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A Nielsen theory for coincidences of iterates

Philip R. Heath∗ Christopher Staecker†

July 5, 2012

Abstract

As the title suggests, this paper gives a Nielsen theory of coincidences of
iterates of two self maps f, g : X → X of a closed manifold X. The idea is, as
much as possible, to generalize Nielsen type periodic point theory, but there are
many obstacles. Familiar results as in periodic point theory are obtained, but
often require stronger hypotheses.

Kewords: Nielsen numbers; coincidences; iterates; periodic points; roots;
manifolds

AMS classification 55M20

1 Introduction

This paper seeks to generalize Nielsen periodic point theory to iterates of coinci-
dences. In many settings, fixed point theory can be thought of as a special case of
coincidence theory of a pair of maps f and g, with g taken to be the identity map. At
times however, this viewpoint is overly simplistic, and as this paper will show, this is
certainly the case with respect to the relationship between perioidc point theory, and
the theory of iterates of coincidences.

There is much written in the literature concerning both Nielsen coincidence theory,
and Nielsen periodic point theory. Let f, g : X → Y be maps (continuous functions)
of closed manifolds X and Y of the same dimension. We use the symbol Φ(f, g) to
denote the set of coincidences of f and g, that is Φ(f, g) = {x ∈ X | f(x) = g(x)}. The
aim of Nielsen coincidence theory is to define a lower bound (as sharp as possible),
for the set MΦ(f, g), which is defined to be min(#{Φ(f1, g1) | f1 ' f, g1 ' g}),
where ' denotes homotopy, and # cardinality. In a similar setting for a fixed positive
integer n, Jiang ([19]) introduced two Nielsen type numbers NPn(f) and NΦn(f)
where f is a self map of X. These two numbers are homotopy invariant lower bounds
respectively for the number MPn(f), which is the cardinality of the smallest among
the sets Pn(f1) = Φ(fn1 )−

⋃
m|n m 6=n Φ(fm1 ), as f1 ranges over all maps homotopic to

f , and of MΦn(f) = min{#Φ(fn1 ) | f1 ' f} where Φ(fn1 ) = {x ∈ X | fn1 (x) = x} is
the fixed point set of fn1 . It is important in the definitions of MPn(f) and MΦn(f)
to note that we only allow homotopies of f , not of fn.

In this paper then, we define two Nielsen type numbers NPn(f, g) and NΦn(f, g)
(in the context that X = Y ), both of which are homotopy invariant lower bounds for
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the cardinalities of appropriate sets. The first of these, MPn(f, g), of which NPn(f, g)
is a lower bound, is a straightforward generalization of MPn(f). In fact

MPn(f, g) = min #{Pn(f1, g1)|f1 ' f and g1 ' g},

where Pn(f, g) denotes the set of points x with fn(x) = gn(x) but fm(x) 6= gm(x) for
any m | n. We will often write that x is a coincidence at level n when fn(x) = gn(x).

Before we discuss the number of which NΦn(f, g) is a lower bound, we ask the
reader to observe the following equalities which hold automatically in periodic point
theory

Φ(fn) =
⋃
m|n

Pm(f) =
⋃
m|n

Φ(fm).

Note also that the Pm(f) are disjoint. When it comes to coincidences of iterates, as
we will see, the above equalities that we take for granted in periodic point theory do
not universally hold true. We will show for coincidences of iterates that there are
examples that variously illustrate the following possibilities:

Φ(fn, gn) 6=
⋃
m|n

Φ(fm, gm) =
⋃
m|n

Pm(f, g) 6=
⊔
m|n

Pm(f, g), (1)

where
⊔

denotes disjoint union. We will see immediately an example where Φ(fn, gn)
and

⋃
m|n Φ(fm, gm) can be very different. However it is not until Section 5 that we

will see an example where
⋃
m|n Pm(f, g) 6=

⊔
m|n Pm(f, g). To put this last statement

another way, we are saying for coincidences of iterates, that the Pm may not be
disjoint. The middle equality of the display (1) is of course, always true.

The differences shown in the numbered display above give us three possibilities
for defining the minimum number MΦn(f, g) of which NΦn(f, g) is to be a homotopy
invariant a lower bound. Perhaps counter intuitively we define it to be:

MΦn(f, g) := min #

⊔
m|n

Pm(f1, g1) | f1 ' f and g1 ' g

 .

We will not discuss the technical reason why we choose to minimize the disjoint union
rather than the ordinary union until Section 5. However we feel it is instructive to
give an example now, to show why we need to reject the number

MCn(f, g) := min{#Φ(fn1 , g
n
1 ) | f1 ' f and g1 ' g}

as a possible candidate for MΦn(f, g).
In fact, the example below also allows us to introduce the reader to some of the

other hurdles one has to overcome in order to generalize Nielsen periodic point theory
to our context. It illustrates a key difference in the behaviour of coincidences of
iterates over that of periodic points. In particular, if x is a periodic point of f , then
so is f j(x) for any positive integer j. On the other hand, if x is a coincidence of f
and g, there is no guarantee that it is a coincidence of fn and gn for for any n > 1.

Example 1.1. Let f be the self map of S1 of degree −1, and let g be the rotation:
g(eiθ) = ei(θ+ε), where ε 6= 0 is small. Since N(f, g) = 2, it is easy to see that the
pair f, g has two nonremovable coincidence points at level 1. On the other hand
Φ(f2, g2) = ∅, that is, there are no coincidence points of f2 and g2 at all.
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To see this, note that if f2(eiθ) = g2(eiθ), then since f2(eiθ) = eiθ, and g2(eiθ) =
ei(θ+2ε), then θ = θ + 2ε + 2kπ, which is impossible for small epsilon. Thus for
this example Φ(f2, g2) = ∅, while

⋃
m|2 Φ(fm, gm) = Φ(f, g) has two elements. Fur-

thermore MΦ2(f, g) = min #{P1(f1, g1) t P2(f1, g1) | f1 ' f, g1 ' g} = 2 and
MC2(f, g) = min{#Φ(f21 , g

2
1) | f1 ' f, g1 ' g} = 0. As we will see when we have

defined NΦn(f, g), this example shows that we can have MCn(f, g) < NΦn(f, g).
The point then, is that MCn(f, g) can fail to account for coincidences at levels other
than n.

This example also shows, if we take ε to be irrational, that the trajectories
{x, f(x), f2(x), . . . } and {x, g(x), g2(x), . . . } of a coincidence point x can be infinite.

One implication of Example 1.1 is that he orbit definitions that make sense in
Nielsen periodic point theory, make no sense here (see also Example 3.4). Our fall back
position is to define our Nielsen theory of coincidences of iterates in terms of classes
rather than orbits. This will not then stictly speaking be a generalization of periodic
point theory. In particular, as we show in Proposition 4.3, NPn(f) ≥ NPn(f, id), and
the inequality can be strict (take f to be the map g−1f of Example 6.9). However as
in perioidc point theory when we work with tori, nilmanifolds and solvmanifolds orbits
would have no real advantage. In fact for tori, nilmanifolds and model solvmanifolds
(see [12]), which are the vast majority of our examples, the Nielsen type numbers we
define are Wecken (the lower bounds are sharp see section 8).

One further comment about Example 1.1 is that the fact that MC2(f, 1) 6=
MΦ(f2) may at first sight, appear to contradict the well known result of Brooks
([2]) that, under mild conditions, any variance in the cardinality of a coincidence set
can be obtained by varying only one of the maps. The apparent contradiction is
resolved when we point out that Brooks’ result does not apply to iterates of maps
when the only homotopies of fn and gn that we allow come from level 1 homotopies
of f and g.

As it turns out, if f and g commute with each other (i.e. fg = gf) then the
distinctions in the display (1) both disappear. In particular in such cases we have that
Φ(fm, gm) ⊂ Φ(fqm, gqm) for all positive q (see Lemma 3.2). However restricting to
commuting maps and their homotopies would be far too restrictive. What we do need
however (in order even for our boosting functions to be well defined on Reidemeister
sets), is that the two induced homomorphisms f∗ and g∗ commute at the level of
the fundamental group π1(X) (see Definition 3.5). In fact in all our examples the
homotopy class of the maps discussed contain representatives that commute with
each other, and this is more than enough for our purposes.

The lack of geometric boostings is just one of several roadblocks one needs to
navigate in the process of generalizing periodic point theory to coincidences of iterates.
Another hurdle we want to mention here, is the fact that orbits don’t work. In periodic
point theory, orbits play an important role in certain examples, but not in fact, in the
vast majority of the spaces we use in our examples here (but see Section 6.2). We will
give additional details in Section 3.1, but for now let x ∈ Φ(fn) for some map f . Then
the trajectory (or orbit) {x, f(x), f2(x), . . . } of x is finite and of length less than n.
However as Example 1.1 shows, for coincidences, the trajectories {x, f(x), f2(x), . . . }
and {x, g(x), g2(x), . . . } of a coincidence point x ∈ Φ(fn, gn) need not be finite, let
alone less than or equal to its level n (see also Example 3.4). Since orbits are not
available, we define the new numbers in terms of classes, rather than, as in periodic
point theory, in terms of depth of orbit (see Definition 4.1). For most of the examples
we use, this is in fact no disadvantage since the spaces are the equivalent of being
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essentially toral (the definition makes no sense for coincidences). We refer the reader
to a related discussion in Section 6.2.

We come next to the question of imitating some of the familiar results of periodic
point theory that hold true for all maps on tori, and more generally on nil and
certain maps on solvmanifolds (see [13, 14, 9]). These results compare NΦn(f) to
combinations of the N(fm) for m | n, and when N(fn) 6= 0, give Möbius inversion
type results for NPn(f). A key property that allows these periodic point results to
go through is called essentially reducible to the gcd. In fact all maps on nil and
solvmanifolds are essentially reducible to the CGD ([9, Corollary 4.12]). On the other
hand, the analogous property (essentially coincidence reducible to the gcd) is not
even universally true on S1 (where of course the commuting property of f∗ and g∗ is
automatic). We refer the reader to Example 4.12.

We do however have a new but weaker result, that for all maps that are “coin-
cidence essentially reducible” (see Theorem 4.6), and we investigate conditions for
which the full generalizations hold. We give a complete characterization of “coinci-
dence essentially reducible to the gcd” for maps on S1 (Theorem 8.4), and show that
this property also holds when (in addition to the commutativity of f∗ and g∗), we
have that g∗ is invertible (Theorem 4.16). In particular this is true if the linearization
of a self map g of a torus is a matrix which is invertible over Z. In addition, by
giving examples on the Klein Bottle, we hint at the generalizations of our findings to
solvmanifolds. We hint rather than prove, since giving full details would be beyond
the scope of the paper.

Our theory is, of course, applicable to the case where g is the constant map, in other
words to roots of iterates. This subject has already been studied by Brown, Jiang
and Schirmer in [1]. One might suspect that many of the results of that paper could
be obtained simply by putting g equal to a constant map in this one. This however is
not the case. In fact the two theories are deeply incompatible. We will explore this in
greater detail in Section 7, but for now we wish to mention two things that emphasize
this incompatibility. The first is that the root theory in [1] is heavily dependent on
the various choices of the image of the constant map “g”. To put this another way,
the theory in [1] is not homotopy invariant with respect to homotopies of the constant
map g. And of course ours is. To describe the second incompatibility, we want to say
first, that it should be clear that the concept of reducibility is foundational to both
theories. However, even with respect to this very basic concept, the two theories are
not the same. To say it in just a few words, in our work we consider reductions only
for m | n. In [1] reductions are considered for certain m with m < n but m - n.

