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Scientific Significance Statement

In situ molecular and imaging instrumentation development has advanced our knowledge of plankton processes in aquatic
ecosystems. However, these sensors have only begun to be used in freshwater ecosystems. Through a combination of literature
review and interviews with instrument developers, we found that there is little technological barrier to transferring marine in
situ molecular and imaging technology to freshwater ecosystems. Identified barriers are largely related to infrastructure and
funding. These sensors have the ability to inform fundamental and applied plankton research in all types of aquatic systems.

Abstract
Understanding plankton dynamics in marine ecosystems has been advanced using in situ molecular and imag-
ing instrumentation. A range of research objectives have been addressed through high-resolution autonomous
sampling, from food web characterization to harmful algal bloom dynamics. When used together, molecular
and imaging sensors can cover the full-size range, genetic identity, and life stages of plankton. Here, we briefly
review a selection of in situ instrumentation developed for the collection of molecular and imaging information
on plankton communities in marine ecosystems. In addition, we interviewed a selection of instrumentation
developers to determine if the transfer of sensor technology from marine to freshwater ecosystems is feasible
and to describe the process of creating in situ sensors. Finally, we discuss the status of in situ molecular and
imaging sensors in freshwater ecosystems and how some of the reviewed sensors could be used to address basic
and applied research questions.
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Scientific interest in the “patchy” distribution of plankton
has been ongoing for more than a century; it has been over
50 yr since Hutchinson (1961) posited the “Paradox of the
Plankton” based on evidence from lake studies. Since that
pioneering research, the heterogeneous nature of zooplankton
and phytoplankton distributions at the macro scale (submeter
to kilometer) has been well accepted for both lakes and ocean
basins (Wiebe and Benfield 2003). It has taken longer to appreci-
ate the heterogeneous distribution of smaller organisms like
bacterioplankton (Stocker 2012). Such distributions are not ran-
dom, but are the result of underlying chemical, physical, and
biological interactions, which can be heterogeneous even at
micrometer scales. Over the last two decades, both the oceano-
graphic and limnological communities have explored these dis-
tributions and their underlying mechanisms as well as their
effects through the food chain (e.g., Brentnall et al. 2003; Franks
2005; Blukacz et al. 2009; McGillicuddy and Franks 2019).

Historically, resolving plankton distributions and abun-
dances within lakes was relatively easier than in oceans due to
their smaller size. Ocean basins require a much greater expen-
diture of resources to gather equivalent samples. In situ
molecular and imaging sensors are arguably at the forefront of
such efforts in oceanographic studies, because of the capabil-
ity of these instruments to resolve plankton distributions at
small spatial scales over large areas (up to several kilometers)
and across wide depth ranges (hundreds of meters vertically)
alongside ancillary measurements (e.g., temperature, salinity,
dissolved oxygen, carbonate chemistry, pH, photosynthetic
active radiation, fluorescence). Advances in the high through-
put sampling capabilities of these instruments has dramati-
cally decreased the per sample cost for oceanographic research
campaigns and has allowed for unique and highly targeted
sampling of communities of plankton and their processes.

Most of the research that has made use of in situ molecular
and imaging sensors has taken place in marine ecosystems
(Table 1). The goals of these campaigns have ranged from fun-
damental research, such as investigating predator-prey
dynamics (Brownlee et al. 2016), to applied research objec-
tives, such as early harmful algal bloom (HAB) detection
(Greenfield et al. 2008; Ryan et al. 2011; Caron et al. 2017). A
few in situ molecular and imaging instruments have been
applied in limnological studies of plankton (e.g., in situ filtra-
tion and fixation sampler [IFFS], Wurzbacher et al. 2012; laser
optical plankton counter [LOPC], Yurista et al. 2009; Yurista
et al. 2012; Table 1); however, an abundance of lake-based
research questions could benefit from their expanded use in
freshwater ecosystems. Freshwater and saltwater habitats
exhibit overlap in multiple environmental issues, including
proliferation of algal blooms, biodiversity loss due to climate
change, invasive species, overfishing, and changes in biogeo-
chemical cycling due to eutrophication and hypoxia. Much
has already been learned from the adoption of in situ molecu-
lar and imagining sensors, and the continued transfer of tech-
nology between the marine and freshwater sciences will

further develop our knowledge of plankton dynamics in rap-
idly changing aquatic ecosystems.

