
Fairfield University Fairfield University 

DigitalCommons@Fairfield DigitalCommons@Fairfield 

Business Faculty Publications Charles F. Dolan School of Business 

2010 

Agility versus Maturity: Is There Really a Trade-Off? Agility versus Maturity: Is There Really a Trade-Off? 

Vishnu Vinekar 
Fairfield University, vvinekar@fairfield.edu 

Christopher Huntley 
Fairfield University, chuntley@fairfield.edu 

Follow this and additional works at: https://digitalcommons.fairfield.edu/business-facultypubs 

Copyright, IEEE 2010. 

This is a pre-print version of an article submitted for publication and subsequently published in 

IEEE Computer. The definitive published version is available at: 

http://doi.ieeecomputersociety.org/10.1109/MC.2010.126 

Repository Citation Repository Citation 
Vinekar, Vishnu and Huntley, Christopher, "Agility versus Maturity: Is There Really a Trade-Off?" (2010). 
Business Faculty Publications. 32. 
https://digitalcommons.fairfield.edu/business-facultypubs/32 

Published Citation 
Vinekar, Vishnu and Christopher L. Huntley. 2010. Agility versus Maturity: Is There Really a Trade-Off? IEEE 
Computer, 43 (5) 87-89. 

This item has been accepted for inclusion in DigitalCommons@Fairfield by an authorized administrator of 
DigitalCommons@Fairfield. It is brought to you by DigitalCommons@Fairfield with permission from the rights-
holder(s) and is protected by copyright and/or related rights. You are free to use this item in any way that is You are free to use this item in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain permitted by the copyright and related rights legislation that applies to your use. For other uses, you need to obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/or on the work itself.in the record and/or on the work itself. For more information, please contact digitalcommons@fairfield.edu. 

http://www.fairfield.edu/
http://www.fairfield.edu/
https://digitalcommons.fairfield.edu/
https://digitalcommons.fairfield.edu/business-facultypubs
https://digitalcommons.fairfield.edu/dolanschoolofbusiness
https://digitalcommons.fairfield.edu/business-facultypubs?utm_source=digitalcommons.fairfield.edu%2Fbusiness-facultypubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.ieeecomputersociety.org/10.1109/MC.2010.126
https://digitalcommons.fairfield.edu/business-facultypubs/32?utm_source=digitalcommons.fairfield.edu%2Fbusiness-facultypubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@fairfield.edu


Agility vs. Maturity: Is there really a tradeoff?

Dr. Vishnu Vinekar, PhD

Dolan School of Business

Fairfield University

Dr. Christopher Huntley, PhD

Dolan School of Business

Fairfield University

Two developers walk into a bar. The bartender asks, "why the long faces?"

Developer 1: "I love coding, but I spend all my time doing all these unnecessary

documentation that even my boss can't even read. And I have to work 100 hours a week

because some bozos in marketing decided on all these milestones we can't meet with silly

requirements that no one's going to use"

Developer 2: "My job doesn't involve any of that because we're doing something called "agile"

- it's nice because I get to do what I want. But now I'm wishing we had decided on the

architecture up front; I have to do all this unnecessary rework. And management hates us

because they have no clue what we're doing"

Advocates of agile and formal methods aver that their chosen method is superior to the

other, with a few contending that their method is a silver bullet applicable in all situations and

contexts. However, others believe that each have their 'home grounds'. For example, Boehm

& Turner (2004) believe that agile is more suited for projects that experience a lot of change

and that projects that are relatively stable can benefit from the 'Big Design Up Front' of formal

methods. Some advocates of Agile insist that it is an 'all-or-nothing' approach, i.e., you have

to follow all their principles otherwise your methodology isn't Agile. However, it is becoming

increasingly clear that such polarized notions do not reflect the reality of systems development



organizations. For example, in a conference between several practitioners of agile methods, it

became clear that most were not following all the principles advocated (Lindvall et al 02). It

also became clear that the methods followed were not the rigid 'waterfall' approaches that agile

advocates frequently use a a straw-man.

