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Since the systematic study of many-valued logics began in earnest early in the 20th

century, many-valued logics have received their fair share of scrutiny. One topic that arises often

concerns the fact that the set of formulas validated by many-valued systems, and the inferences

sanctioned by such systems, tend to differ substantially from those of classical logic (with some

commentators viewing this as a virtue, some as a vice). One issue that does not seem to have

been addressed, however, is the source of these differences between classical logic and many-

valued logics.

My main interest in this paper is with this issue, that is, with the source of the differences

between many-valued and classical logic with respect to the set of valid formulas and inferences

sanctioned. In particular, I am interested in the question of whether such differences are inherent

in many-valued systems. And if the differences are not inherent, then what is the source? The

main focus of the current paper is on answering these two questions.

Many-valued logics are most often presented as semantic systems. I too take a semantic

approach. I begin, in Section One, with a brief discussion of some of the differences between the

set of formulas validated by classical semantics and those validated by the many-valued systems

presented to date. I likewise discuss the differences between the inferences sanctioned by

classical and many-valued semantics. In Section Two I turn to the question of whether the

differences stem from the plurality of truth-values. The answer is negative: I show, in Section

Two, that it is straightforward to construct a many-valued semantics validating all and only the

classical truths, and sanctioning exactly the same inferences as classical semantics. Thus,

whatever the source of the differences in the set of valid formulas and inferences sanctioned, they
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cannot stem simply from the plurality of truth-values. In Section Three I provide a brief

discussion of the semantics presented in Section Two, and then in Section Four I turn to the

second of my questions. In this section we identify the source of the differences, and Section

Five then extends the results to take into account considerations unique to infinite-valued

systems.

Section One: Classical and Many-Valued Truths and Inferences

There are a variety of ways to present many-valued semantics. For convenience, I will

take the essential elements of a semantics to be (i) models consisting of specifications of

domains, valuations on those domains, ranges of truth-values, and ranges of designated values,

and (ii) a specification of truth-conditions.

Whereas in two-valued semantics a valid formula is one that always takes the value 1,

there are, in many-valued semantics, some decisions to be made as to what shall count as valid. It

is common to consider the "favored" truth-values, that is, those used to determine validity in the

way that 1 is used in classical semantics, as designated values. The decision as to which values

are to be considered designated is generally made by the author of the semantics, with the two

most common choices being, on the one hand, just the value 1, and on the other hand, any value

at least as great as .5.

The notion of designated values makes it straightforward to define many-valued

counterparts of the usual semantic notions. A formula will be considered valid just in case it

takes a designated value under every model, and a many-valued semantics will be said to retain

classical logic just in case that semantic's valid formulas are exactly the classically valid

formulas. A model satisfies a formula iff that formula receives a designated value under the
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model, and a model simultaneously satisfies a set of formulas ' just in case, under that model,

every member of the set receives a designated value. We shall say that a set of formulas '

implies a formula A under a model M just in case M simultaneously satisfies ' and satisfies A,

and that ' semantically implies A iff ' implies A under every model. Finally, a semantics S will

be said to retain the classical theory of deducibility just in case whenever a set of formulas '

semantically implies a formula A under classical semantics, then ' semantically implies A under

S, and vice versa.

Which values are taken as designated will, of course, affect which formulas are valid and

which formulas are semantically implied by which sets of formulas (or, loosely speaking, which

inferences are sanctioned by the semantics). These issues–the valid formulas (or lack thereof)

and inferences sanctioned (or not sanctioned) by the various many-valued semantics–are central

to the issue in which I am interested. The many-valued systems presented to date differ from

classical logic in the set of valid formulas, the inferences sanctioned, or both.