Molecular and imaging sensors designed for marine environ-
ments have already been used to address a range of research ques-
tions related to plankton dynamics. Results from this research
has led to advancements in the study of gene expression, micro-
bial responses (Edgcomb et al. 2016; Ottesen 2016), and bloom
dynamics (Robidart et al. 2012; Brosnahan et al. 2015; Hunter-
Cevera et al. 2016). There are similar needs to better understand
plankton dynamics in freshwater ecosystems. For instance, one
of the most pressing areas of research in all aquatic sciences is the
detection and mitigation of HABs (Anderson et al. 2012; Paerl
et al. 2016, 2018). Eutrophication of aquatic environments is
predicted to get worse as a result of climate change-induced
increases in precipitation, which deliver nutrients from the sur-
rounding landscape (Sinha et al. 2017). Remote sensing has been
useful in tracking HABs at the macroscale (Clark et al. 2017) while
in situ molecular sensors have been useful in characterizing and
predicting HABs in coastal waters (Babin et al. 2005; Ryan et al.
2011). Furthermore, molecular in situ sensors have been pro-
posed as a method for detecting toxic bloom development in the
Laurentian Great Lakes (Bullerjahn et al. 2016). HABs are one
issue that illustrates the need to apply marine molecular and
imaging sensors to freshwater environments. However, there is a
whole range of freshwater plankton research (i.e., biogeochemical
cycling, food web dynamics, invasive species, community reorga-
nization, climate change, etc.) that could benefit with the imple-
mentation of marine molecular and imaging in situ sensors in
freshwater ecosystems, problems and paradigms shared by both
limnology and oceanography sciences (Downing 2014).

In this current evidence article, we identify and briefly review
in situ oceanographic instruments developed for the collection
of molecular and imaging data, and we outline how these sen-
sors can be applied to environmental issues and research areas
in freshwater ecosystems. Molecular and imaging sensors are
complementary systems that provide the ability to assess com-
munity composition and molecular scale processes of the plank-
ton at relatively low cost per sample, allowing for wide coverage
in time and space. To determine the suitability of transferring
molecular and imaging sensor technology frommarine to fresh-
water, we interviewed a selection of developers of these instru-
ments. In doing so, we show both the challenges in the
development of the sensors and the variety of applications of
the sensors. Finally, we discuss some of the successes in the
pioneering use of imaging and molecular in situ sensors in
freshwater systems. We conclude with the ways that these sen-
sors could be employed to address basic and applied research
questions in lake ecosystems, thereby, using technology transfer
to bridge marine and freshwater ecosystem sciences.

Two categories of in situ sensors for plankton
One of the major challenges in studying plankton is making

accurate measurements of community composition while
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simultaneously measuring activity or turnover processes. Across
almost all size classes of plankton, molecular and imaging tech-
niques are being used for in situ observation and classification.
For nano-, pico-, and microplankton, sized 0.2–200 μm,molecu-
lar sensors and flow cytometry-based imaging solutions exist
which can differentiate taxa and functional processes. For meso-
plankton, macroplankton, and megaplankton (sized 200 μm–

20 mm, 2–20 cm, and > 20 cm, respectively), imaging solutions
play a critical role in differentiating plankton by size, morphol-
ogy and behavior, and recent advances in environmental DNA
(eDNA) analyses have opened the door to in situ genomic
observations of species in these size ranges and even larger
(Govindarajan et al. 2015; Djurhuus et al. 2018).

Molecular sensors
Recent advances in molecular in situ instrumentation resolve

problems of collecting samples from heterogeneous communi-
ties in difficult-to-reach locations, while capturing true variabil-
ity of the plankton. These instruments use samples of DNA,
RNA, or other cellular products and perform some processing or
preservation step in situ, allowing for their molecular characteri-
zation. They remove potential artifacts due to classical sampling
methods, such as CTD Niskin bottles (Suter et al. 2017), or from
delays in sample processing during transport of samples back to
a ship or lab (Feike et al. 2012). Recent reviews discuss the
breadth of “ecogenomic” sensors and their abilities to solve
these problems (e.g., Ottesen 2016; McQuillan and Robidart
2017). Here, we highlight general capabilities within classes of
instruments and how they have increased our ability to under-
stand ecological phenomena of the plankton.

Molecular sensors differ in their ability to be deployed for
varying periods of time, their ability to analyze samples in real
time vs. postdeployment, their capability to preserve or conduct
molecular tasks such as polymerase chain reaction (PCR) or
incubations, their ability to conduct adaptive sampling, and
their mobility to sample different environments (Table 1). Some
classes of instruments collect and preserve filtered particulate
samples in situ during short deployments (hours to days) until
instrument recovery (e.g., the automatic flow injection sampler
[AFIS], Feike et al. 2012; the autonomous in situ fixation mul-
tisampler, AFISsys, Charvet et al. 2019; the autonomous micro-
bial sampler [AMS], Taylor et al. 2006; the in situ autonomous
biosampler [IS-ABS], Ribeiro et al. 2019; the IFFS, Wurzbacher
et al. 2012; the suspended particulate rosette sampler [SUPR],
Breier et al. 2014, and the microbial sampler submersible incuba-
tion device [MS-SID], Edgcomb et al. 2016). Similar instruments,
such as the Biological OsmoSampling System (BOSS), can pre-
serve samples for longer deployments over days to months
(Robidart et al. 2013); however, they have lower volume capac-
ity per sample. Other instruments are able to collect, preserve,
and analyze molecular samples in situ in order to detect gene
targets or other cellular products such as HAB-produced toxins
in near real-time (e.g., the autonomous microbial genosensor
[AMG], Fries et al. 2007 and the environmental sample

