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Abstract 

An earlier study showed that the amphipod crustacean Melita nitida Smith maintained on 

sediments dosed with waste crankcase oil developed physiological and morphological 

abnormalities. Most notably, mature females developed abnormal setae along the edges of their 

brood plates. The present study was conducted to determine whether similar abnormalities might 

be induced in animals maintained on polluted field sediments containing petroleum by-products 

among other toxic substances. In the laboratory, heterosexual pairs were maintained on three 

sediments taken from Jamaica Bay (New York) plus one control sediment and one toxic 

substratum (Ulva lactuca (L.) thalli). The results mirrored the results of the previous study. 

Under controlled conditions brood production was reduced on polluted sediments by as much as 

57% and a greater proportion of females maintained on polluted sediments developed abnormal 

brood plate setae. In contrast, while brood production was lower in females exposed to U. 

lactuca than on the control sediment, there was no significant difference between the two groups 

in the number of females that developed abnormal brood plates. 

 

Introduction 

Estuaries are of key importance in marine ecosystems. Unfortunately, by virtue of their 

location they are especially vulnerable to disturbances from human activities 

(Green, 1968), and this can negatively impact productivity. Jamaica Bay, under the direct 

management of the National Park Service within Gateway National Recreation Area, is a prime 

example of this problem because of its proximity to the New York City metropolitan area (Fig. 

I). Sediment quality is highly variable locally due to street and airport runoff, landfill leachates 

and combined sewer overflows. Species abundance and species richness also vary significantly 

at different sites (Franz and Harris, 1988). It is of interest to learn the extent to which sediments 

contaminated with sublethal concentrations of toxic substances influence estuarine population 

dynamics. The present study was conducted to determine what effects Jamaica Bay sediments 

might have on the physiology and morphology of a local resident species, the amphipod 

crustacean Melita nitida Smith. 

We used a standard amphipod model for our tests (Melita nitida, Borowsky et al., 

1993). This was particularly appropriate because amphipods are primary consumers, forming the 

base of fish food chains in Jamaica Bay (Franz and Tanacredi, 1992), and they are easily 

maintained in the laboratory. M. nitida is common in estuaries along the Western Atlantic as 

well as in Jamaica Bay. It is typically found in muddy shallow subtidal and low intertidal zones, 

in salinities of 3-20 ppt (Bousfield, 1973). This species survives and reproduces in the 

laboratory, but is generally more sensitive to adverse conditions than other amphipods 

(Borowsky, 1978). In addition, it is closely associated with the benthos because it burrows into 

and consumes soft sediments. 

 

Materials and methods 

2.1. Substrata tested 



The biological effects of five substrata were tested: three Jamaica Bay sediments 

(Grassy Bay [G], Pennsylvania Avenue [PI, and Ruffle Bar [R: Fig. 1, bottom]) and two controls. 

The controls were Easthampton sediment (E), taken from the eastern end of Long Island (Fig. 1, 

top), and Ulva lactuca. Easthampton sediment served as a control for non-toxic sediments, and 

U. lactuca was the control for toxic substances. 

Two samples of each Jamaica Bay sediment were analyzed for polychlorinated biphenyls 

(PCBs) and polycyclic aromatic hydrocarbons (PAHs) using standard methods as described in 

Latimer and Quinn, 1996 (principal congeners shown in Table 1). PCBs were analyzed because 

they are diagnostic of landfill leachates (there are three abandoned landfills on the shores of 

Jamaica Bay, and they are thought to be major contributors to sediment pollution in the Bay). 

PAHs were analyzed because earlier observations demonstrated that waste crankcase oil has 

detrimental physiological effects on Melita nitida (Borowsky et al., 1993), and PAHs are the 

principal biologically active contaminants of waste crankcase oil (Tanacredi, 1977).  

The Pennsylvania Avenue site is on the shore of one of the landfills and Grassy Bay 

receives runoff from Kennedy Airport. Ruffle Bar is not near a toxic point source, and supports a 

dense community of animals, principally the amphipod Ampelisca abdita. Easthampton 

sediment, the control for clean sediments, was sampled from Accabonak Harbor, Easthampton, 

Long Island, NY. This site supports a dense and varied biota, does not receive sewer discharges 

and is not near a landfill. Ulva lactuca was tested because, since fresh samples are toxic (lethal 

for crab larvae (Johnson and Welsh, 1985), and highly toxic for Melita nitida juveniles (over 

50% mortality in a pilot study; pers. obs.)), the effects of a known toxic substance could be 

compared with the polluted sediments. 