Consider first the case in which 1 is taken as the only designated value. Then some of the

better-known many-valued semantics–for example, Bochvar's internal system, Kleene's weak

system, Kleene's strong system, and others–fail to validate even P 6 P. In general, where 1 is

taken as the only designated value, none of the many-valued semantics studied to date retain

classical logic.1

As a brief aside, the failure to retain classical logic is not, of course, necessarily a

problem. These systems are often motivated by a feeling that not all of the classically valid

formulas should be retained. Considerations about future contingents, vague predicates, quantum

mechanics, and so on, have led some to the view that certain classically valid formulas–for

example, excluded middle–ought not to be retained. But such systems tend to lose even formulas

such as P 6 P. And it seems difficult to justify, on any interpretation of '6', a failure to validate P
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6 P. At the very least, the loss of such formulas is a noteworthy difference between these systems

and classical logic.

The above discussion assumed that the designated values included only the value 1. To

see the other side of the coin, consider the other common choice for the range of designated

values, in which all values greater than or equal to .5 are taken as designated. In this scenario, a

number of many-valued systems will validate the full range of classical truths. Such systems,

however, typically fail to retain the classical theory of deducibility. Again, it is not necessarily a

problem that such many-valued systems fail to sanction every classically-acceptable inference.

But it is noteworthy that such systems fail to respect inferences that seemingly ought to be

sanctioned. For example, consider the semantic analog of modus ponens, in which

' = {P 6 Q, P}. Classically, of course, ' semantically implies Q, and intuitively, this seems

right, even in many-valued contexts. But again, in many of the better-known systems, including

Bochvar's internal system, Kleene's strong system, Kleene's weak system, Slupecki's (1946)

system, and a range of others, ' no longer semantically implies Q. In general, where values other

than 1 are taken as designated, the many-valued systems studied to date fail to retain the classical

theory of deducibility. And again, this is a noteworthy difference between such systems and

classical logic.

As noted, my main interest is in investigating whether such differences are inherent in

many-valued systems, and if not, then what is the source of such differences. In the next section,

we look at whether it is possible to construct a many-valued system that retains both classical

logic and the classical theory of deducibility. The idea, of course, is that if a many-valued system

can be constructed that retains both, then clearly the sorts of differences discussed in this section

cannot be inherent in many-valued semantics.
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Section Two: An Alternative Many-Valued Semantics

Let MV semantics consist of the set of MV models, where an MV model is a four-tuple

+D,n,Tru,Des,. In such a model, D is a non-empty domain and n a valuation on that domain,

subject to the conditions described below. Tru is the set of truth-values for the model. We require

that Tru be finite and, as is usual, that {0,1} f Tru f [0,1]. (The reason for requiring that Tru be

finite is discussed in Section Five.) Des is the set of designated truth-values for the model, which

we specify to be those truth-values at least as great as .5, that is, Des = {x * x 0 Tru and x $ .5}.

As is generally the case with many-valued semantics, the truth-conditions for the

connectives are normal, that is, they agree with the classical assignments whenever the truth-

values are restricted to 0 and 1. A typical first-order language is presumed, the language having

an infinite set T of terms, an infinite stock of variables, a two-place predicate symbol =, for each

n $ 0 a (possibly empty) set Pn of n-place predicate letters, and symbols v, &, 6, ~, », ¼, ), and (.

Conditions on Valuations: In an MV model +D,n,Tru,Des,, the function n is subject to

the following conditions:

(i) for each d 0 D, d = n(t) for some t 0 T

(ii) for each t 0 T, n(t) 0 D

(iii) for each P 0 P0, n(P) 0 Tru

(iv) for each P 0 Pn (n $ 1), n(P) 0 {R * R : Dn 6 Tru}
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Truth Conditions: The truth-value *A*m of a formula A under an MV model M is given

by the following clauses:

(i) for s, t 0 T, *s = t*m = 1 if n(s) = n(t); *s = t*m = 0 otherwise

(ii) for P 0 P0, *P*m = n(P)

(iii) for P 0 Pn and t1,...,tn 0 T, *Pt1...tn*m = n(P)(n(t1),...,n(tn))

(iv) *~A*m = 1 if *A*m < .5; *~A*m = 0 otherwise

(v) *A v B*m = max{*A*m , *B*m}

(vi) *A & B*m = min{*A*m , *B*m}

(vii) *A 6 B*m = min{1, 1 - (*A*m - *B*m)} if *B*m $ .5 or *A*m < .5;