We outline the paper as follows. Following this introduction we give a preliminary
section in which among other things, we establish our notation using the modified
fundamental group approach. We briefly recall standard coincidence theory as applied
to iterates of self maps. We include a short subsection on linearization of maps on
tori, illustrating it with an example which will be useful later. Next in Section 3 we
discuss the various relationships among the iterates, separating the geometry and the
algebra. In the process we recall some of the basic concepts of Nielsen periodic point
theory, and show the necessary detours and conditions we need to make in order to
proceed with our generalization to coincidences. In Section 4, we define our number
NPn(f, g), give some of its properties, show where direct generalizations fail, and
introduce conditions under which many of the familiar resuls of periodic point theory
can be generalized to coincidences of iterates. In Section 5, we do the same thing
with respect to the number NΦn(f). In Section 6 we consider coincidence theory of
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iterates under the additional assumption that the map g is invertible. We indicate
that under these conditions the notion of orbit is well defined, and that for essentially
toral spaces our theory and Nielsen periodic point theory for the map g−1f coincide.
In Section 7 we we discuss the relationship of our work to the theory of roots of
iterates given in [1]. We close the main part of the paper with a short section where
we discuss two open questions both related to Wecken type considerations. The final
section of the paper is an appendix where we prove the result on S1, that for maps
f and g represented by integers a and b respectively, that f and g are coincidence
reducible to the gcd if and only if a and b are relatively prime. This property is
foundational to the main computational theorems in Sections 4 and 5.

The authors would like to thank Nathan Jones for helping us with the final step
in the proof of Theorem 8.4, and Jerzy Jezierski for bringing reference [17] to our
attention.

2 Preliminaries, Standard Nielsen coincidence the-
ory of iterates of self maps

In this section we review standard Nielsen coincidence theory as it applies to iterates of
self maps. We use the modified fundamental group approach as in [5] (see also [13, 14]).
In this approach we separate the geometry from the algebra, and by assigning an index
(or semi-index) to the Reidemeister classes, we are able to deal with the possibility of
having different empty classes, the supposed advantage of the covering space approach.
This section then will establish our notation. At the end of the section we remind
the reader of the concept of the linearization of a map on a torus. We will later make
an oblique reference to linearization on solvmanfiolds, but since we consider only the
Klein Bottle, we will not go into the details.

Throughout the paper X will denote a closed manifold, and f, g : X → X will
be self maps of X. As mentioned in the introduction, there are many settings in
which fixed point theory can be thought of as a special case of coincidence theory
where g is taken to be the identity map. With the proviso that we consider only
manifolds, we indicate in this section some of the places where generalizations are
entirely straightforward.

2.1 Geometric classes of iterates of self maps.

In this subsection we remind the reader of standard coincidence theory, and make some
straight forward applications of it to the iterates fn and gn of f and g respectively.

We say that x, y ∈ Φ(fn, gn) are Nielsen equivalent at level n provided that there
is a path c from x to y so that (relative end points) fn(c) ' gn(c). For n = 1 this is the
ordinary Nielsen coincidence relation. The set of equivalence classes thus generated
will be denoted by Φ(fn, gn)/ ∼. We call this the set of [geometric] Nielsen classes
for fn and gn.

Using either the standard coincidence index (see for example [21]) or the semi-
index in case X is not orientable (see [4, 8]), we may for each geometric class An ∈
Φ(fn, gn)/ ∼ associate an integer denoted ind(An). The classes for which this integer
is nonzero are called essential Nielsen classes. For any positive integer n, the Nielsen
number N(fn, gn) of fn and gn is then the number of essential classes of fn and gn.
This number is a lower bound for MΦ(fn, gn) which should be carefully distinguished
from MΦn(f, g). For MΦ(fn, gn) we consider homotopies that range over all maps
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h and k that are homotopic respectively to fn and gn. Of course this will include
homotopies induced by homotopies f ' f1 and g ' g1 of f and g respectively. This
last kind of homotopy, and this kind only, is the kind we consider in the main body of
the paper. When g is the identity and we disallow homotopies of g, then the number
of essential classes of f , denoted N(f), is the ordinary Nielsen number of f .

2.2 Algebraic and geometric classes and their relationship.

We come now to the algebraic side of the story. In what follows we shall not distinguish
between a path and its path class in the fundamental groupoid π1(X). Thus c can
denote both a path and a path class in π1(X). In addition if h : X → X is a map,
h(c) will denote either a path or class. If c is a path from a to b, then c−1 is the path
from b to a defined by c−1(t) = c(1− t).

Choose a base point x0 ∈ X. For simplicity we work with base point preserving
maps f, g : X → X with respect to this chosen base point. We can do this without
loss of generality, since in manifolds base points are always closed and non-degenerate.
In particular each homotopy class has a representative that is base point preserving
with respect to the chosen base point.

In this way, for each positive integer n we have induced homomorphisms fn∗ , g
n
∗ :

π1(X,x0) → π1(X,x0), and these in turn determine an equivalence relation on
π1(X,x0) (doubly-twisted conjugacy) defined by the rule that α ∼ β in π1(X,x0)
if and only if there exists γ ∈ π1(X,x0) with α = gn∗ (γ)βfn∗ (γ−1). The resulting
classes are called Reidemeister classes. The Reidemeister class containing α is de-
noted by [α]n. The set of all Reidemeister classes is denoted by R(fn∗ , g

n
∗ ), and its

cardinality is the Reidemeister number R(fn, gn). There is an exact sequence of based
sets,

π1(X,x0) −→ π1(X,x0)
jn−→ R(fn∗ , g

n
∗ )→ 1

where the first function takes an element α to gn∗ (α)fn∗ (α−1), and jn places an element
β in its Reidemeister class [β]n. If π1(X,x0) is abelian there is a canonical group
structure on R(fn∗ , g

n
∗ ), moreover in this case the sequence consists of groups and

homomorphisms. All the above constructions are independent of the choice of base
point and path classes in the sense that there exists bijections between the various
Reidemeister sets (see [5]). When π1(X) is Abelian we write composition of functions
additively, and we have:

Theorem 2.1. (Guo Heath [5, 8] ) Let f, g : X → X be maps with π1(X,x0) Abelian,
then the sequence

0→ Coin(fn∗ , g
n
∗ )→ π1(X,x0)

gn∗−f
n
∗−→ π1(X,x0)

jn→ R(fn∗ , g
n
∗ ))→ 0

is an exact sequence of Abelian groups and homomorphisms, where

Coin(fn∗ , g
n
∗ ) = {α ∈ π1(X,x0) | fn∗ (α) = gn∗ (α)}. �

The algebraic and geometric components of the theory are related by an injective
function

ρn = ρ : Φ(fn, gn)/ ∼ → R(fn∗ , g
n
∗ )

defined as follows: Given x ∈ An we choose a path c from the base point x0 to
x. We can then define ρn(An) = [gn(c)fn(c−1)]n. This will be independent of c
and of the choice of x within An. An algebraic class [α]n is said to be nonempty
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if it lies in the image of ρn. Following the modified fundamental group approach
as in ([5, 8, 13, 14]), we next assign an index (or semi-index for our Klein Bottle
examples) to the Reidemeister classes. The index (semi-index) Ind([α]n) of a class
[α]n ∈ R(fn∗ , g

n
∗ ) is defined as follows

Ind([α]n) =

{
ind(An) if [α]n = ρn(An),
0 otherwise,

where ind(An) is the integer defined in the geometric section, the usual coincidence
index, or the coincidence semi-index of [4]. As with the geometric classes, an alge-
braic class is essential provided it has nonzero index (semi-index). We denote the
set of essential algebraic classes by RE(fn∗ , gn∗ ) ⊆ R(fn∗ , g

n
∗ ). Clearly N(fn, gn) =

#(RE(fn∗ , gn∗ )).

2.3 Linearization and weakly Jiang maps.

Although most of our examples in this paper will be on tori, we we will be using the
Klein Bottle as a kind of representative solvmanifold. We will not go into details of
linearizations of maps on these spaces, but refer the reader to [9, 10, 11] for the fixed
point case, and to [8] for some aspects of the coincidence case. Linearization of maps
on tori are very simple. If f : T r → T r is a map of an r torus, then we can identify
the linearization of f with the induced homomorphism on π1(T r) ∼= Zr. Using the
standard basis for Zr we can then identify this homomorphism with a matrix F . This
same matrix can then be used to define a map in the homotopy class of f , namely
that map which is induced from F : Rr → Rr defined by matrix multiplication on
vectors.

Theorem 2.2 (Jezierski, [15] Lemma 7.3). Let f, g : T r → T r be maps of the r
torus with linearizations F and G respectively. Then N(f, g) = |det(G − F )|. If
det(G− F ) 6= 0 then the linear maps F and G have #(Φ(F,G)) = N(f, g). �

For maps f, g of tori, we will as above often identify f with F and g with G, and
write N(F,G) for N(f, g).

Definition 2.3. We say that a pair f , g is coincidence weakly Jiang provided that
either N(f, g) = 0 or else N(f, g) = R(f, g). If all pairs of maps on a space are
coincidence weakly Jiang, we say that the space itself is coincidence weakly Jiang.

Recall that a Jiang space is one for which the induced map x∗0 : π1(XX , 1X) →
π1(X,x0) is surjective. These spaces have the property that if the Lefschetz number
L(f, g) = 0, then N(f, g) = 0, and otherwise N(f, g) = R(f, g). A Jiang space
will be coincidence weakly Jiang, and in particular tori are coincidence weakly Jiang.
On the other hand, there are many pairs of maps that will be coincidence weakly
Jiang, where the spaces are not actual Jiang spaces. Our primary example of this
phenomenon occurs on the Klein bottle (see Example 4.14).

Example 2.4. Let f, g : S1 → S1 be maps of degree 6 and 2 respectively. For maps
on circles our fundamental groups will be Z, and our maps f∗, g∗ are multiplication
by 6 and 2, respectively. By exactness in Theorem 2.1 we have R(fn∗ , g

n
∗ ) ∼= Z|6n−2n|,

and since S1 is a Jiang space and L(6n, 2n) 6= 0 we have

R(f∗, g∗) ∼= Z4, R(f2∗ , g
2
∗)
∼= Z32, R(f3∗ , g

3
∗)
∼= Z208, and R(f6∗ , g

6
∗)
∼= Z46592,

with respective Nielsen numbers 4, 32, 208 and 46592.
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3 Relations among iterates. Geometric and Alge-
braic reductions.

In order to avoid giving too much detail, we are assuming that the reader has a basic
familiarity with Nielsen periodic point theory. In this regard, we would point the
reader to the survey article [8], which we also use as our main reference. At times we
will also refer to Jiang’s original ground breaking work [19], as well as early expositions
and expansions of it ([13, 14]).

We do of course need to give the coincidence analogues of the foundational def-
initions in periodic point theory, and we do so in this section. Also when we want
specifically to compare periodic point concepts with the theory we develop here, we
will recall the appropriate definitions. Our point is to indicate where and why straight-
forward generalizations of periodic point theory to coincidences fail.

3.1 Reducible and irreducible Nielsen classes

In the preliminary section we outlined existing coincidence Nielsen theory as it applies
to iterates of self maps f, g : X → X. However, just as Nielsen periodic point
theory is much more than the study of the Nielsen numbers of iterates, so our work
is more involved than the study of the Nielsen coincidence numbers of iterates. As
mentioned in the introduction, our work is also complicated by a number of obstacles
we encounter in our attempt to generalize periodic point theory. In Example 1.1 we
saw a case where

Φ(fn, gn) 6=
⋃
m|n

Φ(fm, gm).