processor [ESP], reviewed in Scholin et al. 2017). This capability
facilitates long-term deployments (days to weeks), and the col-
lection of samples over wide environmental gradients. Some
instruments also allow for in situ tracer incubations, and thus
the determination of rate measurements concomitant with col-
lection of molecular samples (e.g., MS-SID; Taylor and Doherty
1990; Taylor and Howes 1994; Taylor et al. 2015; Edgcomb et al.
2016; Pachiadaki et al. 2016; Medina et al. 2017). Deployments
of many of these instruments can be adapted to allow for short,
high intensity or longer-term time series sampling regimes in
order to capture different modes of variability. Furthermore,
investigators have developed novel capabilities for adaptive sam-
pling in several of these instruments including, for example,
transmission of biogeochemical real-time data to the user,
which allows for triggered sampling under specific environmen-
tal conditions: (MS-SID, Fig. 1a, Edgcomb et al. 2016; moored
ESP and 3G [3rd generation] ESP, Herfort et al. 2016). Others
have been specifically adapted for extreme environments: for
example, the AMS and SUPR are capable of collection from
hydrothermal plume waters while the Vent-SID (currently in
development) will allow for incubation studies of hydrothermal
vent fluids in situ at vent fluid temperatures up to ~ 70�C
(C. Taylor et al. pers. comm.).

Compatibility between molecular sensors and autonomous
underwater vehicles (AUVs) or long-range autonomous under-
water vehicles (LRAUVs) has resulted in incredible advances
in mobility and targeted sampling with some sensors, such as
the MS-SID and 3G ESP (Birch et al. 2018). Similarly, the
SUPR-REMUS, a cousin of the SUPR, was recently incorporated
into the AUV, REMUS 600, and deployed to detect larval dis-
tributions by genetic markers in a coastal bay (Govindarajan
et al. 2015). Clio, a molecular sensing AUV that is under
development will be capable of reaching depths of 6000 m
and collecting molecular samples at preset depth intervals
(Jakuba et al. 2018). These advances allow the survey of
aquatic populations without the expense and burden of ship-
board operations, allowing for the increased frequency and
flexibility in the environmental sampling of populations of
plankton. Using the same techniques, a new generation of
molecular sensor technologies is evolving; genetic techniques
traditionally applied to microbial life are now being adapted
to the study of larger organisms through eDNA analyses
(reviewed in Deiner et al. 2017). This allows for molecular sen-
sors to be used to study larger size classes such as meso-,
macro-, and megaplankton. All the above-described capabili-
ties are atypical of traditional shipboard sampling, and thus
emphasize the utility of in situ collection of molecular sam-
ples for the community composition of plankton and their
activity, making them increasingly popular for oceanographic
studies around the world (e.g., Fig. 2a).

Imaging sensors
Imaging sensors are another rapidly developing and powerful

method to study plankton dynamics. While molecular sensors
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rely on the cellular products of organisms for identification and
study, imaging sensors allow for direct observation, granting
additional types of information often not possible to infer from
molecular data. These data can include cell size, shape, life cycle

stage, behavioral patterns, and colocalization of other organisms
such as symbionts or parasites. Some basic information such as
in situ physical morphology may never have been known
previously due to organismal fragility (e.g., cnidarians) or

Fig. 1. Images of molecular and imaging in situ sensors. (a) MS-SID image. (b) Imaging Flow Cytobot (IFCB) image. Credit: McLane Research Laborato-
ries. (c) SPC image. Credit: Jaffe Lab for Underwater Imaging, Scripps Institution of Oceanography.
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extremeness of the environment (e.g., the deep sea). Since some
of the earliest experiments in the 1950s with underwater camera
and television systems, to mounting cameras onto nets in the
1970s, imaging devices for studying plankton in situ have
advanced considerably (reviewed in Wiebe and Benfield 2003),
and recently several new modern systems have emerged. No
single system was designed with the same questions in mind;
instruments vary in the size class of organisms they can detect,
their mode of deployment, the volume imaged, the duration of
deployment, and the image resolution (ultimately determining

the taxonomic resolution of the system). We summarize the
characteristics of the major imaging systems currently in use
globally for studying each size class of plankton and their distri-
butions and processes (Table 1).