*A 6 B*m = *B*m otherwise

(viii) *¼xA[x]*m = min{*A[t]*m * t 0 T}

(ix) *»xA[x]*m = max{*A[t]*m * t 0 T}

Where a formula A receives a designated value under an MV model M, we write öm A;

where A receives a designated value under every member of a set S of MV models, we write ös A;

where A is valid under MV semantics, that is, A receives a designated value under every MV

model, we write ömv A; and where A is classically valid we write öc A. Likewise, where a set of

formulas ' implies A under an MV model M, we write ' öm A; where ' semantically implies A

under MV semantics, we write ' ömv A; and where ' semantically implies A under classical

semantics, we write ' öc A. 
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Lemma: Where TV is the set of MV models for which Tru = {0,1}, öc A ] ötv A.

Proof: Since the truth-conditions for MV semantics are normal, it follows immediately

that öc A ] ötv A.

Proposition 1: öc A ] ömv A.

Proof: Suppose öc A and, for reductio, that ö/mv A. Then for some MV model M =

+D,n,Tru,Des,, ö/m A. Then *A*m < .5. Let M* = +D,n*,{0,1},{1}, be an MV model where

n* is such that (i) for each t 0 T, n*(t) = n(t), (ii) for each P 0 P0, n*(P) = 1 if n(P) $ .5,

and n*(P) = 0 otherwise, and (iii) for each P 0 Pn and t1,...,tn 0 T, n*(P) = R, where

R:Dn 6 {0,1} is such that R(n*(t1),...,n*(tn)) = 1 if n(P)(n(t1),...,n(tn)) $ .5, and

R(n*(t1),...,n*(tn)) = 0 otherwise. A straightforward induction on the complexity of

formulas shows that *A*m* = 0 ] *A*m < .5. So *A*m* = 0, that is, ö/m* A. Since M* 0 TV, it

follows from the lemma that ö/c A; contradiction. So öc A Y ömv A.

On the other hand, suppose ömv A and, for reductio, that öc/ A. From the lemma it follows

that ö/tv A, from which it follows that ö/mv A; contradiction. So ömv A Y öc A.

Hence öc A ] ömv A.

Proposition 2: ' öc A ] ' ömv A.

Proof: The proof proceeds, in all essential respects, like that of Proposition 1.
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Propositions 1 and 2 show that MV semantics retains both classical logic and the classical

theory of deducibility. This appears to answer our first question of whether the sorts of

differences discussed in Section One are inherent in many-valued systems. Since MV semantics

is a many-valued semantics without these differences, such differences cannot be inherent in

many-valued semantics.

Section Three: Discussion

A number of issues call for discussion, the first of which concerns the truth-conditions

found in the semantics of Section Two. Although I am not particularly concerned, in the current

context, with arguing for or against various interpretations of the connectives, and hence with

arguing over truth-conditions, nonetheless some comments on the subject are in order.

First, it is worth noting that given the truth-conditions for MV semantics, there is a sense

in which the set of designated and undesignated truth-values are playing the roles played,

respectively, by 1 and 0 in classical two-valued semantics. This comes through most clearly in

the truth-conditions for negation, but also to an extent in the truth-conditions for the conditional.

In addition, as shown above, MV semantics and classical semantics validate exactly the same

formulas and sanction exactly the same inferences. Given these facts, it might be objected that

MV semantics is not a genuine many-valued semantics, but rather, is more a two-valued

semantics in disguise.

In response to this consideration, in a many-valued context it is important to keep in mind

the notably different roles played by the designated and undesignated values, on the one hand,

and the truth-values on the other. To help illustrate these roles, consider an analogy. With respect

to grading student work, we can separate grades into two sets, passing grades and non-passing
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grades. The distinction between passing and non-passing grades plays certain important roles, for

example, in determining who gets credit for courses, who is categorized as a first year student, a

sophomore, junior or senior, who has earned the right to graduate, and so on. Within the broader

sets of passing and non-passing grades, there are, of course, the individual grades, which play

their own different, yet equally important roles. These roles include determining class rankings,

who graduates with honors, who continues to receive scholarships, who is slated for academic

probation, and so on. And although we separate these individual grades into two sets, the passing

and the non-passing, we would never be tempted to view such a grading system as consisting of

only two grades.