On the other hand, the corresponding equality in periodic point theory always holds.
In fact, the equality holds for coincidences when the two maps commute, but we need
to state this in the following slightly different form:

Lemma 3.1. If the self maps f, g of X commute, then for all positive integers q we
have that

Φ(fm, gm) ⊂ Φ(fqm, gqm).

In particular if f(x) = g(x) for some x then fn(x) = gn(x) for all positive n.

Proof. The inductive step starts with the proof that fm(x) = gm(x) implies that
f2m(x) = g2m(x). The rest is straightforward. So let fm(x) = gm(x), then f2m(x) =
fm(fm(x)) = fm(gm(x)) = gm(fm(x)) = gm(gm(x)) = g2m(x).

This respects Nielsen equivalence to give:

Lemma 3.2. If the self maps f, g of X commute, then for all m | n, the inclusion
map induces a function γm,n : Φ(fm, gm)/ ∼ → Φ(fn, gn)/ ∼ which takes the class
of x at the mth level to the class of x at the nth level.

So unlike the fixed point case the γm,n need not exist, and as Example 1.1 shows it
is not enough that the induced homomorphisms f∗ and g∗ commute (in that example
we have π1(X) ∼= Z and so all maps commute in the algebra). This will complicate our
discussion of the relationship between the algebra, which is homotopy invariant, and
the geometry, which is not. As in the fixed point case the γm,n need not be injective
even when they exist (replace g in Example 1.1 with the identity, and consider n = 2).
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There is another immediate obstacle to our attempt to generalize Nielsen peri-
odic point theory. In particular Nielsen periodic point theory of a self map f works
with f orbits of classes, rather than simply with classes. Recall that the period
of x ∈ Φ(fn), is the smallest positive integer m | n such that fm(x) = x. The
list {x, f(x), · · · , fm−1(x)} is called the orbit of x. The algebraic orbit is the list
{ρn([x]n), ρn([f(x)]n), · · · }, and its length will divide m. Nielsen periodic point the-
ory counts depth of algebraic orbits, rather than classes. This is because there can
be Nielsen equivalences (at level m) between different elements f i(x) and f j(x) in
the above list. When this happens the algebraic length of the orbit (the number
of classes in an orbit counted algebraically) is shorter than the geometric length of
points, and so counting classes gives an inadequate count of the actual minimum num-
ber of points present. This idea is encapsulated in the following fundamental lemma
from [13, Proposition 1.3], and is the primary reason we consider orbits in Nielsen
periodic point theory rather than classes. The notation is taken from [8], where the
angle brackets denote f∗ orbits of classes. We will be discussing algebraic reductions
of coincidence classes later in this section.

Lemma 3.3. ([13, Proposition 1.3]) In Nielsen periodic point theory, the (algebraic)
length of an orbit 〈[α]n〉 divides its depth (the minimum integer to which 〈[α]n〉 reduces
algebraically). If 〈[α]n〉 is essential and has depth d, then 〈[α]n〉 contains at least d
periodic points.

So then in Nielsen periodic point theory, the use of orbits is seen to come into its
own when the length of orbit is strictly less than its depth (d say). At the risk of
being repetitious what this means is that such orbits contains at least d points, but the
number of classes is strictly less than d. If in the definition of the first periodic point
number (denoted NPn(f)) we simply counted the number of irreducible essential
classes, we would be defining a Nielsen number that, in general, had no chance of
being a sharp lower bound. This was the fundamental mistake that Halpern made
in his famous innovative and useful, but unpublished preprint ([6]). The standard
example, due to Jiang, comes from a self map of RP3 (see [19, 13]), where for certain
n a single irreducible class (which contains entire geometric orbits) contains at least
n periodic points.

One implication of all of this in periodic point theory is that the length of an
orbit at level 1 must necessarily be equal to 1. This can also be seen by the equation
α = αf∗(α)f∗(α

−1), which shows that α and f∗(α) are Reidemeister equivalent at
level 1. This is not the case for iterates of coincidence classes, and the difficulty in
producing a cohesive theory of orbits in a Nielsen theory of coincidences of iterates is
revealed at this very first level (level 1). To say more, let x ∈ Φ(f, g). Consider the list
{x, f(x), · · · , fm−1(x), · · · }, or we could look at the list {x, g(x), · · · , gm−1(x), · · · }.
We call these lists the trajectories of x under f and g respectively. By Lemma 3.2
these trajectories are the same when f and g commute. The trajectories are perhaps
the obvious candidates for orbits in any generalization of periodic point theory, but
they do not have the desired properties. In particular, even at the first level the
algebraic trajectory length need not be 1.

Example 3.4. Let X = S1, and define self-maps f and g of X by f(eiθ) = e4iθ, and
g(eiθ) = e−3iθ. Then f and g commute. Now Φ(f, g) = {e2kπi/7 | k = 0, 1, · · · , 6},
and the trajectory of 2πi/7 is the set {e2πi/7, e8πi/7, e4πi/7}.

Since we cannot use the notion of orbit to count coincidence points, we must fall
back on counting appropriate classes. In light of the fundamental lemma for periodic
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points (Lemma 3.3) this may appear as a severe disadvantage. In fact for the vast
majority of the spaces we use in our examples this is not the case. This is because
in our examples when the appropriate ordinary coincidence Nielsen numbers are non-
zero the classes can be made into singletons. Actually the only exception is Example
6.9 which we use to illustrate that we can define orbits when g is invertible. Without
going into too much detail, the point is that the orbit definition has no advantage
over definitions that count classes when the spaces are tori or nil or solvmanifolds.
The technical name for this in periodic point theory is essential torality (see Section
4). This definition does not make sense in our theory, but what we want to say is that
for these spaces even if we could define orbits, it would not increase the number of
coincidence points we could detect (see Remark 6.4). In other words for these spaces
there would be no advantage in using orbits anyway.

3.2 Reducible and irreducible Reidemeister classes

We come now to the algebraic counterpart ιm,n of the geometric “boosting functions”
γm,n. As with the γm,n, we need conditions on f and g in order for the ιm,n to be well
defined on (Reidemeister) classes. It is of course an algebraic condition, and what
we require here is only that the induced homomorphisms f∗, g∗ : π1(X) → π1(X)
commute.

Definition 3.5. Suppose for given self maps f, g : X → X that the induced homo-
morphisms f∗, g∗ : π1(X) → π1(X) commute. Let m | n be integers, then the m to
n level coincidence boosting functions (or simply boosting functions) ιm,n are defined
by the equation

ιm,n(α) = Π
n
m

`=0g
n−(`+1)m
∗ f `∗(α)

=

n
m∑
`=0

g
n−(`+1)m
∗ f `∗(α) when π1 abelian


= gn−m∗ (α)gn−2m∗ fm∗ (α) · · · gm∗ fn−2m∗ (α)fn−m∗ (α).

The following lemma is straightforward and its proof is left to the reader.

Lemma 3.6. When f∗ and g∗ commute, then the ιm,n are well defined on Reidemeis-
ter classes. �

We abuse notation and use ιm,n to denote boosting function on both π1(X) and
on Reidemeister classes.

Example 3.7. Continuing Example 2.4 we considered maps of S1 of degrees 6 and
2 which clearly commute at the level of π1(S1). From now on we will identify each
of these maps with its respective integer. In addition in this example, the boosting
functions ι can be represented by multiplication by an integer (mod (6n − 2n)), and
we will further abuse notation by identifying them with the said integer. Thus

ι1,6 = 65 + 2 · 64 + 22 · 63 + 23 · 62 + 24 · 6 + 25 = 11648,

ι2,6 = 64 + 22 · 62 + 24 = 1456,

and ι3,6 = 63 + 23 = 224.

The proof of the following lemma is an easy generalization of the periodic point
case in [7, Lemma 3.1].
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Lemma 3.8. On the nose boosting. Let [α]n ∈ R(fn, gn) be a Reidemeister class
that reduces to a class [β]m at level m. Then for any σ ∈ [α]n, there is a τ ∈ [β]m for
which ιm,n(τ) = σ in π1(X). �

The following can be verified by an easy calculation from the definitions of the ρk,
the geometric and algebraic boosts and Lemma 3.2 (see [13, Proposition 1.14] for the
corresponding proof in periodic point theory).

Lemma 3.9. Suppose that f, g : X → X induce commuting homomorphisms on
π1(X). Let k | m | n be integers, then we have that ιk,n = ιm,nιk,m. Furthermore if f
and g commute as functions, then the following diagram exists

Φ(fm, gm)/ ∼ ρm−−−−→ R(fm∗ , g
m
∗ )

γm,n

y yιm,n

Φ(fn, gn)/ ∼ ρn−−−−→ R(fn∗ , g
n
∗ ),

and is commutative. �

It would of course, be possible to define a theory of coincidences of iterates by
restricting to maps f and g that commute geometrically. In light of Lemma 3.9,
this might make the theory look closer to perioidic point theory. But this is far too
restrictive an assumption, and it is also poorly behaved under homotopy. In fact
commutativity of the maps on π1(X) is sufficient to allow boosting (Lemma 3.6) and,
as we shall see, is still general enough to do interesting examples.

Definition 3.10. Let f, g : X → X be maps. We say [α]n ∈ R(fn∗ , g
n
∗ ) is reducible

to [β]m ∈ R(fm∗ , g
m
∗ ) if ιm,n([β]m) = [α]n. If [α]n is not reducible to any level m < n

then it is irreducible. We say that [α]n has depth d if d is the smallest integer for
which there is a class [δ]d to which [α]n reduces.

As in periodic point theory, even without the assumption that f and g commute
geometrically, if [α]n is in the image of no ιm,n for any m | n, then there can be no
geometric coincidence points of fm and gm whose Reidemeister class in R(fm∗ , g

m
∗ )

boosts to [α]n. In fact there can be no coincidence points of fm1 and gm1 whose class
boosts to [α]n for any f1 ' f and g1 ' g. So then our algebraic constructions are still
useful in detecting geometric behaviour even when the maps are not geometrically
commutative.

4 The analogue NPn(f, g) of the periodic point num-
ber NPn(f).

As in the introduction we use the symbols Pn(f, g) to denote the set of points x
with fn(x) = gn(x) but fm(x) 6= gm(x) for any m | n, and MPn(f, g) to denote
the minimum min #{Pn(f1, g1) | f1 ' f and g1 ' g}. The aim in this section is to
define a suitable lower bound for MPn(f, g), give some of its properties together with
a number of examples.

Definition 4.1. Let f, g : X → X be maps with f∗g∗ = g∗f∗ : π1(X) → π1(X).
We define NPn(f, g) as the number of irreducible essential Reidemeister classes of
R(fn∗ , g

n
∗ ).
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Theorem 4.2. NPn(f, g) is homotopy invariant in f and g, and

NPn(f, g) ≤MPn(f, g) ≤ #(Pn(f, g)).

Proof. The homotopy invariance holds because NPn is defined only in terms of the
induced maps f∗ and g∗, and the inequality on the right is obvious.