So if the majority of systems being developed don't completely follow agile methods,

nor do they completely follow formal methods, what might these emerging methods be? In

this article, we suggest that there may be two 'modified' approaches to systems development

emerging in the industry.

To postulate what these new approaches may be, we have to first analyze why agile or

formal methods are not being followed as traditionally conceptualized. Boehm & Turner

(2004) suggest that practitioners chose to go either agile or formal depending on the project.

If it is a project that is rapidly changing, they follow agile methods. If the project is relatively

stable they chose formal methods. However, it may not be that easy to switch between agile

and formal methods. Systems development organizations may be constrained by other forces

that prove very difficult to change if they want to switch between a purely formal approach

and a purely agile approach. This is because there may be another factor that can affect

the suitability of agile methods: the culture of the organization. Organizational cultures vary

between more flexible 'organic' cultures and more structured 'mechanistic' cultures (Burns

& Stalker, 1961). When practitioners discussed issues about changing from formal methods

to agile methods, they agreed that the most difficult aspect was that it requires changes in

organizational culture (Lindvall et al 02). Organizational culture is one of the most difficult

things to change in an organization - organizational culture is more difficult to change than

the organization’s strategy, structure, processes, or tools (Adler 1989), and can take years.

In a recent survey, non-adopters of agile quoted "rigid-culture" as the biggest reason for not

switching to agile. (DDJ, 2009). Unfortunately, agile advocates do not see culture as a real

impediment, and even dismiss it as an "excuse". In addition, it’s not just the IS development

organization that has to have this culture – the client organization also has to have a similar

culture. For example, a bureaucratic organization might not be able to handle a project without



set milestones, deadline, plans, schedules, budgets, etc. They might not want to be bothered

with a constant stream of deliverables upsetting their carefully planned schedules.

Mechanistic Organic

Individual specialization:

Employees work separately

and specialize in one task

Joint Specialization:

Employees work together and

coordinate tasks

Simple integrating mechanisms:

Hierarchy of authority well-defined

Complex integrating mechanisms:

task forces and teams are primary

integrating mechanisms

Centralization:

Decision-making kept as high as possible.

Most communication is vertical.

Decentralization:

Authority to control tasks is delegated.

Most communication lateral

Standardization:

Extensive use made of rules & Standard

Operating Procedures

Mutual Adjustment:

Face-to-face contact for coordination.

Work process tends to be unpredictable

Much written communication Much verbal communication

Informal status in org based on size of

empire

Informal status based on perceived

brilliance

Organization is a network of positions,

corresponding to tasks. Typically each

person corresponds to one task

Organization is network of persons or

teams. People work in different capacities

simultaneously and over time

Table 1: Mechanistic and Organic Cultures (Borgatti, 2001)

From this it seems that agile methods are more suited for organic cultures and projects that

have a high degree of change. On the other hand, formal methods may be more suitable for

mechanistic organizations and stable projects. However, what if the organization is organic but

the project is relatively stable? What if the organization is mechanistic but the project keeps



changing? We may need some sort of hybrid approach for these two scenarios. To examine

what these two approaches may be, we look at the Agile Manifesto:

1. individuals and interactions over processes and tools,

2. working software over comprehensive documentation;

3. customer collaboration over contract negotiation;

4. responding to change over following a plan.

The items on the right (processes, tools, documentation, contracts and plans) can be of two

types: Those that relate to upfront design, and those that relate to upper management's control

over the development team. Upfront design may be needed in more stable projects, while

management oversight may be required by more mechanistic cultures. However, when taken

in conjunction with the items on the left, the first two principles of the manifesto relate more

to the organizational culture, while the third and fourth principle relate more to the amount of

change on the project.

Organic organizations will have very definite preferences on the first two statements of

the manifesto. In line with the first statement, organic organizations would prefer not to be

bound by rigid, formal processes, they’d rather have their people decide what is necessary.

Mechanistic organizations, on the other hand, may not prefer the ambiguity of letting their

people decide everything. They would rather have set guidelines to follow, fixed processes and

responsibilities.