Similar to the challenges in understanding microbial
and phytoplankton life in the oceans, investigating the dynam-
ics of mesoplankton to megaplankton (which includes
ichthyoplankton) also requires sampling at spatial and temporal
scales that often are not possible through traditional means.
Nets, for example, integrate samples over large spatial scales

Fig. 2. Approximate sampling deployment locations of in situ sensors. (a) Molecular sensors; black circles: AFIS; red star: autonomous in situ fixation
multisampler (AFIS-SYS); blue squares: AMG; blue circles: AMS; dark yellow inverted triangles: BOSS; open inverted triangles: Deep-Sea ESP (D-ESP); blue
inverted triangles: ESP; blue star: IFFS; yellow circle: IS-ABS; dark yellow squares: SID; green squares: MS-SID; green star: SUPR; open square: Suspended
Particulate Rosette Sampler-Remote Environmental Monitoring UnitS (SUPR-REMUS). (b) Imaging systems. Blue circles: FCB; green circles: IFCB; black
squares: ISIIS; black stars: Lightframe On-sight Keyspecies Investigation (LOKI) system; cyan squares: LOPC (including the SOLOPC); cyan stars: optical
plankton counter (OPC); open stars: shadowed image particle profiling and evaluation recorder (SIPPER); dark yellow circles: SPC; red circles: underwater
vision profiler (UVP); black inverted triangles: VPR; green inverted triangles: ZOOplankton Visualization System (ZOOVIS). Methods on location deploy-
ment data mining and respective references available on Dryad along with the data set (Briseño-Avena 2019).
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both vertically (tens to hundreds of meters) and horizontally
(several meters to kilometers). However, cost and time con-
straints of traditional shipboard net sampling limit the spatial
and temporal availability of environmental samples. Further-
more, many organisms are too fragile to be sampled with nets
and are thus missed with traditional sampling (Remsen et al.
2004). A new set of in situ imaging sensors can avoid many of
these constraints and have opened new avenues of scientific
inquiry (Fig. 2b; Table 1). The video plankton recorder (VPR),
which was one of the earliest imaging systems, was designed
to be towed for kilometers horizontally and profile
hundreds of meters vertically while continuously imaging
mesozooplankton, such as copepods, euphausiids, and small
gelatinous organisms (e.g., Benfield et al. 1996; Ashjian et al.
2008). The extensive use of the VPR has led to the under-
standing of physical and biological interactions such as
micropatchiness and turbulence (Ross 2014), predator-
induced diel vertical migration in Calanus finmarchicus
(Baumgartner et al. 2011), and copepod-marine snow associa-
tions (Möller et al. 2012; Nishibe et al. 2015). These studies
illuminated processes affecting carbon export to the deep
ocean. The in situ ichthyoplankton imaging system (ISIIS;
Cowen and Guigand 2008) was designed to image a large vol-
ume of water (70 L s−1) in order to capture images of less abun-
dant organisms, such as fish larvae and large gelatinous
organisms, while still encompassing images of phytoplankton
and mesozooplankton. To our knowledge, the ISIIS is the only
imaging system that can quantitatively resolve fish larvae
distributions with respect to environmental parameters and
prey fields (i.e., phytoplankton and zooplankton). More
recently, the Scripps Plankton Camera (SPC; Roberts et al. 2014;
http://spc.ucsd.edu/), a system consisting of two cameras: one
designed for microplankton and phytoplankton, and a second
one for mesozooplankton, aims to collect rapid time series data
with a resolution of 1 frame s−1 (Fig. 1c). The SPC, while in its
early stages, has already proven its usefulness by revealing a
time-sensitive cryptic phenomenon not observed previously.
Using a subset of the SPC images, Briseño-Avena (Briseño-Avena
unpubl.) observed the external parasitic expression (a phase that
lasts only a few minutes) of the Paradium-like parasite attached
to the urosome of the copepod Oithona similis.

Other imaging sensors have been developed to detect
picoplankton, nanoplankton, and microplankton (0.2–2 μm,
2–20 μm, and 20–200 μm, respectively). The Imaging
FlowCytobot (IFCB; Olson and Sosik 2007), for example, is a
moored system designed to image microplankton (< 10–150 μm)
over time scales from minutes to years. An earlier instrument,
the FlowCytobot (FCB; Olson et al. 2003), can detect
picoplankton and nanoplankton (Table 1) and has been collect-
ing data since 2006 at Martha’s Vineyard Observatory (Fig. 1b).
Both instruments adapted flow cytometry methods to a mooring
system that allows for high-frequency sampling over long time
periods. Time series data generated from both the IFCB and FCB
have allowed ecologists to understand phytoplankton dynamics