For the other inequality, let f and g be arbitrary. We need only show that
NPn(f, g) ≤ #(Pn(f, g)). Accordingly, let [α]n ∈ R(fn∗ , g

n
∗ ) be an essential irreducible

class. Because [α]n is essential, there is a coincidence point x with coincidence class
An with fn(x) = gn(x) and ρn(An) = [gn(c)fn(c−1)]n = [α]n, where c is any path
from x0 (the base point) to x. It suffices to show that x ∈ Pn(f, g). If this is so, then
this process will define an injection from the irreducible essential Reidemeister classes
into Pn(f, g) establishing the inequality.

For the sake of deducing a contradiction, assume that x 6∈ Pn(f, g), that is, there
is some m such that fm(x) = gm(x) with m | n, and m 6= n. Then we will have
x ∈ Bm where Bm is the coincidence class of x at level m. Let [β]m = ρm(Bm) =
[gm(c)fm(c−1)]m. Then by the definition of ιm,n we have that ιm,n(ρm(Bm)) =
ιm,n([gm(c)fm(c−1)]m) = [gn(c)fn(c−1)]n = [α]n, contradicting the irreducibility of
[α].

Our first task is to compare NPn(f, id) with NPn(f) (id is the identity). Recall, in
the context of periodic point theory, that a map f : X → X is said to be essentially
toral ([9]) if, for all m | n and every [α]m ∈ RE(fm∗ ), the depth of [α]m and the
orbit length of [α]m coincide, and the boosting functions are injective on essential
boosts. As already discussed, the first part of this simply means we may as well
define NPn(f) to be the number of irreducible essential classes. For all but one of
our examples (Example 6.9), the maps involved are (individually) essentially toral.
see [9, Corollary 4.6]

Proposition 4.3. Let f : X → X be a self map, then NPn(f) ≥ NPn(f, id). If f is
essentially toral, then NPn(f, id) = NPn(f). �

At this point in the exposition of periodic point theory in [13] we would be working
towards a Möbius inversion type result on a certain class of maps on Jiang spaces,
in particular on tori. The generalization of this result applied to Example 2.4, would
say that NP6(f, g) = N(f6, g6)−N(f3, g3)−N(f2, g2) +N(f, g). As we shall see
below, the coincidence version of this is false in general (even when f and g commute).
We do have a weaker version of this result, but before we can state it, we need the
following coincidence analogue of a definition from [9].

Definition 4.4. (c.f. [9]) We say that the pair f , g is coincidence essentially re-
ducible provided that for any essential class [α]n of fn and gn, if [α]n reduces to
some class [β]m, then [β]m is also essential. If for a given space X any pair of self
maps is coincidence essentially reducible then we say that X is coincidence essentially
reducible.

For g = id, the identity on a torus, the pair f , g is always coincidence essentially
reducible. In periodic point theory there are simple examples of maps that are not
essentially reducible, but these tend to be maps on non manifolds, and so do not
provide examples in our setting (the coincidence index is in general not defined for
non-manifolds). For coincidences of iterates (consistent with Definition 3.5) , we need
the assumption that the induced maps commute at the level of the fundamental group.
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Theorem 4.5. If f and g are maps of tori for which the induced maps on the fun-
damental groups commute, then the pair f , g is coincidence essentially reducible.

The proof in [9], that tori are essentially reducible for periodic point theory, uses
the linearization of the self map f under consideration. In particular it uses the
linearization F of f , and the fact that N(fn) = |det(F − I)|, where I is the identity
matrix. We need a slightly different proof than the one given in [9], but we will use
Theorem 2.2. We also use the fact that with respect to both fixed and coincidence
point theory tori are Jiang spaces and hence also weakly Jiang (Definition 2.3).

Proof. Suppose that some class at level m say, is essential. Then every class at level
m is essential. We show that every class at level k | m is also essential, or equivalently
that N(fk, gk) 6= 0 . Accordingly let F and G be the linearizations of f and g
respectively. Now we have that N(fm, gm) = |det(Fm −Gm)| 6= 0. Let r = m

k . By
hypothesis F and G commute, so Fm − Gm = (F k − Gk)(F r + F r−1G + · · · + Gr).
So N(fk, gk) = |det(F k −Gk)| 6= 0 or else we would have that |det(Fm−Gm)| = 0,
a contradiction.

The next result is our weaker version of Möbius inversion, which requires only
essential reducibility. The periodic point analogy of the second inequality holds true,
but this is not the case for the first inequality (see also Example 6.9, and the discussion
in Section 6).

Theorem 4.6. Let P (n) = {p(1), p(2), · · · , p(k)} be the set of primes dividing n,
and suppose that the pair f , g is essentially reducible. Then

N(fn, gn) ≥ NPn(f, g) ≥ N(fn, gn)−
k∑
i=1

N(fn:i, gn:i),

where n : i = n · (p(i))−1.

Proof. If N(fn, gn) = 0 there is nothing to prove. When N(fn, gn) 6= 0 we write
RE(fn∗ , gn∗ ) = RIE(fn∗ , gn∗ ) ∪ RE(fn∗ , g

n
∗ ), where RIE(fn, gn) is the set (with car-

dinality NPn(f, g)) of essential irreducible algebraic classes in R(fn∗ , g
n
∗ ). The set

RE(fn, gn) consists of the reducible essential classes, and of course the union is dis-
joint.

We show that #RE(fn∗ , g
n
∗ ) ≤ #

⊔k
i=1RE(fn:i∗ , gn:i∗ ) (where t denotes disjoint

union). In fact we construct an injection ψ : RE(fn∗ , g
n
∗ ) →

⊔k
i=1RE(∗fn:i, gn:i∗ ). So

let [α]n ∈ RE(fn∗ , g
n
∗ ), and let m | n with m 6= n be the maximal integer for which

there exists a [β]m ∈ RE(fm∗ , gm∗ ) with ιm,n([β]m) = [α]n. Necessarily m = n : i for
some i. Define ψ([α]n) = [β]m. Clearly ιm,nψ is the identity, thus ψ is injective, and

#RE(fn∗ , g
n
∗ ) ≤

∑k
i=1 #RE(fn:i∗ , gn:i∗ ). Thus

N(fn, gn) = NPn(f, g) + #RE(fn, gn)

≤ NPn(f, g) +

k∑
i=1

#RE(fn:i∗ , gn:i∗ )

= NPn(f, g) +

k∑
i=1

N(fn:i, gn:i),

which implies the result.
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Actually Theorem 4.6 gives a new result in periodic point theory namely:

Corollary 4.7. If f : X → X is a map of a solvmanifold X, then with the notation
of Theorem 4.6 we have that

N(fn) ≥ NPn(f) ≥ N(fn)−
k∑
i=1

N(fn:i).

The following example further illustrates Theorem 4.6, and will provide a coun-
terexample to Möbius inversion of the type found in [13].

Example 4.8. Continuing examples 2.4 and 3.7 where we considered maps of S1 of
degrees 6 and 2 with n = 6 then from Theorem 4.6 we have that

46592 ≥ NP6(f, g) ≥ 46592− 32− 208 = 46352.

We now show that NP6(f, g) 6= N(f6, g6) − N(f3, g3) − N(f2, g2) + N(f, g) =
46352 + 4 = 46356. From the proof of theorem 4.6, we have that NP6(f, g) =
R(fn, gn) − #

⋃
m|n Im(ιm,n) = 46592 − #(Im(ι2,6) ∪ Im(ι3,6)). (Im denotes the

image of a homomorphism.) So in particular, we need to compute the cardinality
of the intersection Im(ι2,6) ∩ Im(ι3,6). In 3.7 we computed the boosts from 2 to 6
and from 3 to 6 to be multiplication by 1456 and 224 respectively. Thus Im(ι3,6)
is the subgroup of Z46592 of order 208 generated by 224, and similarly Im(ι2,6) is
the subgroup of Z46592 of order 32 generated by 1456. So Im(ι2,6) ∩ Im(ι3,6) is the
subgroup of Z46592 generated by 2912, the least common multiple of 224 and 1456.
This subgroup is of order 46592/2912 = 16. So then by the principle of inclusion and
exclusion NP6(f, g) = 46592− 32− 208 + 16 = 46368 6= 46356.

We now start to work our way towards a full Möbius inversion formula. In many
ways we are generalizing directly from [9], but of course looking at classes not orbits.
This changes the definitions slightly.

Definition 4.9. Let f, g : X → X be coincidence essentially reducible. We say that
the pair f , g is injective on essential boosts to level n if for all m | n and for any
classes [β1]m, [β2]m at level m with ιm,n([β1]m) = ιm,n([β2]m) ∈ RE(fn∗ , gn∗ ) then we
have that [β1]m = [β2]m. If f , g are injective on essential boosts for all n, we say that
is f , g are injective on essential boosts.

Lemma 4.10. If π1(X) is abelian, f∗ and g∗ commute, and Coin(fn∗ , g
n
∗ ) = 0, then

the pair f , g is injective on essential boosts to level n. In particular if X is a torus
and det(Fn −Gn) 6= 0, then the pair F , G is injective on essential boosts to level n.

Proof. Since π1(X) is Abelian, for all m|n the functions ιm,n are homomorphisms,
and from Theorem 2.1 since Coin(fn∗ , g

n
∗ ) = 0, we have that gn∗ −fn∗ : π1(X)→ π1(X)

is injective. Now let m | n and [β]m ∈ RE(fm∗ , gm∗ ) be such that ιm,n([β]m) = [0]n.
Since the ιm,n are homomorphisms we need only show that [β]m = [0]m.

So let β ∈ [β]m. Since ιm,n([β]m) = [0]n, then ιm,n([β]m) ∈ Ker(jn) = Im(gn∗ −
fn∗ ) from exactness in Theorem 2.1. So then there is a γ ∈ π1(X) such that (gn∗ −
fn∗ )(γ) = ιm,n(β). Composing with gn∗ − fn∗ we have:

(gn∗ −fn∗ )(gm∗ −fm∗ )(γ) = (gm∗ −fm∗ )(gn∗ −fn∗ )(γ) = (gm∗ −fm∗ )ιm,n(β) = (gn∗ −fn∗ )(β).

But gn∗ − fn∗ is injective, so actually β = (gm − fm)(γ). But this means (again from
exactness in Theorem 2.1) that [β]m = [0]m as required.

For tori we have that π1(X) ∼= Zr for some r. So when det(Fn −Gn) 6= 0 then R
Ker(gn∗ − fn∗ ) ∼= Coin(fn∗ , g

n
∗ ) = 0, and the result follows from the first part.
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Definition 4.11. Let f, g : X → X be maps. We say that the pair f , g is coincidence
essentially reducible to the gcd, if they are coincidence essentially reducible, and when-
ever [α]n ∈ RE(fn∗ , gn∗ ) reduces to both [β]m ∈ RE(fm, gm) and [γ]k ∈ RE(fk∗ , gk∗ ),
then there is a [δ]d ∈ RE(fd, gd) with d = gcd(m, k) to which both [β]m and [γ]k

reduce. If every pair f, g is coincidence essentially reducible to the gcd, we say that
X is coincidence essentially reducible to the gcd.

Example 4.12. The continuing examples 2.4, 3.7 and 4.8, where f = 6 and g = 2
show that not all maps of tori satisfy the above definition. It is here that the Möbius
formula breaks down. In particular if this example were essentially reducible to the
gcd then we would have that the intersection Im(ι2,6) ∩ Im(ι3,6) would coincide with
Im(ι1,6) which as 4.8 shows it does not.

We will prove the following theorem in the appendix.

Theorem 4.13. Let f, g : S1 → S1 be maps of degrees a, b ∈ Z respectively. Then
f, g is coincidence essentially reducible to the gcd if and only if gcd(a, b) = 1.