Likewise, in a many-valued semantics, the designated/undesignated values and the

individual truth-values play different roles. The designated/undesignated values are used in

determining which formulas are valid, whether a model simultaneously satisfies a set of

formulas, whether a set of formulas semantically implies a particular sentence, and so on. On the

other hand, in a many-valued context, the idea is to have the individual truth-values play other,

equally important, roles. Depending on the particular semantics, and the intentions of the author

of the semantics, such roles might include enabling the semantics to reflect that robins are more

paradigmatic members of the class of birds than are penguins, that my 20-year-old single nephew

is a more central example of a bachelor than is the Pope, that the sentence "grass is green" is true

to a greater degree than is "the color of the cover of Hardin's Color for Philosophers is green,"

and so on. In short, the designated/undesignated values play an important role distinct from the

role played by the individual truth-values. And just as we would never be led to view a typical

grading system as really consisting of only two grades, there is no reason to consider a system

such as MV semantics to be two-valued.



10

Similar considerations hold with respect to the fact that MV semantics and classical

semantics validate exactly the same formulas and sanction exactly the same inferences. The

formulas validated, and the inferences sanctioned, are certainly two important characteristics of a

system. But they are not the only important characteristics. As indicated above, other

characteristics–for example, whether a semantics can reflect facts such as that some individuals

are members of a class to a greater degree than are other individuals–are also important. In fact,

with respect to many-valued systems, these latter characteristics are often viewed as the more

central characteristics. So although MV semantics and classical semantics share some

characteristics, they fail to share other important characteristics, and thus MV semantics is not

merely classical semantics in disguise.

This, then, firms up our answer from the end of Section Two: MV semantics is a many-

valued semantics not having the sorts of differences discussed in the first section, and so clearly

such differences cannot be inherent in many-valued systems. This leads us to our next main

question, concerning the source of these differences.

Section Four: The Source of the Differences

In many-valued systems, intuitions concerning the appropriate truth-conditions for

disjunction and conjunction are the most widely agreed on. In particular, there is general

agreement that a disjunction should take the maximum value of the disjuncts, while a

conjunction should take the minimum value of the conjuncts.

For various reasons, some of which are discussed more below, the quantifiers are

somewhat more problematic. But in general, the following condition on universally quantified

formulas is intuitively appealing:
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*¼xA[x]*m 0 Des if *A[t]*m 0 Des for all t 0 T

*¼xA[x]*m ē Des otherwise,

while similar intuitions suggest the following condition on existentially quantified formulas:

*»xA[x]*m  0 Des if *A[t]*m  0 Des for some t 0 T

*»xA[x]*m  ē Des otherwise.

In finitely-valued systems, universally quantified formulas generally take the minimum

value of the formulas gotten by substituting terms for the variable in question, and existentially

quantified formulas generally take the maximum value of such substitutions. As should be clear,

such systems respect the conditions above. Such is not the case for typical infinite-valued

systems, in which universally quantified formulas generally take the glb, and existentially

quantified formulas take the lub, of the formulas gotten by substituting terms for the variable in

question. Such systems do not respect the above conditions, and this is a point to which I will

return in Section Five.

For the sake of convenience, let us call the above conditions on disjunction, conjunction,

and the quantifiers the standard conditions. Again, the intuitions underlying these conditions are

widespread, and even in the few systems (e.g., infinite-valued systems) that do not respect all of

them, it is more likely that the failure is due to the fact that such systems cannot, in any natural

way, respect the conditions (again, more on this in Section Five) rather than any disagreement

with the intuitions.

Where we find the greatest variability in many-valued intuitions is in the truth-conditions

for negation and for the conditional. As such, a more thorough discussion of these connectives is

in order.