underlying bloom initiation and evolution (hours to days), spe-
cies successions (seasons), and regime shifts (multiple years)
(Sosik and Olson 2008; Anglès et al. 2015; Henrichs et al. 2015;
Hunter-Cevera et al. 2016). The IFCB has also been used to study
ciliates and other microzooplankton, as well as parasitic infec-
tions of diatoms (Peacock et al. 2014; Brownlee et al. 2016).
Ecosystem factors have largely determined the locations of
deployment of in situ imaging systems. Most studies in marine
ecosystems have occurred in high latitudes where plankton
diversity is low (Fig. 2b). The few studies in lower latitudes have
been focused in environments with near oligotrophic conditions
where imaging conditions are ideal due to lower particle loads
(Fig. 2b). Furthermore, few oceanic deployments have occurred
in nearshore areas (hundreds of meters from shore), with the
exception of the IFCB, FCB, and SPC systems (Fig. 2b). Turbidity
has been a challenge for underwater imaging, where light is
already a limiting factor due to attenuation. Highly productive
waters with high plankton concentrations are also challenging
since image volume must be adapted to avoid overlap of imaged
particles and plankton on each image frame. However, within
the last decade, attempts have been successful in applying in situ
underwater imaging systems in low-visibility waters. For exam-
ple, Bi et al. (2013, 2015) successfully deployed the ZOOVIS in
the turbid waters of an estuary in the Chesapeake Bay to study
gelatinous organisms. The LOPC with its most recent modifica-
tions has increased its operational capacity in waters with parti-
cle concentrations of up to 103 particles L−1 (Herman et al.
2004). In a similar fashion, the ISIIS has been deployed within
the turbid waters of the Mississippi River plume with positive
results (Greer et al. 2016).

The other challenge posed by turbid waters is data
processing; countless particles are imaged, and manual annota-
tion of these images becomes a near-impossible task. Auto-
mated processing is being tested by some major research
groups, and thus this major roadblock is diminishing (Benfield
et al. 2007; Sosik and Olson 2007; Schmid et al. 2016;
Orenstein and Beijbom 2017; Robinson et al. 2017; Luo et al.
2018). Very recently two new in situ imaging sensors became
available, the Zoocam (Ohman et al. 2019), which is attached
to the Zooglider, and the Continuous Particle Image Classifica-
tion System (CPIC; www.coastaloceanvision.com), which can
be mounted on a CTD frame. The latter incorporates onboard
image segmentation and an automated classification system.

While in the past decade underwater imaging systems have
been gaining traction within the scientific community, they
have had limited deployments in freshwater systems (see
“From intellection to instrumentation: How in situ ocean
technology becomes a reality” section). The Great Lakes, for
example, share some similar environmental problems with
coastal marine regions such as HABs, invasive species, and
waterborne pathogens of humans and native organisms,
among other issues. Moreover, while the marine science com-
munity has gained much understanding of ecological phe-
nomena such as bloom initiation due in part to imaging
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systems such as the FCB (see Hunter-Cevera et al. 2016 as a
recent example), there are fewer systematic efforts to deploy
imaging sensors in freshwater systems. One major exception
is the LOPC (Herman et al. 2004), which was deployed in the
Great Lakes (Fig. 2b) with the objective to compare net and
imaging system biomass estimates (Yurista et al. 2009). Such
an effort was recently conducted over the global ocean using
the Underwater Vision Profiler (UVP5; Biard et al. 2016) from
data collected on cruises from 2008 to 2013; unlike the LOPC
estimates, however, the latter estimates were based on conver-
sion factors from the literature, and not compared directly to
biological samples. More recently, the SPC was tested in Lake
Zürich, Switzerland in order to compare image-based density
estimates of phytoplankton against laboratory microscopy
counts using water samples (Reyes et al. 2017). However, as
mentioned above, one imaging system alone cannot be used
to address every phenomenon, as each imaging system
focuses on a different size class of organisms. Since underwa-
ter imaging sensors can be used in freshwater systems (a less
corrosive environment than saltwater), there are great oppor-
tunities for gains in knowledge through the application of
multiple imaging technologies in freshwater systems.

From intellection to instrumentation: How in situ
ocean technology becomes a reality

To understand what is required for the development of in
situ instrumentation, and the challenges faced in bringing an
idea into a tangible reality, we spoke to four investigators with
experience in the development and implementation of these
types of technologies in their research: Virginia Edgcomb,
Jules Jaffe, Heidi Sosik, and Craig Taylor. Each investigator
took part in the development of in situ instruments including
the Scripps Plankton (and Phytoplankton) Cameras (SPC), the
IFCB and the (microbial sampler) SIDs, among others. In each
case, these oceanographic instruments were built with broad
scientific needs in mind: to increase sample throughput while
minimizing artifacts associated with shipboard measurements
and to study the organisms at biologically relevant spatiotem-
poral scales. These interviews illustrated several themes com-
mon across the researcher’s experience: the importance of
institutional benefits, such as local engineering expertise and
the support of high-risk projects; the importance of collabora-
tion, which insures instrument relevance; and finally, that
novel instrument creation is a lengthy process that requires
multiple changing sources of funding and may dominate the
careers of the primary investigator during its development.