Example 4.14. The Klein Bottle example Part I. Let K2 denote the Klein
Bottle. We regard K2 as the quotient space of R2 under the equivalence relation
defined by (s, t) ∼ ((−1)ks, t + k) and (s, t) ∼ (s + k, t) for any k ∈ Z. The Klein

bottle fibres as S1 → K2 p→ S1, where p is induced by projection on the second
factor. Given any pair of integers q, r for which r is odd, or r is even and q = 0,
the correspondence (s, t) → (qs, rt) modulo the equivalence relation defined above,
induces a well defined, fibre preserving map on K2. We abuse notation and denote
this map by (q, r). Since p is the projection on the second factor, the map on the base
is the standard map of degree r, and the restriction to the principle fibre over the
base point has degree q. We point the reader to [9, 10] for details of all this. Let (a, c)
and (b, d) be two such well defined maps on K2. If gcd(a, b) = 1 and gcd(c, d) = 1,
then the pair of maps (a, c) and (b, d) is injective on essential boosts and essentially
reducible to the gcd.

Remark 4.15. A rigorous verification of this example is beyond the scope of this
paper. The proofs however do not contain anything that is really new. They rely on
coincidence versions of the fibre techniques used in [9], where a number of different
properties of the fibre preserving maps are deduced from the very same properties on
each of the fibres and the base (see for example [9, 4.4, 4.12]).

In Section 6 we will indicate the general theme in the coincidence theory of a pair
f, g that the analogues of the strong results of periodic point theory hold when g is
invertible. The following theorem shows that simply requiring g∗ (but not g) to be
invertible can also often yield strong results.

Theorem 4.16. Suppose that π1(X) is Abelian, the pair f , g is coincidence essen-
tially reducible, that the pair f∗, g∗ commute at the level of π1(X), are injective on
essential boosts, and that g∗ : π1(X) → π1(X) is invertible. Then the pair f , g is
coincidence essentially reducible to the gcd.

The proof below is a modification of Boju Jiang’s proof of a similar result in
periodic point theory (see [19, Proposition 4.4]). Our analogue of reducible to the gcd
is more specific than Jiang’s concept, in that he does not require δ in the proof below
to boost to β and γ. It is here where we need injectivity on essential boosts.
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Proof. For this proof (and actually for the Appendix as well), we want to refer both
to coincidence boostings and periodic point boostings. So for these two places, we
use the notation ιf∗,g∗p,q to refer to the sum (product) in Definition 3.5 (π1 is Abelian
here), and we use the notation ιt,1p,q to refer to the sum (to the corresponding product
in Section 6)

ιx,1p,q = 1 + xp + x2p · · ·+ xq−p,

where x is an arbitrary function on π1(X) and of course 1 is the identity function.
Now let [α]n ∈ R(fn∗ , g

n
∗ ) be essential and reducible to both [β]k ∈ R(fk∗ , g

k
∗ ), and

[γ]m ∈ R(fm∗ , g
m
∗ ). As in [19] we may without loss assume that d = gcd(k,m) = 1

(or we can work with the maps fd and gd). By Lemma 3.8, we may assume without
loss, that we have representatives α, β and γ of [α]n, [β]k and [γ]m respectively, in

π1(X) such that ιf∗,g∗k,n (β) = α and ιf∗,g∗m,n (γ) = α. Now since g∗ is invertible, we have
that

ιf∗,g∗k,n (β) =
(
gn−k∗ + gn−2k∗ fk∗ + · · ·+ gk∗f

n−2k
∗ + fn−k∗

)
(β)

= gn−k∗
(
1 + (g−1∗ f∗)

k + · · ·+ (g−1∗ f∗)
n−2k + (g−1∗ f∗)

n−k) (β).

= gn−k∗ ι
g−1
∗ f∗,1
k,n (β) = α.

Similarly ιf∗,g∗m,n (γ) = gn−m∗ ι
g−1
∗ f∗,1
m,n (γ) = α, and ιf∗,g∗1,n (δ) = gn−1∗ ι

g−1
∗ f∗,1

1,n (δ) for any
δ.

Since gcd(k,m) = 1 we may again without loss, assume we are given positive
integers a and b with ak − bm = 1. Let P (x) = 1 + xk + ... + x(a−1)k and Q(t) =
−x(1 + xm + ...+ x(b−1)m), then

P (x)(1 + x+ · · ·+ xk−1) +Q(x)(1 + x+ · · ·+ xm−1) = 1,

or P (x)ιx,11,k(γ) +Q(x)ιx,11,m(γ) = γ for all x.

Set δ = P (g−1∗ f∗)g
−k+1(β) + Q(g−1∗ f∗)g

−m+1(γ). We will use x = g−1∗ f∗ below.
Note that this commutes with everything in sight, and we have

ιf∗,g∗1,n (δ) = gn−1∗ ι
g−1
∗ f∗,1

1,n (δ)

= gn−1∗ ι
g−1
∗ f∗,1

1,n P (g−1∗ f∗)g
−k+1(β) + gn−1∗ ι

g−1
∗ f∗,1

1,n Q(g−1∗ f∗)g
−m+1(γ)

= P (g−1∗ f∗)g
n−k
∗ ι

g−1
∗ f∗,1

1,k ι
g−1
∗ f∗,1
k,n (β) +Q(g−1∗ f∗)g

n−m
∗ ι

g−1
∗ f∗,1

1,m ι
g−1
∗ f∗,1
m,n (γ)

= P (g−1∗ f∗)ι
g−1
∗ f∗,1

1,k gn−k∗ ι
g−1
∗ f∗,1
k,n (β) +Q(g−1∗ f∗)ι

g−1
∗ f∗,1

1,m )gn−mι
g−1
∗ f∗,1
m,n (γ)

= P (g−1∗ f∗)ι
g−1
∗ f∗,1

1,k (α) +Q(g−1∗ f∗)ι
g−1
∗ f∗,1

1,m (α) = α.

Since the pair f , g is coincidence essentially reducible, then δ is essential. That
ιf∗,g∗1,k (δ) = β and ιf∗,g∗1,m (δ) = γ follows from injectivity on essential boosts.

A correct proof of the periodic point analogue of the following theorem can be
found in [9] (there are errors in the proof in [14]). Since the proof contains no new
ideas, it is omitted.

Theorem 4.17. Suppose that the pair f , g is coincidence essentially reducible to the
gcd, that the pair f∗, g∗ commute, and are injective on essential boosts. If fn, gn are
coincidence weakly Jiang and N(fn, gn) 6= 0, then for all m | n we have

NPm(f) =
∑

τ⊂p(m)

(−1)#τN(fm:τ , gm:τ )
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where p(m) denotes the set of prime divisors of m and m : τ = m
∏
p∈τ p

−1. �

Example 4.18. The Klein Bottle example Part II Continuing example 4.14
assume that we have maps (a, c) and (b, d) with gcd(a, b) = 1 and gcd(c, d) = 1, then
from Example 4.14 the pair is injective on essential boosts, and essentially reducible to
the gcd. Moreover a 6= ±b and c 6= ±d, and a coincidence version of [9, corollary 4.26]
will give that the pair (a, c), (b, d) is weakly Jiang with N((a, c)n, (b, d)n) 6= 0 for any
n. Thus the pair (a, c), (b, d) satisfies the hypothesis of 4.17 for all n. Using the näıve
addition formula for coincidences ([15, 8] and coincidence distribution considerations
analogous to [11, theorem 4.8] we have

N((a, c)n, (b, d)n) =
|cn − dn|

2

1∑
j=0

|an + (−1)jbn)|.

Let (a, b) = (2, 3) and (c, d) = (3, 5), then we have

N(f, g) =
2

2
(1 + 5) = 6, N(f2, g2) =

16

2
(5 + 13) = 144,

N(f3, g3) =
98

2
(19 + 35) = 266, N(f6, g6) =

14896

2
(665 + 793) = 10859184,

so NP6(f, g) = 10856400.

Example 4.19. Consider the following commuting matrices

F =

[
−2 2
1 2

]
and G =

[
−1 0
1 1

]
,

which we regard as maps of T 2. Note that G is invertible over Z, and that F and
G commute. So F and G are essentially reducible to the gcd at level n by Theorem
4.16. Recall that N(Fn, Gn) = |det(Fn −Gn)|, so by Theorem 4.17 we have

NP30(F,G) = |det(F 30 −G30)| − | det(F 15 −G15)| − | det(F 10 −G10)| − | det(F 6 −G6)|
+ |det(F 5 −G5)|+ |det(F 3 −G3)|+ |det(F 2 −G2)| − | det(F −G)|

= 221073919719792987930625− 470183304961− 60450625− 46225

+ 7561 + 181 + 25− 1 = 221073919719322744136580.

5 The analogue NΦn(f, g) of the periodic point num-
ber NΦn(f).

In Nielsen periodic point theory the second number NΦn(f) satisfies:∑
m|n

NPm(f) ≤ NΦn(f) ≤MΦn(f) = min{#Φ(fn1 ) | f1 ' f}.

In the introduction we saw in Example 1.1, that the numberMCn(f, g) = min{#Φ(fn1 , g
n
1 ) |

f1 ' f, g1 ' g} may not take into account coincidences of iterates at levels other than
n. So what then is our second number NΦn(f, g) to measure, or to put it another
way, of what is NΦn(f, g) to be a lower bound? In answering this question, we will
need to take into account the phenonomon encountered in the next example, which
shows that we can have

Pm(f, g) ∩ Pk(f, g) 6= ∅ for m 6= k.
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Example 5.1. For this example we consider the circle S1 as the interval [0, 1] with
endpoints identified. Let 0̄ = {0, 1} be the base point, and f the standard map
of degree 2 on the usual presentation of S1 as a quotient of R, conjugated with a
homeomorphism between the two presentations. Let ε ∈ (0, 1) be the real number
defined below, and let g be the degree one map g(x) = xε. Note that g([0, 1]) = [0, 1]
with g(0) = 0 and g(1) = 1 and so g is well-defined on S1.

We will show that there is a point q ∈ P3(f, g) ∩ P5(f, g). As we will see, there
are real numbers q ≈ 0.0349 and ε ≈ 0.1265 satisfying:

8q = q3ε,

32q = q5ε + 1.

To construct q and ε, let z = qε, then z5 − 4z3 + 1 = 0. Let z be the real root
near .6541, then z3 = 8q, so q = z3/8. We can then solve for ε, and we have that
f3(q) = 8q = q3ε = g3(q) and f5(q) = 32q = q5ε in S1, but f(q) 6= g(q). We have
shown for this example that P3(f, g) ∩ P5(f, g) 6= ∅.

The phenomenon of the example cannot of course happen in periodic point theory.
If f3(x) = x = f5(x), then f(x) = f6(x) = f3(f3(x)) = x! We will say more later.
For now it should be clear that in defining NΦ15(f, g) in this example, we would need
to take account of the classes of q at both level 3 and at level 5. It is this that lies
behind our defintion of MΦn(f, g) which we recall from the introduction is defined to
be:

MΦn(f, g) = min{#
⊔
m|n

Pm(f1, g1) | f1 ' f, g1 ' g}.

The main goals of this section are to define a Nielsen type number NΦn(f, g), show
it is a lower bound for MΦn(f, g), and give some of its properties together with a
number of examples. We adapt the definition of the periodic point number NΦn(f)
taking account of the following: In periodic point theory NΦn(f) is defined in terms
of sets of n-representatives of orbits and of the heights and depths thereof. Since (as
in the definition of NPn(f, g)) we cannot use orbits (and so neither height nor depth),
we simply work with classes. Apart from this the definitions are entirely analogous.

