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ABSTRACT: When working interactively on the computer, it is valuable 
to be able to undo a series of commands in order to return to a previous 
state. We identify contradictions and limitations in the basic concepts 
of undo. We introduce throe types of undo functions with which we examine 
the characteristics of undo, explain these limitations, and determine the 
minimum requirements for a recovery facility. Then we discuss the im
plications of undo for user interfaces and suggest au.xiliary functions 
to display and simplify the resulting history structure and to view and 
recover prior states.



CONCEPTS AND IMPLICATIONS OF INTERACTIVE RECOVERY

1. Introduction

\ ^ Editing systems provide the capability to create and revise documents
(text, programs, graphics) interactively on the computer. The user can 
issue one command that will change objects throughout the document, delete 
objects, insert new objects, or rearrange existing objects. After making 
a change, the user may find that he made an error or prefers the prior 
version. Therefore, when using an interactive system, it is valuable to 
be able to undo a series of commands and to return to a previous state 
of the document. With this recovery mechanism, the user can remove the 
effects of mistakenly-issued commands, and he has the freedom to exper
iment until satisfied with the final product. Most interactive systems 
provide limited recovery by requiring the user to save versions that he 
thinks he may need again before making changes. We will discuss an undo 
capability that allows the user to recover to a previous state without 
any prior actions.

There are experimental editing and formatting systems, such as Bravo [9], 
Etude [4], PEDIT [6], P-EDIT [8], and POLITE [14], that have undo capa- 
bilities, and the programming language extensions Interlisp [16] and 
Decilisp [7] support the- undo facility. Modina-Mora and Feiler [11] 
discuss a program development environment which allows the user to restore 
a program to a predetermined checkpoint and re-execute it from that point. 
Wertz [18] presents an interactive programming environment which keeps 
enough information to allow the programmer to return to or modify any 
prior version. Arclier, Conway and Schneider [2] describe a general undo 
facility using a script of commands that can be modified and re-executed.

Coni;c'j)ts and Imi>l ic.at ions of i iiL<'rac;l ive l\(>covery 1



They have implemented this recovery procedure in the program development 
system COPE. Vitter [17] introduces an interactive recovery system which 
displays the choices available to the user at each point in the recovery 
to assist him in selecting the desired state. He provides a direct way 
for the user to modify without restriction and re-execute the command 
history by introducing a "Skip" command to bypass selected previous com
mands. Leeman [10] defines and determines properties of four operators, 
which can be added to programming languages, representing two conflicting 
interpretations of the moaning of undo. »

More systems are being planned to have undo capability, and there are »
commercial systems, such as Apple's Lisa [1,15], the Personal Editor for 
the IBM PC [5], and the software package Valdocs on the Epson QX-10 [13], 
with limited forms of undo.

The implementations of undo can be classified based on the effect of is
suing two consecutive undo commands. This separation arises because there 
are contradictions and limitations in the fundamental concepts of undo.
We will examine the characteristics of the undo command, explain these 
limitations, determine the resulting minimum requirements for an undo 
facility, and discuss the implications of undo for user interfaces.

In the iKîXt section, we e.xaiiiine some naive concepts of an undo command ,
and show the basic contradictions inlie.rent in these concepts. Section 3 
describes three types of undo that salvage as much as possible from the ^
naive concepts. Sections 4 and 5 e.xamine and contrast the characteristics 
of these different types of undo. In section 6, we discuss the impli
cations of undo for users and suggest facilities to enhance its use.



2. The Undo Command

In section 2.1, we define the basic property that an undo operation must 
satisfy. We then examine in section 2.2 other properties that one would 
like undo to possess. We show that some of these properties are contra
dictory, so that a single undo command cannot meet all of one's recovery 
expectations. In section 2.3, we analyze the recovery capabilities of 
undo commands. We shall discuss these notions within the context of a 
familiar task, namely, the editing of a document. However, it should be 
obvious that the concepts are application independent.