 

2.2. Experimental procedures 

Tests were divided into two Experiments. Experiment I tested Ruffle Bar and Grassy Bay 

sediments, and Experiment II investigated Easthampton, Grassy Bay, and Pennsylvania 

 Avenue sediments. Ulva lactuca (L.) data was analyzed separately. Melita nitida adults were 

picked from under rocks and debris at the low tide mark near the Cross-Bay Boulevard bridge 

(Fig. 1, bottom). They were brought to the laboratory immediately, where single heterosexual 

pairs were placed in individual dishes. Experiment I involved 60 pairs of M. nitida collected on 

June 30, 1989; 30 pairs were placed in Ruffle Bar and 30 were placed in Grassy Bay sediment. 

Experiment II involved 200 pairs collected on August 12, 1989. These were divided at random 

into four treatment groups of 50 heterosexual pairs each and placed in either Easthampton, 

Grassy Bay, Ulva lactuca, or Pennsylvania Avenue substrata. In common with other local 

amphipods, M. nitida has two generations a year (pers. obs.). Animals collected in June 

(Experiment I) were the overwintered adults (broods produced in the fall), while those collected 

in August (Experiment II) were the summer generation (broods produced in the spring). 

Each pair of animals was maintained in a glass culture dish (10 cm diameter) with 150 ml 

sea water taken offshore, and adjusted to 24 ppt with distilled water. The bottom of each dish 

was covered with 0.5 cm of test sediment, and the animals were kept at a light-dark cycle of (15 

h: 9 h) at 25°C. 

Dishes were observed daily, with molts, release of juveniles, and deaths noted. Dishes 

were maintained until females molted twice. The day after the second molt, all animals (females 

and juveniles) were preserved in 70% ethanol. Lengths of females were measured along the 

dorsal surface of the female from the anterior tip of the rostrum to the posterior tip of the 



urosome using a binocular microscope with an optical micrometer (as per Barnard, 1969). Males 

that died before the end of the experiment were replaced with additional males. 

Mature female amphipods molt at regular intervals and ovulate a few minutes after each 

molt. Thus, females that molted two times in the laboratory produced three consecutive broods 

that could have been analyzed. The first brood (Brood 1) had been fertilized in the field, and 

juveniles from this brood left the female shortly before her first molt. The second brood (Brood 

2) was fertilized at the female’s first molt and developed entirely in the laboratory. Juveniles 

from Brood 2 left the female shortly before her second molt. Brood 3 was fertilized in the 

laboratory at the female’s second molt, and was fixed along with the female 1 day later. 

To avoid confusing the number of offspring produced in successive broods, each adult 

pair was transferred to a new dish with new sediment 2 days after the female’s first molt. 

Juveniles from the first brood were excluded from analysis because some young may have left 

the female’s brood pouch before collection. Juveniles from the second brood and undeveloped 

eggs from the third brood were counted and included in statistical analyses. 

The following data were obtained: ( 1) mortality rate; (2) female intermolt periods; (3 ) 

female body length; (4) number of juveniles from the second brood; (5) number of eggs from the 

third brood; (6) number of females with abnormal oostegite seta morphology. 

 

2.3. Oostegite seta morphology 

All female amphipods have a brood pouch comprised of four pairs of thin plates, or 

oostegites, into which fertilized eggs are released and where the brood develops until hatching. 

However, only sexually mature females have long fringing setae along the edges of the 

oostegites. The setae of adjacent oostegites overlap, forming a porous basket which allows water 

to flow through the brood pouch, but which prevents eggs and juveniles from falling out. Normal 

setae project from the edge of the oostegite in the same plane as the flat surface of the oostegal 

plate. In contrast, abnormal setae project in different planes (misalignments, described in 

Borowsky et al., 1993). Oostegites of mature females in Experiment II were observed at 50 X 

magnification, and scored for misalignments. A female was scored as abnormal if it possessed at 

least one oostegite (of eight) that was abnormal. The number of abnormal females was used for 

statistical analyses. 