In many-valued semantics, two forms of negation are typically distinguished, these being

choice negation and exclusion negation (sometimes referred to as "internal/external" or
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"word/sentence" negation). Consider a sentence such as 'the shirt is green.' The idea behind

choice negation is that the negation operator "attaches" to the predicate in question, such that the

sentence is best interpreted as 'the shirt is not-green.' Such a sentence is generally considered true

to the degree that the object is a member of the anti-extension of the predicate in question. For

example, if the shirt in question is a member of the class "green" to degree .8, then 'the shirt is

not green' is true to degree .2. In general, many-valued systems with the following truth-

condition for negation can be considered to be employing choice negation:

*~A*m  = 1 - *A*m

In contrast, in exclusion negation, the negation operator ranges over the entire sentence,

so that the sentence would properly be read as 'not (the shirt is green)'. Often, in systems

employing exclusion negation, such a sentence is considered absolutely true if the object is not a

member of the extension of the predicate, and absolutely false if the object is a member of the

extension of the predicate. More generally, we can consider many-valued systems that respect the

following condition to be employing exclusion negation:

*~A*m  0 Des if *A*m  ē Des;

*~A*m  ē Des otherwise.

(It is worth mentioning that choice and exclusion negation are not necessarily mutually

exclusive. For example, an infinite-valued semantics in which Tru = [0,1] - {.5} could employ

choice negation and still respect the condition on exclusion negation. A four-valued system in

which Tru = {0, .25, .75, 1} could do likewise. However, in typical many-valued semantics, and

in particular, any many-valued semantics whose range of truth-conditions include .5, choice

negation and exclusion negation will be mutually exclusive.)

As mentioned, I am not here particularly interested in arguing for or against various

interpretations of the connectives. However, I do want to make one brief point about choice and
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exclusion negation. It is clear that both forms of negation are found in ordinary discourse, and a

many-valued semantics interested in reflecting (at least some of) the nuances of natural language

ought to reflect this fact. It is worth noting that in the development of a typical semantics, the

negation operator is usually presented as a sentential operator. Interpreted as such, the negation

operator would most naturally be viewed as ranging over the sentence in question, and this

speaks in favor of interpreting the negation operator in terms of exclusion negation.

Choice negation, on the other hand, acts on the predicate in question. As such, choice

negation acts more like a predicate modifier, in the same way that 'almost' acts as a predicate

modifier in the sentence 'Sara is almost tall'. Lakoff (1973) has proposed a straightforward and

natural way of incorporating predicate modifiers into many-valued semantics. Using 'almost' as

an example, the idea is to let this modifier "broaden" the extension of the predicate in question. If

'Sara is tall' is true, say, to degree .6, the effect of the modifier is that 'Sara is almost tall' comes

out true to some appropriately greater degree, say .8. As mentioned, Lakoff has shown how

straightforwardly to incorporate this idea into a many-valued semantics. Since choice negation

behaves as a predicate modifier, the natural treatment would be along the lines suggested by

Lakoff. The idea would be to let choice negation in effect flip the extension of the predicate in

question, the effect being that if 'Sara is tall' is true to degree .6, then 'Sara is not tall' (where 'not'

is treated in its choice sense and as a predicate modifier) is true to degree .4. 

To summarize this idea, it seems most natural to interpret the negation operator as

exclusion negation, as is done in MV semantics (and a number of other many-valued systems as

well). Then, if the author of a semantics wishes to extend it to reflect more of the nuances of

natural language, choice negation can straightforwardly be incorporated as a predicate modifier.

Let me turn now to the interpretation of the conditional in many-valued semantics. The

debate over the "correct" interpretation of the conditional goes back at least to the ancient
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Greeks, the principal players in the debate being Philo, on the one hand, and Diodorus on the

other2. Philo argued, in essence, for the most "generous" interpretation of the conditional. In

particular, a conditional should be true in any case where the antecedent is false or the

consequent is true. The most natural way to extend this generous interpretation of the conditional

to many-valued cases would be to say that a conditional should receive a designated value in any

case where the antecedent is undesignated or the consequent designated. Along these lines, say

that a semantics employs a Philonian conditional if the truth-condition for the conditional meets

the following requirement:

*A 6 B*m  0 Des if *A*m  ē Des or *B*m  0 Des

*A 6 B*m  ē Des otherwise.