2.1 Basic Undo Property.

We first determine what is meant by applying undo to a document state. 
We begin with user-issued operators o belonging to a set 0. Let K be the 
subset of 0 consisting of the editing commands k that operate on the 
states oâ the document; in addition to k, 0 will include other operators 
such as undo itself. We will use the letters f and g to distinguish 
different editing commands in K. Given the set S of all states of a 
document and the set K of editing commands with domain and range S, we 
would like to define an undo command u that recovers the prior state of 
the document:

uk(s) = s for any s in S and k in K. (2.1)

(This notation lists the commands as issued from right to left.)

Unfortunately this simple idea won't work. In order to determine the 
prior state s, we need to know more than just the current state ks.

Concepts and Implications of Interactive Recovery 3



con-For example, let state s consist of the string 'abed' and state
asist of the string 'bacd'. If f is the command to change all 'a'

then f(s ) = f(s.) = 'bbed'. That is, there exist states s and 
a D . a

commands f such that:

b',
and

s ^ s, and s ab c f(s^) =

but then

Therefore, kndwledge of the current state and the edit command that 
produced it is not sufficient to determine the prior state uniquely, be
cause in general edit commands do not have unique inverses.

To define the result of an undo it is necessary to extend the states of 
the system by adding to the state of the document enough information about 
the commands that have been applied to allow them to be inverted. There 
are many ways to do this; we shall do it formally in Section 3 by creating 
a "history". Editing commands will be one-to-one when extended to histo
ries, and undo will be well defined. For the present, we can consider gny 
set E of extended states with a mapping c: E -♦ S that gives the associated 
state of the document when applied to any extended state. The analysis 
we give here will apply to "histories" or any other way of constructing 
E, as long as each editing command k can be extended to E in such a way 
that if k: E E is the extension of k, then

c(ke) = kc(e) (2.2)

and k is one-to-one. We shall denote by K the set of all such extended 
editing commands.

*

Ï
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We will use bold letters to denote user-issuable commands on the extended 
space. We shall denote by O the set of all user-issuable commands on 
the extended space, and K is a subset of O. We assume that K contains 
at least two different editing commands.

We now define the undo command U: E E. Given an extended state e, we
might propose to define the undo command u on E by

uk(e)= e, for any k in K. (2.3)

Such an undo returns the user to the state prior to the last command k,
as if k had never been issued. However, this may be unnecessarily re
strictive. What we care most about is the state of the document, not the 
entire extended state, so we can replace (2.3) by

Basic Undo Property: c(uke) = c(e) for any k in K. (2.4)

We will reject any definition of undo that does not satisfy (2.4), since 
(2.4) states the minimal requirement that undo remove the effects of ed
iting commands on the document state.

2.2 Characteristics Desired of Undo.

There is a set of expectations usually associated with the concept of 
Undo. We define properties of undo to meet these expectations and find 
that this results in incompatibilities. We then classify the types of 
undo commands based on the set of properties they possess.

The Basic Undo Property (2.4) may not stipulate everything we desire of 
u. Two extensions seem desirable.

Concepts and Implications of Interactive Recovery 5



First, consider how well or poorly uke mimics the original state e. By 
(2.4) we know that the document state is restored, and by (2.2) we have:

c(guke) = gc(uke)
= gc(e)
= c(ge).

Therefore, editing commands applied to uke behave properly. But (2.4) 
does not specify the effect of undo on the restored state uke. If uke 
is a complete mimic of e, then for any n > 1 we should have •

Thoroughness; .i
c(o . . .o uke) = c(o ...O e) for any O. defined on E, (2.5)

including U.

Second, we may wish to provide that U itself, like the editing commands, 
be invertible, in case we apply it in error. We can require that there 
exist an operator r for "Redo", which might be U itself, which inverts 
it.