 

2.4. Data analysis 

Table 2 shows the fates of females in each treatment group. Females that died before their 

second molts (81 females) plus females that were immature throughout the experiment (28 

females) were excluded from all but mortality analyses (109 females excluded from intermolt 

period and brood analyses). Of the remaining 15 1 females, some were mature throughout the 

experiment, but others attained maturity only after their first or their second molts in the 

laboratory. To avoid harming females, the stage of maturity was determined by examining the 

oostegite setae of the casts and the females’ preserved bodies. Only females that were sexually 

mature between their first and second molts ( 113 females; determined by examining second 

casts) could be included in calculations of second brood production and intermolt periods, and 

only females that were mature after their second molts could be included in calculations of third 

brood production (96 females: determined by examining preserved bodies: see Table 2). 

Experiment I and II females were analyzed separately because the animals came from different 

generations. Pairs maintained on Pennsylvania Avenue sediments were excluded from intermolt 

and brood production analyses because so few females (6 of 50) survived past two molts. Data 



from pairs maintained on Ulva were not included in statistical analyses and are presented 

separately, X2 was used to test whether female mortality differed on different sediments. Because 

brood sizes are positively correlated with body length in amphipods (Borowsky, 1991), analysis 

of covariance (ANCOVA) was used to compare brood sizes, using female body lengths as the 

covariate. 

 

3. Results 

 

3.1. Mortality 

Female mortality was higher on substrata with higher levels of contaminants in 

Experiment II (Table 3: x2
2 = 78.0, P < 0.001). Mortality was especially high on Pennsylvania 

Avenue (86.0% of the females died). However, there was no significant difference in mortality in 

Experiment I, which compared Ruffle Bar and Grassy Bay sediments (Table 3: x2
1 = 0.1, P > 

0.05). Mortality was significantly higher on Ulva than on Easthampton sediments (x2
1 = 9.4 P < 

0.01) but lower than on the two polluted sediments combined (x2
1 = 5.1, P < 0.05). 

 

3.2. Intermolt periods 

 

Although in both experiments average female intermolt periods were longer on more 

polluted sediments, the differences were not significant (Table 4: Experiment I, t37 = 1.0; 

Experiment II, I43 = 0.5: ps > 0.05). Interestingly, the average intermolt period of winter females 

maintained on Grassy Bay substrata was about 2 days longer than the intermolt period of 

summer females on that substratum (Table 4; t42 = 3.3, P < 0.05). 

 

3.3. Brood production: brood 2 (juveniles) 

 

In both experiments, more females produced juveniles on less polluted sediments. The 

difference was significant in Experiment I (Table 5 A: x2
1 = 6.3, P < 0.01)) but not in 

Experiment II (x2
1 = 1.0, P > 0.05). In addition, there were more juveniles per brood on less 

polluted sediments (Table 5 A). Again, the difference was significant in Experiment I 

(ANCOVA with female body length as the covariate; F(1.36) = 16.7, P < O.OOl), but not in 

Experiment II F(1.43) = 1 .O, P > 0.05). 

 

3.4. Brood production: brood 3 (eggs) 

 

More females produced third broods on the less polluted sediments, but the differences 

were not significant (Table 5 B: number of females with broods: Experiment 1, x: = 0.6; 

Experiment II, x2
1 = 0.9, ps > 0.05). In addition, broods produced on the less polluted substrata 

tended to contain more eggs (number of eggs per brood: not significant in Experiment I, F(1.30) = 

1.9, P > 0.05; but significant in Experiment II, F(1.39) = 6.7 P < 0.05). 

 

3.5. Oostegite setae 

 

Abnormalities differed significantly among sediment treatment groups (Table 6: x2
2= 

20.7, P < 0.001). More abnormal females were found in groups maintained on the more polluted 

sediments from Jamaica Bay (Grassy Bay [71.4%] and Pennsylvania Avenue [lOO.OO%]). In 



fact, all six females maintained on Pennsylvania Avenue sediments, who survived past their 

second molts, developed abnormal oostegites (Table 6).  

Although both Jamaica Bay sediments and Ulva lactuca caused high mortalities, U. 

lactuca induced significantly fewer females with oostegite abnormalities (U. lactuca vs Grassy 

Bay and Pennsylvania Avenue combined, x2
1 = 8.8, P < 0.01). Further, there was no significant 

difference between U. lactuca and Easthampton sediments (Fisher Exact Probability Test, P = 

0.34). This suggests that substances present in the sediments, but not in the alga, induced the 

abnormalities. 