As is probably clear, MV semantics employs a Philonian conditional. Although some

other previously-presented many-valued semantics do as well, the majority of many-valued

systems employ a non-Philonian conditional.

Now, with these points about exclusion/choice negation and the Philonian conditional in

place, we are in a position to present the following proposition.

Proposition 3: Let S be any semantics that respects the standard conditions for

disjunction, conjunction, and the quantifiers. Then employing exclusion negation and a

Philonian conditional are individually necessary and jointly sufficient for S to retain both

classical logic and the classical theory of deducibility.

Proof:

Suppose S does not employ exclusion negation. There are two cases to consider.

Case (i): *A*m  ē Des and *~A*m  ē Des. Then *A v ~A*m  ē Des, so ö/s A v ~A.
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Case (ii): *A*m 0 Des and *~A*m  0 Des. Then *A & ~ A*m  0 Des. Let B be any formula

such that *B*m ē Des. Then A & ~A ö/s B.

So employing exclusion negation is necessary for S to retain both classical logic and the

classical theory of deducibility.

Next, suppose S does not employ a Philonian conditional. There are three cases.

Case (i): *A*m ē Des and *A 6 B*m ē Des. Then *(A 6 B) v A*m ē Des, so ö/s (A 6 B) v A.

Case (ii): *B*m 0 Des and *A 6 B*m ē Des. Then B ö/s A 6 B.

Case (iii):*A*m 0 Des, *B*m ē Des, and *A 6 B*m 0 Des. Then A 6 B, A ö/s B.

So employing a Philonian conditional is likewise necessary for S to retain both classical

logic and the classical theory of deducibility.

Finally, suppose S does employ both exclusion negation and a Philonian conditional. The

proof that this is sufficient to retain both classical logic and the classical theory of

deducibility proceeds much like that of Proposition 1. First, note that a similar lemma

will hold. In particular, where S* is the subset of models for which Tru = {0,1}, öc A ] ös*

A. Now, suppose öc A and, for reductio, that ö/s  A. Then for some model M 0 S, *A*m ē

Des. Specify a two-valued model M* = +D,n*,{0,1},{1}, where n* is such that (i) for each

t 0 T, n*(t) = n(t), (ii) for each P 0 P0, n*(P) = 1 if n(P) 0 Des, and n*(P) = 0 otherwise,

and (iii) for each P 0 Pn and t1,...,tn 0 T, n*(P) = R, where R:Dn 6 {0,1} is such that

R(n*(t1),...,n*(tn)) = 1 if n(P)(n(t1),...,n(tn)) 0 Des, and R(n*(t1),...,n*(tn)) = 0 otherwise. A

straightforward induction will show that *A*m* = 0 ] *A*m ē Des, so ö/s*  A and thus, from

the lemma, ö/c  A; contradiction. So öc A Y ös A. On the other hand, suppose ös A and, for
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reductio, that ö/c A. From the lemma it follows that ö/s* A, and thus ö/s A; contradiction. So

ös A Y öc A, and hence ös A ] öc A. A similar proof shows that ' öc A ] ' ös A.

Thus, employing exclusion negation and a Philonian conditional are individually

necessary and jointly sufficient for S to retain both classical logic and the classical theory

of deducibility.

Proposition 3, then, firms up the answer to the other main question of this paper, namely,

the question as to the source of the differences discussed in Section One. As Proposition 3

shows, any semantics that fails to employ either exclusion negation or a Philonian conditional

cannot retain both classical logic and the classical theory of deducibility. In contrast, any

semantics that respects the standard conditions on disjunction, conjunction, and the quantifiers,

and that employs exclusion negation and a Philonian conditional, will retain both classical logic

and the classical theory of deducibility.

Section Five: Fuzzy Logics

With the above discussions in place, some issues concerning fuzzy logics can be clarified.