Invertibility; There is an r such that
c(rue) = c(e) for all e in E. (2.6)

■%

The case of Invertibility in which u acts as its own inverse is of special
interest: t

Self-applicability: c(uue) = c(e), for all e in E. (2.7)

Without this, the action of u is restricted: it cannot undo all commands, 
but only commands other than itself.

n



If we make the assumption that K contains at least two edit commands f 
and g such that for some e' belonging to E, c(fo) i- c(ge), then 
Invertibility and Thoroughness are incompatible: no U can be Thorough
and Invertible. To see this, pick a state e and the editing commands f 
and g for which fc(e) f gc(e), and consider rufuge, where r is an inverse 
of u in the sense of (2.6). By (2.6) and (2.4)

c(rufuge) = c(fuge)

= fc(uge)
= fc(e). (2.8a)

But if we set e' = tige, then by Thoroughness (2.5)

c(rufuge) = c(rufe') = c(re') = c(ruge)

= c(ge) by (2.6)
= gc(e). (2.8b)

Note that the contradiction holds whether U is its own inverse or whether 
a separate 'redo' command, as in COPE [2] and POLITE [14], is provided: 
an Invertible undo cannot be Thorough.

A weakened form of Thoroughness is "Unstacking": if we wish to be able 
to recover from the effects of a scries of editing commands, not just one, 
we can require

Unstacking:
c(u f ...f g) - c(e) for any n and f. in K. n 1 i (2.9)

We show that Thoroughness implies Unstacking by setting e' 
and using (2.5) to arrive at n-1 ••V

Concepts and Implications of Interactive Recovery 7



. = c(e).

c(u T^...Tj^e) = c(U ) ~ )

However, Unstacking is possible without Thoroughness, since (2.5) is a 
requirement on any operators o in the system.

As it happens, an undo can be Invertible and Unstacking, as we show in 
Section 3. However, if we assume that there exist f and g belonging to 
K and e belonging to E such that gfc(e) i c(e), then Self-applicability 
is not compatible with Unstacking. Pick an f,g,e for which gfc(e) c(e), 
and consider uugfe.

By Unstacking (2.9)

Figure 1 shows in Venn-diagrara form the relationships among these prop
erties of undo.

The conflicting results of Invertibi1ity and Thoroughness as seen in 
equations (2.8a) and (2.8b) and the conflicting results of Unstacking and 
Self-applicability as seen in equations (2.10a) and (2.10b) are the re
sults of inconsistent, yet equally reasonable, expectations of undo.

In the first conflict, one would like to reverse the effect of erroneously 
issuing an undo, but then the restored state cannot behave the same with 
respect to all commands as when first created. The second conflict shows

c(uugfe) = c(e), (2.10a)

but by Self-applicability (2.7)

c(uugfe) = c(gfe) = gfc(e). (2.10b)

8



UTìstacking

invertlûle

seif“/H>PücaPte

TTionxjçyi

Flß 1 Properties of undo

the other limitation of the undo command: it cannot both undo a series 
of edit commands (unstack) and undo itself (self-applicable).

The classification of undo based on the result of c(uue) (Self
applicability or Unstacking) was the basis for the work in [10]. However, 
we will examine its more general implications in the next subsection.

Concepts and Implications of Interactive Recovery 9



2.3 Recoverability.

In this section we define the concept of Recoverability and examine the 
undo command's capability to recover to a prior state.

Recoverability: The set O satisfies the Recoverability property if for
any two extended states e' and e in E, such that e' = O ...0,e for somem 1
commands Oj^,...,o^ in O, there exist (not necessarily distinct) commands 
Wi,...,Wn belonging to O-K, such that ''

c(W^...Wj e') = c(e). (2.11) f

We exclude editing commands in (2.11) to eliminate the process of recon
structing the document in order to recover to a prior state.

One may desire that a single undo command provide recoverability; that 
is, we restate Recoverability (2.11) for the case when" the set O-K con
sists of only the undo command u. Given the two extended states e' and 
e of (2.11), thçre is an n > 0 such that

c(u'^e' ) = c(e) . (2.12)

Within the context of (2.12) we examine Recoverability for Self- ■*
applicable undo commands and for Unstacking undo commands.

W'hereas the definition of Self-applicable undo (2.7) determines the re
sult of c(u^e) for all n. Unstacking (2.9) docs not specify the result 
of applying to a state which has less than n edit commands to unstack.
To specify the result of an Unstacking undo for any n, we define an 
edit-less state e and introduce the Root Property. An edit-less state e 
is an extended state for which there is no k belonging to K such that e 
= ke' for an e' in E. We define the Root Property.