 

3.6. Abnormal oostegite setae and reproductive output 

 

We compared the number of broods produced by normal and abnormal females to 

determine whether malformed oostegite setae might reduce reproductive output by failing to hold 

developing broods in the brood pouch. Since oostegite setae were only examined on preserved 

females, we could only compare observations on third broods. This comparison revealed no 

significant difference between the abnormal and normal females (all treatment groups combined: 

normal females, 18 with and 14 without broods; abnormal females, 12 with and 14 without 

broods: X2
1 = 0.3, P :> 0.05). 

 

3.7. Refining oostegite setae scoring methods 

Characterizing all the oostegites of a single female is tedious and time-consuming. Since 

preliminary observations showed that the fourth pair of oostegites was more variable than the 

other pairs, we scored females on the basis of the fourth pair alone, and compared these with the 

scores of the same females based on all oostegites. There was a high concordance between the 

scores; 56 of 58 females were classed the same way. Thus, the morphology of the fourth pair of 

oostegites alone provided about the same information as did the morphology of all the oostegites. 

 

4. Discussion 

The results of this study show that significant changes in reproductive parameters 

occurred on some polluted field sediments from Jamaica Bay. Changes in the reproductive 

physiology and morphology of Melita nitida were positively associated with sediment 

contamination levels. It is interesting that the concentrations of PAH and PCB in Jamaica Bay 

sediments were relatively low (Effects Range-Low [ER-L], defined as 4 022 ppb of PAHs and 

22.7 ppb of PCBs; and Effects Range-Median [ER-M] defined as 44 792 ppb PAH and 180 of 

PCBs: Long et al., 1995). The amounts at Pennsylvania Avenue, the most contaminated sample 

tested, were 5 840 ppb PAH and 88 ppb PCB (Table 1). Thus it is possible that the observed 

physiological changes were caused by other pollutants (such as heavy metals) either acting 

together with PCBs and PAHs, or acting alone. 

Oil pollution may have played a role here. Baden (1990) suggested that the low 

abundances and fecundity of amphipods she observed at Rixo, Sweden, were caused by the 

animals’ exposure to relatively low levels of oil pollution. In addition, in the present study, 

experimental females developed abnormal setae, and an earlier study yielded similar results 

when animals were maintained on neutral sediments spiked with waste crankcase oil (Borowsky 

et al., 1993). 

Support for this working hypothesis comes from the following observations: first, about 

the same proportion of females maintained on Ulvu lactuca thalli developed abnormal oostegite 



setae as did females maintained on Easthampton sediments even though mortality on U. lactuca 

was higher than on Easthampton sediments; second, more females developed abnormalities on 

Pennsylvania Avenue and Grassy Bay sediments than on Ruffle Bar sediments; and third, 

abnormal oostegite setae did not develop in females maintained in sediments dosed with lead 

salts (Borowsky et al., in prep). Whether or not deformed oostegite setae cause reduced fecundity 

needs further investigation. The observations made here were limited to newly ovulated eggs 

(Brood 3), and these revealed no differences in fecundity. 

The principal toxic components of waste crankcase oil are PAHs (Tanacredi, 1977). 

Since both PAH contaminated sediments and waste crankcase oil induce similar sublethal 

changes in this species, it is possible that the causal agent(s) are PAHs. But this remains to be 

tested directly. 

A trend in increasing intermolt period with contamination observed in this study was not 

statistically significant. But the direction of the trend is consistent with two other studies which 

showed that stress increases intermolt periods in amphipods (correlated with mechanical injury 

in Microdeutopus gryllotalpa; Borowsky, 1980: and with increasing concentrations of waste 

crankcase oil and lead in M. nitida; Borowsky et al., 1993 and in prep., respectively). 

This study reveals that, in the laboratory, ambient, polluted sediments reduce productivity 

in one of the most common amphipods in Jamaica Bay. It is possible that this occurs in the field 

as well. In addition, the sediments induce an easily recognizable morphological change in 

females. It would be of great interest to follow up these observations by examining specimens 

collected at different field sites for the presence of abnormal oostegite setae. 
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