Edgcomb, Jaffe, Sosik, and Taylor work at institutions in
the United States with significant institutional benefits includ-
ing internal grant programs, an aspect that greatly enhances
technology development. In each case, initial pilot studies
were run with small institutional grants in order to develop a
proof-of-concept instrument. Sosik emphasized the impor-
tance of these small grants for high-risk projects such as

instrument prototype development, which are not typically
funded by federal agencies. Taylor also emphasized that these
small grants can be used to develop a novel aspect of a larger
instrument. Critical institutional support also included techni-
cal staff and machine shop facilities, which aided in the
design and construction of novel instruments. Both Scripps
Institution of Oceanography (SIO) and the Woods Hole
Oceanographic Institution (WHOI) employ staff that can
build most of the electrical or mechanical components of a
larger instrument. Instrument development requires many
experts and multiple sources of funding over a sustained
period. Therefore, different features of a single instrument
may be designed with support from several different agencies
over the duration of its development. Once initial proof-of-
concept aspects were developed, results from these small insti-
tutional grants were used as critical preliminary evidence in
larger grant proposals to federal organizations such as the
Ocean Technology and Interdisciplinary Coordination (OTIC)
program at the National Science Foundation (NSF), the
National Oceanographic Partnership Program (NOPP), and
programs at the Department of Energy (DOE), and the Office
of Naval Research (ONR).

Collaborate across scientific disciplines is among the most
important activity to take part in during the development of
new technologies. Each of our interviewees has had long-
standing research relationships with other scientist(s) with
skills that complement their own. Sosik also argues strongly
for interdisciplinary collaboration among different lab groups
early on in technology development. In this way, the instru-
ment developers are forced to adapt the instrument to be
more user-friendly and flexible in order to answer other
scientific questions, promoting broad applicability and com-
mercialization. Edgcomb stressed that making the instrument
user-friendly should be the ultimate goal, and that federal
funding agencies prioritize this aspect in proposals. Early col-
laboration can also help in the acceptance of the instrument’s
usefulness and validity of results within the researcher’s field.
In general, acceptance occurs over years and with sufficient
data collection. An instrument that has multiple users across
many subdisciplines has a greater chance of becoming widely
accepted by the field. Once the in situ instrument is devel-
oped and successfully implemented, its design may be pur-
chased by a company that can increase the production of the
instrument, and further refine user-friendliness. Several such
ocean instrumentation companies exist, such as McLane
Research Laboratories and Bellamare, which helped manufac-
ture the ESP, IFCB, SID, and ISIIS instruments. Edgcomb and
especially Taylor have had a long-standing relationship with
McLane, for example, and frequently discuss scientific needs
and collaborate with engineers at the company. Many
employees in such companies were trained in academic, feder-
ally funded labs, and so there is a close relationship between
the research and development process and the commercializa-
tion process. Additionally, the home institution itself may be
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interested in patenting the design of the instrument. In either
case, the principal investigators involved in instrument design
are not responsible for mass production or customer service.
Despite this, Sosik described the commercialization process as
nerve-racking due to a sense of responsibility in the instru-
ment’s success even outside of her own research interests.

While each of the scientists we spoke with has had great
success with design and application of in situ instruments,
they also outlined several challenges. The development of a
new instrument can have an “infinite gestation period,” as
Jaffe put it, but in general, each of these projects took 6–12 yr
from conception to full application in the environment. Fur-
thermore, while there were a core group of 2–3 scientists
working on the project, a total of 4–12 people were required
for full design, including engineers, technicians, and students.
An instrument design is not static; these instruments are still
constantly being upgraded or modified in response to new sci-
entific questions or improving ease-of-use. In many cases, the
evolution of these technologies included many “cousins” of
the same instrument. For example, there are several versions
of the SID which have each been adapted to sampling in
particular environments, such as high temperatures hydro-
thermal vent systems or oxygen minimum zones. The IFCB
was developed based in part on the questions left unanswered
by its older cousin, the FCB. During the development period,
Sosik emphasized the importance of continuing to pursue
scientific questions and generating interesting data with the
instrument. This allows for continual assessment of what the
instrument can do and what practical limitations should be
addressed in the next development stage. Meanwhile, publica-
tions and conference presentations are a good way to verify
the instrument is successful and to get other groups interested
in adopting the technology.

Most of these projects were started several years or even
decades ago, when the interviewees noted that funding for
instrumentation was easier to obtain. Taking on technology
development is also a long and risky endeavor, particularly for
an early career scientist who may have fewer publications as a
result. Therefore, it was suggested that successful instrument
design should be considered in promotion assessments for ten-
ure. Furthermore, a common problem we heard was that there
are few options for completion of an instrument once a proto-
type is developed; while institutions typically fund the initial
proof-of-concept instrument and a federal organization typi-
cally funds the development and application of a prototype,
many of the projects required a second round of engineering to
realize the full capabilities of the instrument and ease the trans-
fer of technology to other groups. Funding for these issues is
hard to come by, however, Sosik suggests that continually
modifying the instrument so that it answers novel scientific
enquiries with each additional engineering capability is a good
way to continue to fund an instrument’s development.