10



Root Property:
Ue - e, if e is an edit-less state in E. (2.13)

Unstacking (2.9) and (2.13) determine the value of c(U^e) for all n and 
e in E, unstacking the edit commands for n less than or equal to the number 
m of edit commands composing e and producing the same edit-less state for 
n greater than m.

We assume that there exist commands f and g in K and state e in E such 
that c(gfe) ^ c(e). In the case of Self-applicable undo commands we as
sume that the command f and the state e selected also satisfy the condi
tion c(fe) ^ c(e). In the case of Unstacking undo commands we assume that 
the commands f and g selected also satisfy the condition c(gfe) ^ c(fe) 
for the edit-less state e.

First, we show that a Self-applicable undo cannot provide Recoverability. 
By (2.4) and (2.2)

c(ugfe) = c(fe) = fc(e), (2.14)

and as shown above, (2.7) implies (2.10b): 

c(uugfe) = c(gfe) = gfc(e).

Choose an extended state e and commands f and g for which gfc(e) f c(e) 
and fc(e) ^ c(e), and lot e’ = gfc in (2.12). For this choice of e' and 
e, there is no n such that c(u^e') = c(e), since by (2.14) and (2.7)

c(u^e') = c(u”gfe) = fc(e), if n is odd;

= c(gfe) = gfc(e), if n is even.

Concepts and Implications of Interactive Recovery 11



Second, if we impose the Root Property (2.13), an Unstacking undo cannot 
provide Recoverability. Choose a state e" (to simplify the proof, let 
e" be an edit-less state) and commands f and g for which fc(e") f gfc(e") 
and c(e") f gfc(e"), and let e' = Ue, where e = gfe". For this choice 
of e' and e, there is no n such that c(u’^e') = c(e), since by (2.9) and 
(2.13)

c(U^e’) = c(u'"'*’Ve") = c(u"fe”) = c(fe") = fc(e"), if n = 0;

= c(u’^ ^e") = c(e"), if n > 0.

Therefore Self-applicable undo commands and Unstacking undo commands 
satisfying the Root Property cannot provide Recoverability.

We can give an explicit example of an unstacking undo which provides 
Recoverability but does not satisfy the Root Property. Let N be the set 
of nonnegative integers and S the set of all document states, including 
the empty state fi. We denote by P the set of products in SxSx. . . , all 
but finitely many components of which are fi; consequently the length 
function L from P to N given by L(s.,s,,...) = min{i in N I s. = fi for 
all j > i ) is well defined.

To construct our example we let E = PxN, and for (p,r) in E, 
P“(Sq!s1,. • . ), we define c:E ** S as c(p,r)= s^ and extend editing commands 
k to k;E E by setting k(p,r) = (p',r+l) , where p' = (s ' ^ ,s ' ^, . . . ) and

s' =s, if0<m<r;mm ’
= k(s^), if m = r+1;
= s^_^, if m > r+1.

The undo function U:E E is given by

12



u(p,r) = (p,r-l), if r > 0;
= (p,L(p)), if r = 0.

i

We prove Recoverability as follows. Let p'=(tQ,t^,...) and e' = (p',r^) 
°m"‘°l® ® where p=(s^,Sj^, . . . ) . We will show that

there exists an n such that c(u e')=c(e)=s . It is easy to show that

the operations do not delete elements from p, and so all elements of
p are elements of p’. Therefore pick r„ with s = t .2 "^2 '^3

If > rj, let <i = - r^. Then u"(p',rp = (p'.r^-r j+r3> = (p'.tj),

and c(p',r ) = t = s .
"^3 "^2

Note that for this case if r^ = 0, then = 0 and n = 0.

If < r^, let n = r^+L(p')+l-r^. Then

L(p')+l-r
U (p’,r^) = u (p’,0)

L(p')-r
= u ^(p*,L(p'))

= (p'.r„),

and c(p',r ) = t = s .
""3 ""2

Consequently this u provides recoverability, as claimed.