For a fixed positive integer n, a set

G ⊂
⊔
m|n

R(fm∗ , g
m
∗ )

is called a coincidence set of n-representatives for f and g if each class of
⊔
m|nRE(fm∗ , gm∗ )

reduces to, or is equal to, some element of G, where as usual RE(fm∗ , gm∗ ) denotes the
set of essential Reidemeister classes at level m.

Definition 5.2. Let f, g : X → X be maps with f∗g∗ = g∗f∗ : π1(X)→ π1(X). The
full Nielsen type number NΦn(f, g) is defined to be the minimal size among all sets
of coincidence n representatives.

We are grateful to the referee for the following example.

Example 5.3. Let f : S2 → S2 be the antipodal map defined on x ∈ S2 to be f(x) =
−x, and let g be the identity. Since π1(S2) is trivial, there is just one Reidemeister
class at each level. At level 2, the class is essential and reducible. At level 1, the class
is inessential, and in fact empty. There are two minimum sets of 2-representatives
each consisting of one of the classes just defined. So then NΦ2(f, 1) = NΦ2(f) = 1.
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It seems worth noting that the pair f , 1 is not essentially reducible.

Theorem 5.4. The number NΦn(f, g) is homotopy invariant, and satisfies the in-
equalities: ∑

m|n

NPm(f, g)) ≤ NΦn(f, g) ≤MΦn(f, g).

If the pair f , g is coincidence essentially reducible then

NΦn(f, g) =
∑
m|n

NPm(f, g).

Example 5.3 shows that the left inequality above may be strict.

Proof. The proof of homotopy invariance is analogous to the proof in [14] for periodic
points, and involves considering what turn out to be isomorphic systems of coincidence
n-representatives. In fact, the only real difference is that we deal here with classes,
rather than with orbits.

For the second inequality, recall that MΦn(f, g) is defined in terms of the disjoint
union of the Pm(f, g). By homotopy invariance we need only show, for an arbitrary
pair f , g that #(

⊔
m|n Pm(f, g)) ≥ NΦn(f, g). We use

⊔
m|n Pm(f, g) to define a set

of n representatives as follows. Let x ∈
⊔
m|n Pm(f, g), then x ∈ Pj(f, g) for some

j | n. So ρj([x]) ∈ R(f j∗ , g
j
∗). Let S be the set of all such ρj([x]) for all x and for

all j, and let [α]k ∈ RE(fk∗ , gk∗ ) be arbitrary, where k | n. To show that S is a set of
n-representatives, we must show that [α]k, reduces to some element of S. Since [α]k

is essential, then [α]k = ρk([x]) for some x ∈ Φ(fk, gk). Let m | k be the least positive
integer such that x ∈ Φ(fm, gm), then x ∈ Pm(f, g). It is not hard to see from the
definitions that ρm([x]) boosts to [α]k, even if f and g do not commute (so we cannot
use Lemma 3.9). We can of course use the same path to define the ρ at levels m and
k. Thus S is indeed a set of n-representatives and

#(
⊔
m|n

Pm(f, g)) ≥ #(S) ≥ NΦn(f, g),

as required.
The first inequality follows since any set of n-representatives will contain the set

of all irreducible essential classes. In particular we will always have that #G ≥∑
k|nNPn(f, g) for any set of n-representatives G. Equality occurs exactly when G

is the set of all irreducible essential classes, and this happens when the pair f , g is
coincidence essentially reducible

Remark 5.5. We want to make a comment about what could happen in this proof
if we defined MΦn(f, g) in terms of the ordinary rather than the disjoint union. The
main point is that because, as in Example 5.1, the Pm need not be disjoint, nor can
we (automatically) assume that coincidence classes are not singletons, so then neither
can we deduce that #(

⋃
m|n Pm(f, g)) ≥ #(S). We will come back to this point in

section 8 where we discuss related open questions.
By analogy with Proposition 4.3, we compare NΦn(f, id) and NΦn(f).

Proposition 5.6. If f : X → X is essentially toral, then NΦn(f, id) = NΦn(f). �
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Theorem 5.7. We have NΦn(f, g) ≥ N(fm, gm) for all m | n. Moreover if f, g
are coincidence essentially reducible to the gcd at level n with fn and gn coincidence
weakly Jiang, N(fn, gn) 6= 0 and the ιm,n injective on essential boosts for all m | n,
then

NΦn(f, g) = N(fn, gn).

Proof. The first part is easy, since any set of n-representatives must contain at least
one class to which each of the essential class of R(fn, gn) reduce. Apart from the
fact that we are working with classes rather than orbits, the second part of the proof
works without modification from periodic point theory (see [9, 10]).

Examples 5.8. Continuing example 4.18 on the Klein Bottle, we have thatNΦ6(f, g) =
N(f6, g6) = 10859184. Continuing Example 4.19 on the 2 Torus, we have that
NΦ30(F,G) = N(F 30, G30) = 221073919719792987930625.

The next result generalizes its analogue in [14], and shows what happens, in The-
orem 5.7, when we allow N(fn, gn) to be equal to zero. Its proof contains nothing
new and is omitted. For given f, g : X → X, and a fixed natural number n, we define
the set M(f, g, n) as the set of m | n with N(fm, gm) 6= 0.

Theorem 5.9. Suppose for a fixed positive integer n we have that for each m ∈
M(f, g, n) the pair f, g is essentially reducible to the gcd at level m, that the fm, gm

are weakly Jiang, and furthermore that the ιq,m are injective on essential boosts for
each q | m. Then

NΦn(f, g) =
∑

∅6=µ⊆M(f,g,n)

(−1)#µ−1N(fξ(µ), gξ(µ)),

where ξ(µ) is the gcd of the elements of µ. Furthermore, Möbius inversion can be
used to obtain the NPq(f, g) for each q | m for m ∈M(f, g, n).

6 Connections with Periodic point theory when g is
invertible.

This section should be thought of as an extended remark, rather than a section where
rigorous proofs are given. Our intention is simply to inform intuition. We start
with the fact that when g is invertible and f and g commute, the set of coincidences
of iterates for the pair f, g is exactly the same as the set of periodic points of the
map g−1f . If in addition X is essentially toral (where in the context of periodic
point theory, counting points by depth of orbit has no advantage), then there is an
“isomorphism” of the coincidence Nielsen theory of iterates given here, and the Nielsen
periodic point theory of g−1f . With the exception of Example 6.9 which is given in
this section for the purpose of illustration, all examples given in this paper are on
spaces that in the periodic point sense are essentially toral.

6.1 Relationships for invertible g, with the periodic point num-
bers NPn(g−1f) and NΦn(g−1f).

If we specifically assume that g is invertible, and that f and g commute, then the
coincidence points of fn and gn are exactly the same as the fixed points of (g−1f)n.
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To see this, suppose that gn(x) = fn(x), then (composing both sides with g−n) we
have x = g−n(fn(x)) = (g−1f)n(x). This of course is reversible. Note that this
requires the commutativity of f and g as maps. On the other hand, we need only
the invertibility of g∗, together with the commutativity of f∗ and g∗, to effect a well
defined correspondence between R(fn∗ , g

n
∗ ) and R((g−1∗ f∗)

n). In fact this one to one
correspondence goes much deeper, as we will now state, but do not prove. We use
the notation of [8].

Theorem 6.1. If g∗ is invertible, and f∗ and g∗ commute at the π1 level, then for
all m | n the homomorphisms g−m∗ : π1(X) → π1(X) induce well-defined bijections
g−m∗ : R(fm∗ , g

m
∗ ) → R((g−1∗ f)m), and the left hand diagram below commutes. If g

itself is invertible, and f and g commute as maps, then the equality in the right hand
diagram exists, and the diagram commutes.

R(fm∗ , g
m
∗ )

ιf∗,g∗
m,n−−−−→ R(fn∗ , g

n
∗ )

g−m
∗

y yg−n
∗

R((g−1∗ f∗)
m)

ι
g
−1
∗ f∗,1

m,n−−−−−→ R((g−1∗ f∗)
n)

Φ(fn, gn)/ ∼ ρn−−−−→ R(fn∗ , g
n
∗ )∥∥∥ yg−n

∗

Φ((g−1f)n)/ ∼ ρn−−−−→ R((g−1∗ f∗)
n)

where notation for the boosts are the product versions of those in the proof of Theorem
4.16. �

In order to avoid getting into too many technical considerations, we make the
following definition.

Definition 6.2. Let f∗ and g∗ commute and g∗ be invertible. We say that the
function g−m∗ : R(fm∗ , g

m
∗ ) → R((g−1∗ f)m) is essentiality preserving at level m if a

class [α]m ∈ R(fm∗ , g
m
∗ ) is essential if and only if the class g−m∗ ([α]m) is essential in

R((g−1∗ f)m).

In the context of tori, when N(f, g) or N(g−1f) 6= 0 (see below), then all fixed
or coincidence classes of linearized maps are singletons and essential. So then all the
examples in this paper on tori are easily seen to be essentiality preserving at every
level. It is a bit more work to see that the definition is satisfied for pairs of commuting
maps on nil and solvmanifolds. The product theorem for semi-index ([16]), together
with the usual product formula for the fixed point index can be used in this regard.
The definition holds in Example 6.9 for a different reason.

The main result which we state, but do not prove, is the following:

Theorem 6.3. Let f and g be such that f∗ and g∗ commute, with g invertible, and
suppose that the homotopy class of f and g contain a pair of commuting maps. If
g−m∗ is essentiality preserving for all m | n and g−1f is essentially toral, then

NPn(f, g) = NPn(g−1f) and NΦn(f, g) = NΦn(g−1f). �

We cannot rescind the hypothesis of essential torality (though it can be weakened).
To see this, we can use Jiang’s classical Example on RP 3 ([19, Example 4 p.67]), where
of course g is the identity. Jiang’s example illustrates why we need to use orbits in
periodic point theory. The equalities in the Theorem can be observed in practice with
Example 4.19, by using, in the case of the NPn, the periodic point Möbius inversion
formula for tori ([9, Theorem 1.2]). In the case of the NΦn we need the analogue of
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the last part of Theorem 5.7 (also [9, Theorem 1.2]). For both numbers we also need
the following observation for invertible G:

N(Fn, Gn) = |det(Gn − Fn)|
= |det(Gn)||det(I −G−nFn)|
= |det(I −G−nFn)| = N(G−nFn).

The penultimate step follows since |det(Gn)| = 1. This is because when G is invertible
over Z, we must have that det(G) = ±1.

Remark 6.4. The result of Theorem 6.3 that for invertible g we have thatNPn(f, g) =
NPn(g−1f) and NΦn(f, g) = NΦn(g−1f) when the spaces are essentially toral, gives
a strong indication that we have not really lost anything by not being able to work
with orbits on these spaces. The earlier comments about classes being singletons
also confirms this, for the advantage of orbits only works when there is more than
one non-removable point in each Nielsen class. We will not explore this here, but
these considerations are related to the question of these spaces being Wecken, that is
when the homotopy classes of our maps contain representatives that attain the given
lower bound. As the work of You in periodic point theory demonstrates ([22]), in the
presence of Nielsen numbers that are zero, the proofs get complicated even on tori.