Fuzzy logics, as with typical many-valued logics, are generally presented as semantic systems,

albeit semantic systems with infinitely-many truth values. Typically, in infinite-valued systems,

Tru = [0,1]. Such semantics would include earlier infinite-valued systems, such as that of
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Lukasiewicz and Tarski (1930), or the more recent infinite-valued semantics based on fuzzy set

theory, for example, those discussed in Zadeh (1975).

We know from Proposition 3 that if a semantics, including an infinite-valued semantics,

respects the standard conditions for conjunction and disjunction, and employs exclusion negation

and a Philonian conditional, then any failure of that semantics to retain both classical logic and

the classical theory of deducibility will not be due to the truth conditions for these connectives.

What of the quantifiers? In most infinite-valued systems studied to date, including the

systems mentioned above, the truth-conditions for the quantifiers are as follows:

*¼xA[x]*m = glb{*A[t]*m * t 0 T}

*»xA[x]*m = lub{*A[t]*m * t 0 T}

Call these the typical quantifier conditions for infinite-valued semantics.

Proposition 4: Let IV be any infinite-valued semantics that respects the standard

conditions for conjunction and disjunction, and that employs exclusion negation and a

Philonian conditional. If IV employs the typical quantifier conditions for infinite-valued

semantics, then IV can retain neither classical logic nor the classical theory of

deducibility.

Proof: Let Des = [n,1] (n > 0). (The proof is easily modified for the case where

Des = (n,1]). Let P be a one-place predicate, and M = +D,n,Tru,Des, be a model where

n(P) = R, such that for each ti 0 T, R(ti) = max{0 , n - 1/i}. Then lub{*Pti*m * ti 0 T} = n,

so *»xPx*m = n, and thus *»xPx*m 0 Des. Note that for all ti 0 T, *Pti*m ē Des. Since IV

employs exclusion negation, we know that for all ti 0 T, *~Pti*m 0 Des, thus for all
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ti 0 T, *~Pti*m $ n. So glb{*~Pti*m * ti 0 T} $ n, and hence *¼x~Px*m $ n. That is,

*¼x~Px*m 0 Des, and so *~¼x~Px*m ē Des. So »xPx ö/iv ~¼x~Px.

Likewise, since IV employs a Philonian conditional, *»xPx 6 ~¼x~Px*m ē Des.

Hence ö/iv »xPx 6 ~¼x~Px.

So IV retains neither classical logic nor the classical theory of deducibility.

In short, an infinite-valued semantics that employs the typical quantifier conditions for

infinite-valued systems cannot retain both classical logic and the classical theory of deducibility.3

As a brief aside, and to make note of a point that does not seem to have been discussed in

the literature, the failure of the typical infinite-valued semantics studied to date to respect the

standard conditions on the quantifiers seems an intuitively unappealing feature of such systems.

That is, it is difficult to justify truth-conditions that allow an existentially-quantified formula to

receive a designated value even though every formula gotten by substituting terms for the

variable in question receives an undesignated value. Likewise, it is equally difficult to justify

having a universally quantified formula receive an undesignated value even though every

formula gotten by substituting terms for the variable in question receives a designated value.

This, incidentally, goes some way toward explaining why the semantics of Section Two required

the set of truth-values to be finite–such a requirement was the most straightforward way of

respecting the standard conditions on the quantifiers.

Proposition 4 shows that any infinite-valued semantics that employs the typical quantifier

conditions for infinite-valued semantics cannot retain both classical logic and the classical theory

of deducibility. However, it is perfectly straightforward to construct infinite-valued semantics
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that do retain both. To give one example among many, consider a system in which the truth-

values consist of the reals in the interval [0,1], but excluding .5, that is, Tru = [0,1] - {.5}, and let

Des = (.5,1].4 The truth-values for the quantifiers can be similar to the typical quantifier

conditions for infinite-valued semantics, but modified in some appropriate manner to handle the

cases involving .5. The truth-conditions for the universal quantifier might be, for example,

*¼xA[x]*m = .51 if glb{*A[t]*m * t 0 T} = .5

*¼xA[x]*m = glb{*A[t]*m * t 0 T} otherwise,

while the conditions for the existential quantifier might be

*»xA[x]*m = .49 if lub{*A[t]*m * t 0 T} = .5

*»xA[x]*m = lub{*A[t]*m * t 0 T} otherwise.