Lastly we introduce the concept of "direct recoverability". Given a se
quence of alternating edit and undo commands, e' = uf^. . . uf^uf ^^e, by (2.4) 
the associated state after each undo is the same: c(e). Therefore given 
the state c(e), it may be desirable to be able to select any of the states

Concepts and Implications of Interactive Recovery 13



f^c(e) by one issuance of a command operating on e'. This direct recovery 
clearly requires a function with a parameter to specify the desired state, 
and this is required for any type of undo. We will discuss this further 
in sections 4 and 5.

In section 3, we will examine three types of undo that instantiate all 
the realizable combinations of the useful properties of undo. We define 
one undo that is both Invertible and Unstacking, another that is Thorough 
and a third that is Self-applicable. We will examine the functions needed 
for Recoverability for these operators in sections 4 and 5.

i



3. State History, Extended Edit and Undo Commands

In this section, we will formulate a history structure of document states 
and define edit and undo commands to manipulate that structure. We define 
three types of undo commands and associate them with two logical views 
of undo. We will show that one logical view gives rise to undo commands 
that are Unstacking, and we define one undo command that is both Un
stacking and Invertible and a second undo command that is Thorough. The 
other view gives rise to undo commands that are Self-applicable, and we 
define a third undo command that is Self-applicable. We use these com
mands to skirt the undo inconsistencies shown in section 2.

First we will need to define more precisely the commands and their domain.

Definition 1. S is the set of all possible states of a document. K is 
the set of edit commands k: S -*• S that change the state of a document. 
We will use the letters f and g to denote specific edit commands in K.

As stated in section 2, to define the result of an undo it is necessary 
to extend the states of the system by keeping enough information to invert 
commands. We will keep a history for each document state. That history 
will consist of the unique sequence of states from the original document 
state (root) to the given state. We can represent the document history, 
consisting of all its states' histories, as an arborescence [12] whose 
vertices correspond to the states of the document. An arborescence is 
an acyclic, directed graph with the above property of exactly one imme
diate predecessor for each vertex, where we define the predecessor of the 
root vertex to be itself. This implies that for each vertex there is a 
unique path, which we will call a history path, originating at the root 
and terminating at the vertex. We will use an ordered arborescence for 
the document history, so that we can number the branches emanating from

Concepts and Implications of Interactive Recovery 15



any vertex based on when each branch was last reached, from oldest to most 
recent. We will define the space of document histories and extend the 
commands k to this space in such a way that the undo command is single
valued.

Definition 2. T is the set of history trees t whose vertices correspond 
to document states and whose arcs trace the history of the document be
ginning with the initial state at the root. A particular history tree t 
is the ordered arborescence {X,p,z,r}, where X is a collection of 
•vertices, p is a function p : X -♦ X that defines the sequencing of the 
vertices by selecting for each vertex its immediate predecessor (if x is 
the root, p(x) = x), z is the current vertex, and T : XxX -*• N (where N 
is the set of nonnegative integers) orders the arcs to the immediate 
successor vertices of each vertex by numbering them from oldest to most 
recent. The numbering is based on when each immediate successor vertex 
was last designated as the current vertex of the history tree. We define 
the function v : T X which identifies the current vertex: v(t) = z. 
Each vertex x belonging to X corresponds to some state of the document s 
belonging to S. We define the function d : X -»■ S which identifies the 
document state associated with vertex x. A history path is an oriented 
path in t, whose origin is the root of the history tree and terminus is 
a given vertex.

By the definition of an arborescence, p is a single-valued function, and 
we have defined d to be single-valued. T is the history space corre
sponding to the set of extended states E in section 2, and dv(t) maps the 
history tree to the current document state corresponding to c(e) in sec
tion 2.

16



V(t)

Fig> 2 Tree t

Figure 2 is an example of a history tree. The ordering of the arcs at a 
vertex is from bottom to top, with the most recently-accessed arc at the 
top.

We shall use the following definitions of equivalence and equality of 
history trees.

