t(β) be the Perron-Frobenius eigenvalue of N(β) = |λ|βM(β). Then,

t(β) = ρ(u), P (β) = −u

2
, t(β)|λ|−β = e−

u
2 . (16)
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Proof. We first establish that ρ = t. Let Φ = Φ(β) be the Markov transition matrix obtained

from N(β) (equivalently M(β)) using the Parry recipe, i.e. Φi,j =
Ni,jrj

tri
where ~r is the right

Perron-Frobenius eigenvector of N . It is clear that Φ1,1 = |k|/t.
The equation N~r = t ~r yields r1/r4 = e−2P (β)(|k| + 1)/(t − |k|). Using this and the

characteristic equation of N , t4 − |k|t3 − (|k|t − 1)|λ|2β = 0, we compute

Φ4,1 =
|k| − 1

t
· r1

r4

=
(k2 − 1)e−2P (β)

t(t − |k|) =
(k2 − 1)|λ|2β

t3(t − |k|) =
k2 − 1

|k|t − 1
. (17)

Since νu is the extension of ξu, the left eigenvector of Φ must be ~v = [1− f, f, f, f ]/(2f + 1).
Substituting (17) into the first component of ~v Φ = ~v yields,

f =
1 − Φ1,1

1 − Φ1,1 + Φ4,1

=
t − |k|

t − |k| + t k2−1
|k|t−1

=
(t − |k|)(|k|t − 1)

|k|t2 − 2t + |k| . (18)

Comparing (18) with (A) proves the equivalence of ρ and t.
The second equality of (16) follows from the first by (10) and (15),

log ρ(u) − fu = (2f + 1)(P (β) + βχ) = (2f + 1)
[
log

t(β)

|λ|β + βχ
]

= log t(β) + 2f log
t(β)

|λ|β ,

which yields −u = 2 log t(β)
|λ|β

.
Finally, the third equality follows from the second by exponentiating both sides and

noting that eP (β) = |λ|−βt(β) by definition of N(β).
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