In line with the second statement, organic organizations do not like copious documentation.

They’d rather get the job done and dispense with the formalities. On the other hand,

mechanistic organizations need everything written down and documented so that there is a

paper trail to follow, superiors can check if all guidelines were followed, etc.

The third and fourth statements of the manifesto, however, deal more with rapidly changing

projects. The third statement, on frequent customer feedback, becomes more important for

changing projects rather than stable ones. When projects keep changing, meeting with

customer becomes critical to project success. On the other hand, if projects are more stable, a

lot of optimization can be achieved and rework mitigated by designing more upfront.



The fourth statement, on responding to change, is also meant more for changing projects.

Agile methods are iterative, incremental and adaptive for this reason. On the other hand,

a linear, phased structure with upfront design may be more suitable for projects that are

relatively stable.

Now we can examine the two earlier scenarios: 1) Mechanistic organizations that have

changing projects and 2) organic organizations that have relatively stable projects (Figure 1)

1) Mechanistic organizations that have changing projects: These organizations will find it

very difficult to follow the first two principles of the Agile manifesto, as this would involve

changing their culture, as they need structured processes and tools, comprehensive

documentation, as dictated by their organizations policies. However, they can benefit from the

third and fourth principles of the agile manifesto to handle the higher amounts of change in

their project. In line with the third principle, they can plan for frequent customer meetings

to review work done so far, ascertain changes to the project, and plan the next iteration. In

line with the fourth principle, these organizations can have project management process that

is more iterative, more adaptive and more emergent. This will help them deal with the amount

of change in the project. A recent survey indicates that such iterative methods are not only as

popular as agile methods, but also have as much success as agile methods (DDJ 2008). Even

though these methods have the iterative, incremental, and emergent as well as the customer

collaboration characteristics of agile projects, they can be distinguished by a heavier reliance

on processes, tools and documentation. For example, the oxymoron "agile tools" was created

to meet the needs of this market. Demand for these tools is growing (Goth 2009), especially

because of the needs of top management to gain visibility and control into the working of the



adaptive development teams below them. Another example is a blend of the Rational Unified

Process and agile methods called the Agile Unified Process (Ambler, 2006), which is process-

heavier than most agile methods, yet iterative enough to handle change. Christou et al (2009)

describe an organization where cultural/political issues were the main barrier to agile, but the

Agile Unified Process (AUP) was formal and structured enough for the organization to accept.

2) Organic organizations that have projects with some level of stability. While it may be

impossible to accurately predict every single requirement accurately at the beginning of the

project, it is not impossible that at least a few requirements remain relatively stable through the

duration of the project For example, embedded systems, regulatory compliance requirements,

some requirements for mission critical projects, requirements from a few stakeholders in

projects that require several stakeholders, non-functional requirements for enterprise systems,

etc. may be examples of such requirements. While some projects contain very few such

requirements, other may contain more. With latter projects, agile teams can gain several

advantages by doing up-front architecture and design with the predictable requirements while

leaving the others to emerge. In fact, a recent survey by Scott Ambler indicates that 89%

of agile teams do some sort of up-front requirments and 86% do some sort of up-front

architecture/design (Ambysoft, 2009). In this case, the organic organizations will still have to

follow the first two principles of the manifesto, as it is part of their culture to depend on people

instead of depending on processes (principle one). In addition, extensive documentation

and following guidelines is not part of their culture. However, they can change the project

management process instead of following principles three and four in the manifesto. The third

principle need not be followed as much as the project is relatively stable, so they need not

meet the customer too often. The fourth principle also need not be followed as much. As the

project is relatively stable, the project can have fewer and longer iterations, with more design

up front instead of being more emergent and adaptive. The increase in upfront design may

enable them to optimize the architecture and reduce rework and integration issues from adding

requirements. For example, Madison (2010) describes several projects in which agile methods

incorporated upfront architectural design to achieve several benefits for the development team,

the project, and the client. Madison calls this "Agile Architecture" (Madison, 2010). Similarly,



Faber (2010) and Blair et al (2010) describes experiences with providing architecture as a