Definition 3. Two history trees are equivalent if they have the same 
vertices, arcs, and ordering. Two history trees are equal if they are 
equivalent and have the same current vertex.

Definition 4. Given a history tree t with current vertex v(t) and s in 
S, we define an append function a from TxS to T. The append function, 
a(t,s) = t', forms tree t' by creating a vertex x corresponding to docu
ment state s (i.e., d(x) = s) and attaching x to v(t), making this arc 
the highest order arc emanating from v(t). In the resulting history tree

Concepts and Implications of Interactive Recovery 17



t' = {X U {x},p,x,r}, P is extended to x, such that p(x) = v(t), and we 
have v(t') = X.

In summary, if x = va(t,s), then

d(x) = dva(t,s) = s, 

p(x) = pva(t,s) = v(t).

Figures 3a and 3b display history trees t and t'.

Fig, 3a Tree t Fig Si Tree t* ■ a (t^)

Note that the append function creates a new vertex corresponding to a 
given state s and attaches it to v(t), even if there already exists a 
vertex in t corresponding to s.

18



We will show that the append function is one-to-one, since it will be the 
basis for the extended edit commands for which we want to have unique 
inverses. In this way we solve the problem discussed in Section 2 after 
(2.1'). If a(t,s) = a(t',s'), we will show that t = t ' and s = s ' . Given 
that a(t,s) = a(t',s'), their current vertices must be equal, v'a(t,s) = 
va(t',s'). Therefore, s = dva(t.s) = dva(t',s') = s'. The vertices, arcs 
and ordering of t are the same as those of a(t,s) except that t does not 
contain va(t,s). Similarly, the vertices, arcs and ordering of t' are 
the same as those of a(t',s') except that t' does not contain the vertex 
va(t ' ,s ' ) = va(t ,s) . Therefore, t is equivalent to t’. Tree t = t', since 
v(t) = pva(t,s) = pva(t',s') = v(t').

We start with a set of edit commands k, which operate on the current state 
s of the document to create a new state ks. We extend commands k to T 
by the following definition. As in section 2, we shall use bold letters 
for all user-issuable commands on the history space.

Definition 5. For each edit command k, we associate an extended command 
k with domain and range T. K is the set of extended edit commands k, 
such that for all k belonging to K,

k(t) = a(t,kdv(t)).

The history tree t' = k(t) has current vertex v(t') with document state 
dv(t') = kdv(t). Note, that corresponding to equation (2.2),

dvk(t) = dv(t') = kdv(t).

The extended edit commands belonging to K operate on the current state 
by adding a new state to the history and have no effect on other existing 
states. See figures 4a and 4b.
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The commands in K are one-to-one, since k(t) = k(t') implies that t = 
t': by Definition 5, k(t) = a(t,kdv(t)) and k(t’) = a(t',kdv(t')) , and 
since the append function is one-to-one, t = t'.

We can now define undo commands on T. We will define the Travel Undo 
u^, the Recall Undo u^, and the Retract Undo Uj^ with domain and range T 
based on two logical views of undo.

One logical view is that undo moves the user back to the previous state 
in history.

Definition 6. The Travel Undo, U^, is a command from T to T, such that 
if t is a history tree with current vertex v(t), then

i

V

«
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where the history tree t' is equivalent to t, and

■r

¿

t

v(t') = pv(t).

Note that vertex v(t) remains a vertex, in t'. The trees t and t‘ have 
the same vertices, arcs and ordering; only a different vertex is selected 
as the current vertex. See figures 5a and 5b.

Since each vertex has a unique predecessor (the root being its own pred 
ecessor), is single-valued.

From Definitions 4, 5 and 6, it is seen that for all k belonging to K

v(u^k(t)) = v(t)
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and

Therefore the Travel Undo satisfies the Basic Undo Property (2.4).

dv(u^k(t)) = dv(t).

We show that the Travel Undo satisfies Unstacking (2.9) by applying De
finition 6 repeatedly.