6.2 Invertible g, and orbits

When g is invertible, and the pair f and g contain a pair of commuting maps within
their homotopy classes, then there is a way to define orbits. We simplify this sub-
section by making the blanket assumption that the commuting pair has been chosen,
leaving the subtler details of the theory as given in section three, to the reader. In fact
we will leave a great deal to the reader, dealing only with the NP number. Consistent
with the stated goal of this section we only include enough to inform intuition. The
definition and lemma below are intended to indicate that the invertibility of g allows
us to define orbits. In particular the Lemma gives that part of [13, Proposition 1.14]
that was missing from Lemma 3.9 in Section 3.

Definition 6.5. Let f, g be a pair of commuting self maps, with g invertible as a
map, and let x ∈ Φ(fn, gn). Then the geometric orbit of x is the set

{x, g−1f(x), g−2f2(x), . . . , g−n+1fn−1(x)}

If x ∈ Pn(f, g) then the elements of the above list are all distinct, and clearly
since gn(x) = fn(x), then g−nfn(x) = x. The other analogous definitions of periodic
point theory are forthcoming.

Lemma 6.6. (c.f. [13, Proposition 1.14]) Under the conditions of the definition the
function g−1f induces well defined functions g−1f : Φ(fn, gn) → Φ(fn, gn). This
function respects both the Nielsen and Reidemeister relationships, and induces essen-
tiality preserving functions (denoted g−1f and (g−1f)∗ respectively) on the respective
sets of classes. Moreover, the following diagram is commutative

Φ(fn, gn) ∼ ρn−−−−→ R(fn∗ , g
n
∗ )

g−1f

y y(g−1f)∗

Φ((g−1f)n) ∼ ρn−−−−→ R((g−1f)n∗ ),
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so that both geometric and algebraic orbits are well defined. Thus the notion of irre-
ducible and essential orbit is well defined. �

Definition 6.7. Let f, g be a pair of self maps whose homotopy classes contain a
commuting pair, and suppose that g is invertible. We define NP INVn (f, g) to be n
times the number of irreducible essential periodic point orbits of the map g−1f . That
is NP INVn (f, g) := NPn(g−1f), where NPn(g−1f) is the usual periodic point number
of the map g−1f defined in [19].

Theorem 6.8. Under the conditions of Definition 6.7 we have that NP INVn (f, g) is
homotopy invariant in f and g, and

NPn(f, g) ≤ NP INVn (f, g) ≤MPn(f, g) ≤ #(Pn(f, g)).

If X is a torus, a nilmanifold or a solvmanifold, then

NP INVn (f, g) = NPn(f, g). �

The last part of Theorem 6.8 follows, since in the indicated spaces, when the
Nielsen numbers are non-zero all classes can be homotoped to singletons. Thus even
when orbits can be defined there will be no advantage gained by using them. We say
more in section 8.

In Theorem 4.6 we showed that N(fn, gn) ≥ NPn(f, g). But this does not
generalize to the NP INVn (f, g) numbers, as the following example shows:

Example 6.9. Let f̃ , g̃ : S2 → S2 be maps of degree 3 and −1 respectively. We
can think of them as the respective suspensions of the same degree maps on S1. In
this way f̃ and g̃ are seen to be Z2 equivariant maps that induce self maps f and
g respectively on Real Projective space RP 2. It follows easily that f and g induce
identity homomorphisms fn∗ and gn∗ on π1(RP 2) ∼= Z2, for all positive integers n.
Jezierski in [17, Corollary 5.1]) has worked out N(f, g) in detail for all pairs of self
maps f, g of RP 2. In particular for our f and g we have that N(fn, gn) = 2 for all
positive integers n. Furthermore since g is invertible, f and g commute, and (g−1f)∗
is the identity, then each periodic point orbit of g−1f has length 1 at every level. Now
let n = 2r for some positive integer r. Since for any m | n the number n/m must be
even, it is not hard to see that ιm,n is multiplication by an even integer, that is, it
is the zero function on Z2. In particular the orbit 〈[1]n〉 is irreducible and essential.
From above

NP INVn (f, g) = NPn(g−1f) = n = 2r > N(fn, gn) = 2.

7 Roots of iterates and the work of Brown, Jiang
and Schirmer

As mentioned in the introduction, Brown Jiang and Shirmer ([1]) have already given
a Nielsen theory of roots of iterates. One could be forgiven for assuming that putting
g equal to a constant map in our theory would give many of the results of [1]. But
this is false! Actually there is very little intersection between the two theories. In fact
they are profoundly incompatible in at least two important ways. The first is related
to the incompatibility of the work in [1] with the periodic point theory we are seeking
to generalize. The second incompatibility is reflected in the fact that the root theory
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one obtains by putting g equal to a constant map in our theory is homotopy invariant
with respect to such g, and the work in [1] is not. We illustrate these differences
with the following example, in which our f is exactly the same as the f used in [1,
Example 6.1].

Example 7.1. Let f, a : S1 → S1 be maps with f(z) = z2 and a the constant map
a(z) = 1. Then N(fn, an) = 2n. When p is a prime and n = pk where k 6= 0 is a
positive integer, then any reducible class at level pk in our theory will be in the image

of ιpk−1,pk . Thus there are 2p
k−1

reducible classes at level n. So then

NPpk(f, a) = 2p
k

− 2p
k−1

,

and by Theorem 5.4 we have

NΦpk(f, a) =

k∑
i=0

NPpi(f, a) = 2 +

k∑
i=1

NPpi(f, a) = 2 +

k∑
i=1

2p
i

− 2p
i−1

= 2p
k

.

In [1], the authors define a Nielsen type number denoted NIn(f, a), which they
call the Nielsen number of irreducible roots at level n of f at a. As we will see below,
while this sounds like our NPn(f, a), it is not. We say more below, but we give neither
the definition, nor details of their computations.

With the very same f and a, the number NIn(f, a) is computed in [1, Example
6.1] to be

NIn(f, a) =

{
2 for n = 1,

2n−1 for n > 1.

If n is prime, then NPn(f, a) = 2n− 2, and NΦn(f, a) = 2n, while NIn(f, a) = 2n−1,
so NIn(f, a) is different from both NPn(f, a) and NΦn(f, a).

Remark 7.2. Homotopy invariance incompatibility. As we mentioned above,
the number NIn(f, a) depends on the variable “a”. In this regard, we were careful to
state in the last part of the example above, that the computation of NIn(f, a) from
[1] was with respect to the very same f and a as in the first part of the example.
Since S1 is path connected, any two constant maps are homotopic. In our theory
this means that the root theory obtained by putting g equal to constant map at a is
independent of the choice of a ∈ S1. This is not the case with the root theory in [1]. In
[1], the number NIn(f, a) is dependent on the period of the chosen a under f (which
can be either finite or infinite). In particular in the very same example in [1], when
a(z) = −1 (so a has period 2), then with the same f , we have that NIn(f, a) = 2n.

Remark 7.3. Incompatible definitions of “boosting”. A second way the two
theories are incompatible is to be found in the very definition of reducible classes.
Though we use the same words to describe NIn(f, a) and NPn(f, a) (each is defined
to be the number of irreducible essential classes), the two theories are very different
because these words mean different things in the two papers. The main point is that
in [1] there are “boosts” from levels m to n for certain m which do not divide n.

Consider a hypothetical situation where we have an f with f(a) = a for some
a ∈ X. As above, by abuse of notation we use a to denote the function with a(x) = a
for all x. Note that whenever fm(x) = a then fm+1(x) = f(fm(x)) = f(a) = a too.
Suppose, for example, that x is a root of f at a of least period 4. Then f4(x) = a
but f j(x) 6= a for any j < 4. But f5(x) = f(a) = a, and of course 4 6 | 5. Theorem
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2.1 of [1] (about which we will say more below) implies that this kind of boosting
extends to Nielsen classes in a natural way. So then in [1] the class at level 5 could be
geometrically reducible for Brown Jiang and Schirmer, but geometrically irreducible
in our theory.

The algebraic side of this type of reducibility for constant maps a can also work.
To see this, note that a∗ is the trivial homomorphism. In this case, Definition 3.5
simply becomes ιm,n(α) = fn−m∗ (α), and this can be well defined on Reidemeister
classes even when m does not divide n.

We wish to say one more thing about incompatibility of the two theories. It
pertains to the difficulty of generalizing the theory of roots of iterates of the type
given in [1], to coincidences. The problems start with the fundamental result of [1]
(Theorem 2.1) upon which their whole paper is based. That Theorem states that
if Rm and Rn are root classes with m < n, and if Rm ∩ Rn 6= ∅, then Rm ⊆ Rn.
Example 5.1 provides a ready made counter example to a coincidence generalization
of this phenomenon. Recall that we constructed a q ∈ P3(f, g)∩P5(f, g). We contend
that 0 and q are Nielsen equivalent at level 3, but not at level 5. To see this let c be
the linear path from 0 to q. Since neither of the paths g3(c) nor f3(c) traverse 0̄, we
have that g3(c) ∼ f3(c) at level 3. On the other hand while g5(c) does not traverse
0̄, the path f5(c) does (in fact f5(c) is a generator of π1(S1)), and so 0 and q cannot
be Nielsen equivalent at level 5.

8 Wecken type Questions

We conclude the paper with two open questions. The first asks when MΦn(f, g)
can be written in terms of the ordinary (rather than disjoint) union, the second is
the obvious Wecken question, however it should be clear that the two questions are
related.

Open Question 8.1. On manifolds, do we have

MΦn(f, g) = min #

⋃
m|n

Pm(f1, g1) | f1 ∼ f and g1 ∼ g

?

The question we are asking is if maps that actually attain the minimum number
at all levels simultaneously would ever contain “stray” coincidences of iterates (like q
in Example 5.1) that lie in the intersection of different Pm(f, g). Our feeling (guess)
is that such points are rare, and that they do not form essential singleton classes. In
other words it is our feeling that (again like q in Example 5.1) such stay points lie in
Nielsen classes that are either not essential, or not singletons. In either case we should
be able by some homotopy, either to remove them, or move them even slightly, so that
they no longer belong to more than one of the Pm(f, g). However as we will indicate
below, the two numbers coincide on tori, nilmanifolds and model solvmanifolds ([12])
when the Nielsen numbers are not zero.

Open Question 8.2. Under what conditions are the numbersNPn(f, g) andNΦn(f, g)
Wecken, so that there exist maps f1 ' f and g1 ' g such that NPn(f, g) = MPn(f, g)
and NΦn(f, g) = MΦn(f, g)?

Question 8.2 should probably be two questions, one for each number. The following
example shows that such conditions do exist.
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Example 8.3. Let f, g : T 2 → T 2 be maps of the 2 torus with linearizations F and
G respectively, where F and G are as given in Example 4.19. Then f and g satisfy
the hypotheses of the last part of Theorem 5.7, and so

NΦn(fn, gn) = |det(Fn −Gn)| = #(Φ(Fn, Gn)) = MΦn(f, g).

The second equality holds, since when in situations like this det(Fn − Gn) 6= 0,
the linear representations of f and g have singleton coincidence classes. The last part
follows, since NΦn(fn, gn) ≤MΦn(f, g) ≤ #(Φ(Fn, Gn)). This works because firstly
when fg = gf , then

Φ(fn, gn) =
⋃
m|n

Φ(fm, gm) =
⋃
m|n

Pm(f, g) =
⊔
m|n

Pm(f, g),

and secondly that the minimum numbers occur exactly when fg = gf .
In fact whenever the Nielsen numbers are non-zero, the same phenomenon occurs

on tori, nilmanifolds and on the model solvmanifolds introduced in [12] (models have
the advantage that there are necessary and sufficient conditions for maps to exist,
and as is shown in [12] the matrices produced as the linearizations of actual maps will
indeed produce genuine maps on these solvmanifolds). But this type of phenomenon
is hard to generalize. In particular in dealing with the case that the Nielsen numbers
are zero, the analogue of the technique used in periodic point Wecken theorems (see
[18]), which produces periodic points in empty classes that boost to essential classes
at a higher level, will not work unless the modified maps commute.