(The values .51 and .49, as used in these truth-conditions, are of course somewhat arbitrary, and

any number of other values would work as well.) It is easy to see that such a system will respect

the standard conditions on the quantifiers, in spite of employing an infinity of truth-values. Thus,

so long as such a system respects the standard conditions for disjunction and conjunction, and

employs exclusion negation and a Philonian conditional, then Proposition 3 guarantees that the

system will retain both classical logic and the classical theory of deducibility.

So the failure of the infinite-valued systems studied to date to retain both classical logic

and the classical theory of deducibility should not be taken to suggest that such differences are

inherent in infinite-valued systems. Rather, as Proposition 4 shows, the quantifier conditions

typically used in previously-presented infinite-valued systems do not respect the standard

conditions on the quantifiers. And this, at bottom (along perhaps with the truth-conditions for

negation and the conditional, as shown in Proposition 3), is the reason the best-known infinite-

valued systems do not retain classical logic and the classical theory of deducibility.
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One final note: the above discussion shows that it is possible to have infinite-valued

semantics that are axiomatizable, contrary to what has sometimes been suggested.5 For example,

any infinite-valued system that respects the standard conditions for conjunction, disjunction, and

the quantifiers, and that employs exclusion negation and a Philonian conditional, will validate

exactly the classically-valid formulas and so of course will be axiomatizable. Thus, we likewise

see that the inability to axiomatize the typical infinite-valued semantics studied to date does not

stem from the infinity of truth values employed.

Section Six: Conclusion

This, then, completes the answers to the main questions of this paper. The answer to our

first question, whether differences between classical and many-valued semantics are inherent in

many-valued systems, was negative. As we saw in Section Two, it is not difficult to specify a

many-valued system that validates all and only the classically valid formulas while at the same

time sanctioning exactly the same inferences as those sanctioned by classical logic.

Our second main question concerned the source of the differences. We saw in Section

Four that if a many-valued system respects the standard conditions for disjunction, conjunction,

and the quantifiers, then employing exclusion negation and a Philonian conditional are

individually necessary and jointly sufficient for that semantics to retain both classical logic and

the classical theory of deducibility. Thus for such a system (that is, one respecting the standard

conditions on disjunction, conjunction, and the quantifiers), a failure to retain classical logic or

the classical theory of deducibility stems from the truth conditions for negation and/or the

conditional.
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Although the results of Section Four hold for both finitely-valued and infinite-valued

systems, some issues involving the better-known infinite-valued systems make it worthwhile to

discuss such systems separately. In particular, as noted in Section Five, the infinite-valued

systems studied to date do not respect the standard conditions for the quantifiers. As Proposition

4 shows, the quantifier conditions used in the best-known infinite-valued systems are themselves

sufficient to prevent such systems from retaining either classical logic or the classical theory of

deducibility, even if exclusion negation and a Philonian conditional are used.

However, we saw at the end of Section Five that it is not difficult to specify an infinite-

valued system that does respect the standard conditions for the quantifiers. Thus, so long as such

a system employs exclusion negation and a Philonian conditional (as well as the standard

conditions for disjunction and conjunction), then the system will validate exactly the classically

valid formulas while also retaining the classical theory of deducibility (and so, of course, any

such infinite-valued system would also be axiomatizable).
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1. Details on many of the systems discussed in this section can be found in Rescher (1969).

2. See Kneale and Kneale (1962) for further elaboration.

3. My original notes for this paper were lost some years ago as a result of a fire. But if

memory serves me correctly, the key idea in the proof of Proposition 4 of letting

R(ti) = max{0 , n - 1/i}, or at least an idea similar to this, was first suggested to me by

Stewart Shapiro.

4. A similar example is noted by Morgan and Pelletier (1977).

5. For example, Morgan and Pelletier (1977) claim this, citing Scarpellini (1962) as a

source.
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