'service' to agile development teams. In this conception, architects are responsible for non-

functional requirements while developers are responsible for functional requirements, and

'sets up rules, but helps break them'. This approach had several advantages over earlier agile

projects that did not incorporate up-front architecture. These advantages include avoiding

costly application design approaches, validating crucial performance requirements earlier,

and less application code (Faber, 2010). In this approach, it is important that architects

are 'servant leaders' and not bottlenecks between developers and stakeholders (Blair et al

2010). Embedded systems also require considerable deviations from agile to fit their context,

including comprehensive functional and non-functional requirements gathering at the

beginning of the project (Smith et al 2009).

Conclusion

Agile and Formal methods are not two ends of a continuum, but rather, vary on two

dimensions. The first relates to the amount of upfront design, while the second relates to

control and oversight from top management. Upfront design is needed when requirements are

stable - Most projects have some requirements that are relatively stable, and agile methods

can be 'optimized' by doing some upfront design for these requirements. Oversight from

management is needed by organizations that have more mechanistic cultures - Developers

in these organizations can handle changing requirements either by making formal methods

more iterative, or by adding processes and tools to agile methods to give more visibility to

top management. Emerging empirical evidence shows that most development teams actually

follow one these two approaches - Most agile teams use some upfront design (Ambysoft,

2009), and most formal methods are iterative (DDJ 2008). This indicates that the arguments

against agile ("agile has no architecture") and formal methods ("formal methods can't respond

to change) are misplaced, and both have similar success rates (DDJ 2008). It also indicates that

both research and practice need to focus more on supporting optimized agile (i.e., agile with

some upfront design), and iterative formal (iterative methods or agile with 'visibility' tools).

References:



1. Adler, P. S. (1989). CAD/CAM: Managerial challenges and research issues. IEEE

Transactions on Engineering Management, 36(3), 202-215.

2. Ambler, Scott W. (2006) The agile unified process. Retrieved from

http://www.ambysoft.com/unifiedprocess/agileUP.html; current as of Feb 2, 2010

3. Ambysoft (2009) Agile project Initiation Survey. Retrieved from

http://www.ambysoft.com/surveys/projectInitiation2009.html. Current as of Feb 2,

2010

4. Blair, S; Cull, T; Watt, R (2010) Responsibility driven architecture. IEEE Software,

forthcoming.

5. Boehm, Barry & Turner, Richard (2004) Balancing Agility and Discipline. Addison-

Wesley.

6. Borgatti, Stephen P. (2001) Organic Vs Mechanistic. Retrieved from

http://www.analytictech.com/mb021/, current as of February 14, 2010

7. Burns, Tom, and George M. Stalker, The Management of Innovation, Tavistock

Publications (1961)

8. Christou, I; Ponis, S; Palaiologou, E (2009) IEEE Software, forthcoming.

9. DDJ (2008) Software development project success rates survey 2008. Retrieved from

http://www.ambysoft.com/surveys/success2008.html. Current as of Feb 2, 2010.

10. DDJ, (2009) State of the IT union survey, November 2009. Retrieved from

http://www.ambysoft.com/surveys/stateOfITUnion200911.html. Current as of Feb 2,

2010

11. Faber, Roland (2010) Architects as service providers. IEEE Software, forthcoming.

12. Goth, Greg (2009) Agile tool market growing with the philosophy. IEEE Software,

26(2) pp 88-91.

13. Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F., Tesoriero, R.,

Williams , L., & Zelkowitz, M. 2002. Empirical Findings in Agile Methods. Paper

presented at the Extreme Programming and Agile Methods - XP/Agile Universe,

Chicago, IL, USA

14. Madison, J. (2010) Agile Architecture Interactions. IEEE Software, forthcoming.



15. Smith, M; Miller, J; Huang, L; Tran, A (2009) A more agile approach to embedded

systems development. IEEE Software 26(3) pp. 50-57


	Agility versus Maturity: Is There Really a Trade-Off?
	Repository Citation
	Published Citation


	Agility vs Maturity