Appendix: Reduction to the gcd and the circle

In this section we determine exactly which pairs of maps on the circle are essentially
reducible to the gcd. As in the previous sections, we identify a map f on the circle
with its integer degree. Our goal is the following theorem:

Theorem 8.4. Given integers a and b, the maps f = a and g = b are essentially
reducible to the gcd if and only if gcd(a, b) = 1.

Though Theorem 4.16 is, from one point of view, more general than the above
theorem in that it includes all tori, it is, from another point of view, less general
in that it requires the map g to be invertible. The proof of Theorem 4.16, which
involved factoring certain polynomials, does not generalize to the setting where g∗ is
not invertible. So then we need to give a separate proof of this theorem.

The case where a = b = 0 is not covered by Theorem 8.4 because gcd(0, 0) is not
defined. However it is easy to see that f and g are in fact essentially reducible to the
gcd in this case. This is because all boosts are 0, so that only the trivial element is
reducible at each level, and it always reduces to any other level.

Our proof of Theorem 8.4 relies heavily on a lemma concerning the factors of the
polynomials ιx,1p,q given in the proof of Theorem 4.16. Since we want to emphasize in
this proof that the ιx,1p,q are polynomials in x, we change notation and denote ιx,1p,q by
σp,q(x). So then

σp,q(x) = 1 + xp + x2p + · · ·+ x(q−1)p, and σ1,q(x) = 1 + x+ · · ·+ xq−1

and both are polynomials in Z[x]. As in Theorem 4.16 we can, without loss of general-
ity consider only the case when the gcd of the levels to which we consider reductions,
is 1. With this in mind, our factoring result is as follows:
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Lemma 8.5. When gcd(k,m) = 1 with n = km, for the above polynomials σp,q(x) ∈
Z[x] there is a polynomial p(x) ∈ Z[x] satisfying:

σk,n(x) = p(x)σ1,m(x) (2)

σm,n(x) = p(x)σ1,k(x) (3)

σ1,n(x) = p(x)σ1,k(x)σ1,m(x) (4)

Proof. Our approach is to fully factor σ1,k, σm,n and σk,n in Z[x], and compare the
factors. Consider the two factorizations of xk − 1:

xk − 1 =
∏
d|k

Φd(x) = (1− x)σ1,k(x),

where the Φd(x) are the cyclotomic polynomials (see [20]). Cancelling x− 1 we have
that σ1,k(x) is the unique product

σ1,k(x) =
∏

d|k, d 6=1

Φd(x). (5)

of distinct (non-repeating) irreducible polynomials over the UFD Z[x].
We next factorize σk,n as follows:

σk,n(x) = 1 + xk + x2k + · · ·+ x(m−1)k = σ1,m(xk) =
∏

c|m, c 6=1

Φc(x
k).

Lemma 1 of [3] states that when gcd(c, k) = 1, we have

Φc(x
k) =

∏
lcm(r,k)=ck

Φr(x),

so then our complete factorization of σk,n(x) is:

σk,n(x) =
∏

c|m, c 6=1

∏
lcm(r,k)=ck

Φr(x).

We need an alternative characterization of this product: So let

R = {r| there exists c 6= 1 with c | m and lcm(r, k) = ck}

and let S = {ab| a|m and b|k and a 6= 1}.

We claim that R = S. To show that R ⊆ S, let r ∈ R together with a chosen
c | m with ck = lcm(r, k) Since lcm(r, k) = rk/ gcd(r, k), then c = r/ gcd(r, k) and so
r = c gcd(r, k). So if we let a = c, then a | m and if b = gcd(r, k) | k, then since c is
assumed to be nontrivial, we have a 6= 1, and thus r = ab ∈ S.

Now we show S ⊆ R: Let r ∈ S with r = ab with a and b factors of m and k
respectively such that a 6= 1. Let c = a, and then we automatically have c | m and
c 6= 1. It remains to show lcm(r, k) = ck. Since k and m have no common divisors,
we have gcd(r, k) = b. Then

lcm(r, k) =
rk

gcd(r, k)
=
rk

b
=
r

b
k = ak = ck
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as desired.
This now allows us to write σk,n(x) as:

σk,n(x) =
∏
r=ab

a|m,b|k,a 6=1

Φr(x). Similarly σm,n(x) =
∏
r=ab

a|m,b|k,b 6=1

Φr(x).

By uniqueness of the factorizations above it is clear that any factor of σ1,k(x)
appearing in (5), is also a factor of σm,n(x) (one in which a = 1). Thus we have
σ1,k | σm,n, with quotient

p(x) = σm,n(x)/σ1,k(x) =
∏
r=ab
a|k,b|m
a 6=1,b6=1

Φr(x).

We have established (2), and by symmetry that

σk,n(x)/σ1,m(x) = p(x)

This establishes (3).
For statement (4), observe that

σ1,n(x) =
∏

r|n,r 6=1

Φr(x) =
∏
r=ab
a|k,b|m

Φr(x).

As above, we see that any factor of σ1,k(x) appearing in (5), is a factor in this last
product (one in which b = 1). Similarly any factor of σ1,m(x) is a factor in this last
product in which a = 1. Thus

σ1,n(x)

σ1,k(x)σ1,m(x)
= p(x),

and this establishes (4).

Lemma 8.5 is interesting in its own right because it provides a strategy for factoring
the algebraic boosts in periodic points theory (in that setting, the algebraic boost
R(fp)→ R(fq) is exactly σp,q(f)). As with maps f and g of S1, we can identify the
ιp,q with multiplication by some integer, and for the rest of the section we identify
each ιp,q with its corresponding integer. We do as follows: Let f = a and g = b with
neither a nor b is zero, then

ιp,q = aq−pσp,q(b/a).

Note that, even though we evaluate σp,q at a non-integer, multiplication by aq−p

causes the result to be integral. Applying all this evaluation to the above lemma
gives the following factorization result for the ιr,s:

Lemma 8.6. Suppose that neither a nor b is zero. When gcd(k,m) = 1 with n = km,
there is p ∈ Z satisfying:

ιk,n = pι1,m

ιm,n = pι1,k

ι1,n = pι1,kι1,m
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We use these factorizations to prove the following lemma.

Lemma 8.7. Let n = km with gcd(k,m) = 1. Given integers a and b and maps
f = a and g = b with neither a nor b zero, the following are equivalent:

1. Two arbitrary classes [w]m and [z]k at levels m and k respectively, which boost
to the same class [ιm,nw]n = [ιk,nz]

mn reduce to level 1.

2. lcm(ιm,n, ιk,n) = ι1,n.

3. gcd(ι1,k, ι1,m) = 1.

Proof. Note that the first condition of the lemma is equivalent to saying that Im(ιm,n)∩
Im(ιk,n) = Im(ι1,n). Now the ι are injective, and Im(ιm,n) is a subgroup of R(an, bn)
of order |bm − am|, generated by the integer ιm,n. Similarly Im(ιk,n) is the subgroup
of R(an, bn) of order |bk − ak|, generated by the integer ιk,n. So Im(ιm,n) ∩ Im(ιk,n)
is the subgroup of R(an, bn) generated by the integer lcm(ιm,n, ιk,n). On the other
hand Im(ι1,n) is the subgroup of R(an, bn) generated by ι1,n. The first equivalence
follows.

To prove the equivalence of the second two statements, consider the second state-
ment. By Lemma 8.6, the integers ιm,n and ιk,n have a common factor p, with
respective quotients ι1,k and ι1,m. Thus

lcm(ιm,n, ιk,n) = p lcm(ι1,k, ι1,m),

and the second statement is equivalent to p lcm(ι1,k, ι1,m) = ι1,n. But Lemma 8.6 also
gives ι1,n = pι1,kι1,m, and so the second statement is equivalent to lcm(ι1,k, ι1,m) =
ι1,kι1,m, which is to say that gcd(ι1,k, ι1,m) = 1.

We are now ready to prove the main result of this section.

Proof of Theorem 8.4. We deal first with the case that neither a nor b is zero, and
assume that gcd(a, b) 6= 1, and show that f and g are not essentially reducible to the
gcd. If a and b have a nontrivial common divisor, then ι1,m and ι1,k will share this
divisor as well for any m and k. This is because each ι is a sum of terms, each of
which is divisible by a or b. Thus we have gcd(ι1,k, ι1,m) 6= 1 for any k and m. In
particular we can choose k and m to be relatively prime, and then Lemma 8.7 will
apply to show that f and g do not reduce to the gcd at level n = km.

For the converse, assume that f and g are not essentially reducible to the gcd,
and that gcd(a, b) = 1. We deduce a contradiction. Since gcd(a, b) = 1 if and only
if gcd(ad, bd) = 1 for all positive integers d, then by the same argument used in the
proof of Theorem 4.16, we may assume, without loss of generality, that the failure to
reduce comes at levels k and m with gcd(k,m) = 1.

By Lemma 8.7, we have that ι1,k and ι1,m have a common prime factor p. It is
easy to see that

(a− b)ι1,k = ak − bk, and (a− b)ι1,m = am − bm.

Thus p divides ak − bk and am − bm, and so

ak = bk mod p, and am = bm mod p.
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Now since gcd(a, b) = 1, the prime p cannot divide both a and b. Thus one of
a and b is invertible mod p, without loss of generality we assume that b is invertible
mod p. Then the above can be written

(a/b)k = 1 mod p, and (a/b)m = 1 mod p.

Thus both k and m are divisible by the order of the element a/b in the multiplica-
tive group Z∗p. If this order is not 1, then this will contradict the assumption that
gcd(k,m) = 1.

For the case where the order of a/b is 1, we must have that a = b mod p, and the
definition of ι1,k simplifies modulo p as follows:

ι1,k = kak−1 = kbk−1 mod p,

and since p | ι1,k, we have p | kak−1 and p | kbk−1. Since p is prime, either p divides
k, or p divides both of a and b. But gcd(a, b) = 1, and so we conclude that p divides
k. The same argument of the previous paragraph applied to ι1,m shows that p also
divides m, which contradicts the assumption that gcd(k,m) = 1.

Finally we address the special case where one of a or b is zero. Without loss
we assume that b = 0 and a is nonzero. In this case we have gcd(a, 0) = a, (all
numbers are divisors of 0), and ιp,q = aq−p. So we need to show that f = a and
g = 0 are essentially reducible to the gcd if and only if a = 1. It is easy to check that
when a = 1, all boosts are the identity, and that in this case f and g are essentially
reducible to the gcd. Suppose next that a 6= 1, and that [α]n ∈ RE(fn∗ , gn∗ ) reduces to
both [β]m ∈ RE(fm∗ , gm∗ ) and [γk] ∈ RE(fk∗ , gk∗ ). As in Theorem 4.16 we may assume
without loss that gcd(m, k) = 1, and again without loss that m > k > 1. In this case
there will always be multiples of an−m which are not also multiples of an−k. Such
elements will be in the images of ιm,n = an−m and ιk,n = an−k, but not in the image
of ι1,n = an−1. Thus f and g are not essentially reducible to the gcd.
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