Despite the aforementioned challenges, each of the instru-
ments we discussed during these interviews is available to the

scientific community either as commercial products or
through open collaboration with the developers. System
design poses a nontrivial constraint that might prevent the
instrument from being widely adopted in freshwater sciences.
While in development mode, most instruments are typically
bulky, requiring large, ocean-going ships that can support
deployment. It is not until miniaturization takes place that
instruments can move into smaller bodies of water or dock-
side deployment. However, each interviewee emphasized that
there would be no major roadblocks to use of the instrument
in freshwater and that they are willing to work alongside
freshwater scientists in developing the instruments further for
freshwater use. In fact, some of the instruments have already
been applied in lakes or rivers (Table 1), but broad adoption in
limnological studies is still on the horizon. Collaboration and
communication between limnologists and oceanographers are
key to this crossover process.

Fresh ideas: Opportunities to forward the use of in
situ sensors in freshwater research

Lakes provide abundant ecosystem services from vital habitat
for aquatic organisms to drinking water supply and recreation.
Plankton are the foundation of aquatic food webs, can indicate
trophic state, and blooms of certain species can negatively affect
the environment. Therefore, understanding plankton commu-
nity dynamics is essential to preserving ecosystem health and
sustainability. In situ instruments in lake settings are powerful
tools for gathering vast amounts of data on biological commu-
nities and the changing conditions of lakes (Hampton 2013). To
date, much of this effort has focused on chemical and fluores-
cence sensors. For instance, water quality has been tracked using
fluorescence sensors to detect dissolved organic matter in a shal-
low eutrophic lake (Niu et al. 2014). Some in situ instruments
have readily been adopted in freshwater systems, for example,
the Sequoia Scientific’s Laser In Situ Scattering Transmissometry
(LISST) instrument (e.g., Serra et al. 2001). Even further, compre-
hensive data sets on water quality have proved especially useful
when comparing multiple lakes to generate an understanding
about how freshwater ecosystems respond to environmental
change. The Global Lake Ecological Observatory Network
(GLEON) addresses this through a network of high frequency in
situ observatories managed collaboratively by members from
over 40 countries (gleon.org; Rose et al. 2016). Access to aggre-
gated data from multiple lakes has allowed for an improved
understanding of regional and global patterns. For example,
Brentrup et al. (2016) found that profiling buoys that collect
high-frequency chlorophyll fluorescence out-performed con-
ventional sampling when identifying subsurface chlorophyll
maxima, which helped to clarify food web dynamics and car-
bon cycling.

The application of in situ water quality sensors in lake
environments has led to several important discoveries and inter-
esting observations. For instance, a global data set of summer
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water surface temperatures gathered from in situ sensors and/or
satellite measurements revealed a rapid warming trend in lakes
over the last two decades (O’Reilly et al. 2015). Observations like
these are essential for tracking environmental change. In situ
molecular and imaging sensors can further this effort by
obtaining a more refined understanding of plankton dynamics
in freshwater, thereby enhancing our knowledge of food web
interactions, trophic state, HABs, and more. However, the opti-
cal and molecular sensors we reviewed here are just beginning
to be used in freshwater systems, and these deployments often
are not yet reflected in the peer-reviewed literature. Few and
often negligible engineering barriers exist for moving these
instruments from a saltwater to a freshwater environment (see
“From intellection to instrumentation: How in situ ocean tech-
nology becomes a reality” section). Instead, barriers to transfer-
ence may be infrastructural. Many instruments require specific
technical equipment and specialized teams for deployment and
retrieval that may be available on ocean-going vessels but are
not currently widely available in lakes (a notable exception are
large vessels on the Laurentian Great Lakes operated by NOAA
and the EPA). Some of the most compelling freshwater environ-
ments for transferal of this technology are relatively large bodies
of water, such as the Great Lakes in the United States or Lake
Baikal in Russia. These large lakes share many of the same chal-
lenges to sampling as ocean environments and pose similar eco-
logical questions regarding species distributions (e.g., Yurista
et al. 2009), harmful algae (e.g., Brooks et al. 2016), and the
roles of planktonic organisms in biogeochemical cycling
(e.g., Wurzbacher et al. 2012). However, continuous presence
and the generation of high-resolution long-term data sets, such
as those created by the IFCB, would also be valuable in small
bodies of water (such as lake or stream systems) to resolve ques-
tions of trophic interactions or bloom progression.

When in situ molecular and imaging sensors have been
used in lake environments, they have most commonly been
applied to large lake systems. For instance, the LOPC was used
in Lake Superior to assess zooplankton abundance and size
(Yurista et al. 2009). In situ instruments for detecting toxins
are of particular interest due to the widespread issues of HABs
in freshwater systems (Brooks et al. 2016). In 2016, the first
deployment of an ESP occurred in Lake Erie and had the capa-
bility to detect microcystin, a toxin produced by cyanobacteria
that threatens drinking water supplies and other benefits from
lakes (http://www.fondriest.com/news/espniagara-tracks-algal-
toxins-lake-erie-protects-drinking-water.htm, 25 June 2018).
The SID has also been deployed in the Great Lakes for educa-
tional purposes (C. Taylor pers. comm.). Another technology
developed by MBARI, the LRAUV Tethys, was first deployed in
the Great Lakes in 2016 to test its capability to be used in col-
laborative ship-LRAUV deployments. An MBARI LRAUV has
recently returned to the Great Lakes in 2018 with the 3G ESP
module installed, illustrating how in situ instrumentation that
can be miniaturized and adapted to mobile platforms can be
more widely used. These recent steps are encouraging and

demonstrate the capability to transfer technology from marine
to freshwater ecosystems, and that their deployments can
address both basic and applied questions in freshwater sys-
tems. These new avenues of research are especially needed in
the Great Lakes, since those ecosystems are changing rapidly
and have experienced large economic and human health
impacts from the increasing threat of HABs (Brooks et al. 2016;
Carmichael and Boyer 2016).

Research on gene expression is one example of in situ
molecular sensor technology being used in both marine and
freshwater systems to address similar types of questions. Using
the ESP, coordinated regulation of gene expression was
observed for a multispecies complex marine microbial commu-
nity, suggesting synchrony among unrelated taxa in response
to environmental change (Ottesen et al. 2013). In a similar but
targeted gene expression study in a freshwater ecosystem using
the IFFS, Wurzbacher et al. (2012) followed the expression of
an unknown Actinobacterial rhodopsin gene. The function of
this gene, although very abundant, was unknown, but their
results allowed for the authors to hypothesize its function
based on diurnal activity. This example highlights a major
finding in a freshwater system that resulted from in situ molec-
ular sensor technology. Instruments such as the 3G ESP which
can be used to detect gene expression on broad scales and in
high resolution would more than likely bring many more of
these discoveries to the forefront for lake researchers.

Another benefit from a wider application of in situ sensor
technology to freshwater systems would be the creation of
long-term time series of high-frequency sampling of plankton
assemblages. Long deployments of imaging sensors (such as
the IFCB, FCB, and SPC) have generated data that have
advanced our understanding of interannual and seasonal vari-
ation in plankton assemblage composition (e.g., Sosik et al.
2003), as well as how relatively cryptic phenomena (such as
parasitic infections) may be shaping seasonal dynamics
(e.g., Peacock et al. 2014). Although lake systems may be more
accessible to sampling than marine environments, the benefit
of automated high-frequency observations is still large. Often,
it is only through using such datasets that we can detect the
importance of episodic events that may remain unobserved
through less frequent sampling (such as storm events which
may introduce an influx of nutrients to a lake).

The potential applications of in situ molecular and imaging
sensors are very broad, from population dynamics that occur
over short periods to community and ecosystem processes
that are adapting to environmental change over longer time
scales. In situ technology can also help inform applied
research in the areas of HABs and the detection and monitor-
ing of invasive species. For instance, instruments like the ESP
are useful for monitoring real time dispersal of invasive or
harmful species while instruments like the IFCB and ISIIS are
suitable for assessing food web dynamics before, during, and
after HABs, and visualizing organisms that may be more diffi-
cult to detect or quantify genetically. These potential
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applications do not come without some obstacles. However,
through collaboration and ingenuity, the transfer of technol-
ogy between freshwater and marine systems is feasible and
the promise of scientific advancement is high, a goal shared
historically by both disciplines and highlighted by Downing
(2014), where he rightly points out that there is “a major con-
vergence between limnology and oceanography in paradigms
as global change advances.”

Conclusion
Molecular and imagining in situ sensors have revolutionized

sampling of plankton populations and communities, from the
nano- to the macroscale. These sensors link population pro-
cesses to physical and geochemical dynamics at varying spatio-
temporal scales, which has been vital to understanding the
ecology of plankton. Detailed knowledge of plankton is essen-
tial as they form the base of the food web and are responsible
for a large portion of carbon cycling. The term “plankton”
covers a diverse array of organisms and is reflected in the
breadth of technologies that have been applied to their study. It
is perhaps only through the application of multiple technolo-
gies that we gain a fuller picture of the complexity of interac-
tions of plankton and their important effects on both
ecosystem biodiversity and human interests.

Molecular and imaging in situ sensors take effort and time
to develop. Once developed, they can be applied, through col-
laboration or commercialization, in a variety of aquatic eco-
systems. Current applications of in situ molecular and
imaging sensors are just beginning to be explored in freshwa-
ter ecosystems. There is great potential to look at issues such
as the threat of HABs and invasive species, and the effects of
changing climate on freshwater systems with these instru-
ments. Overall, as is apparent from recent freshwater deploy-
ments of oceanographic sensors and our discussions with
instrument developers, few technological barriers exist and
there is a lot to be gained from the transferal of technology
from ocean basins and coastal ecosystems to freshwater sys-
tems. It is an exciting time to have these expanded capabili-
ties as we enter an age of high environmental variability.
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