= t'.

where t' is equivalent to f^...f^t, and

v(t') = p"v(f^...f^t)

n-1= p '^^^n-1 ■ ■'^1^^ Definitions 4 and 5

1

= v(t).

Tlicrefore dv(u^'^f^. . .f^t) = dv(t).

Since p(x) = X when x is the root, if v(t) is the root, then pv(t) = v(t) 
and thus u^(t) = t. Therefore the Travel Undo satisfies the Root Property 
(2.13).

The second logical view is that undo expands history by creating a new 
current state which is a copy of the previous state.

Definition 7. The Recall Undo, U^, is defined as follows. If t is a 
history tree, then
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'Jp(t) = a(t,dpv(t)) = t'.

That is, the history tree t' has current vertex corresponding to the 
document state dpv(t).

Since pv(t) is unique and d and a are single-valued, the Recall Undo is 
single-valued.

From Definitions 4, 5 and 7, it is seen that for all k belonging to K

dv(U^k(t)) = dv(t),

and therefore the Recall Undo satisfies the Basic Undo Property (2.4).

The Recall Undo satisfies Self-applicability (2.7), since by Definitions 
4, 5 and 7

UpUj.(t) = a(a(t,dpv(t)),dv(t)), 

and the current document state of the resulting tree is dv(t).

Therefore dv(U^U^(t)) = dv(t).

The difference between the Self-applicable undo and the Unstacking undo 
can be seen with these two views of undo. By the extension of the undo 
command to the complete history space, as defined in this section, we can 
see the operation of these two types of undo. When applied once, each 
undo produces the same current document state, but creates a different 
history. When applied again to the resulting history, the two undo com
mands produce different results. In particular, the result of uugf(t) 
depends on which type of undo is used.
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By Definition 5 for extended edit commands f and g:

f(t) = a(t,fdv(t))

gf(t) = a(a(t,fdv(t)),gfdv(t)).

For the Travel Undo, by Definition 6:

U^u^gf(t) is a tree equivalent to gf(t) with current document state 
dv(t).

For the Recall Undo, by Definition 7:

Uj.u^gf(t) = a(a(a(a(t,fdv(t)),gfdv(t)),fdv(t)),gfdv(t))

and the current document state of the resulting tree is gfdv(t).

Therefore the Travel Undo is Unstacking and gives us result (2.10a), and 
the Recall Undo is Self-applicable and gives us result (2.10b).

There are times when we want the undo to perform as in equation (2.10a) 
and other times when we want the result of equation (2.10b). When we 
change the original state by executing the edit command f and then g and 
then two undo commands, we expect the result to be the original state. 
This is because the first undo command should eliminate the effect of its 
preceding command g., and then the second undo command should eliminate 
the effect of command f. For example, suppose that we had made two in
sertions in a report by executing f and then g. Then undoing both in
sertions would get us back to the original report, as in (2.10a).

On the other hand, we might expect the resulting state to be gfc(e). The 
execution of the second undp should eliminate the effect of the prior
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command, the first undo. For example, suppose that after making the two 
insertions in the report, we execute undo (eliminating the second in
sertion) and find we prefer the second insertion in the report. We exe
cute undo again to eliminate the effect of the first undo, as in (2.10b).

The Travel and Recall undo commands can be considered generalizations of 
the ß and (f> commands of [10] , respectively. The undo command in both COPE 
[2] and POLITE [14] would produce the result c(e) in (2.10a), whereas the 
execution of the same undo command twice in Bravo [9], PEDIT [6], or 
P-EDIT [8] would produce the result gfc(e) in (2.10b).

The logical view that led to the definition of the Travel Undo (i.e., 
putting the user back to a previous vertex in the history) can give us a 
variation of the Travel Undo command. We can define a command that points 
back to a previous vertex and deletes all its successor vertices. This 
command returns us to a prior vertex, such that the resulting history t 
is the same as when that vertex was first created. This command is of 
interest, because it satisfies the stronger recovery condition of 
equation (2.3), uk(t) = t, for any k in K.

Definition 8. The Retract Undo is a command with domain and range T 
such that, if t is a history tree with current vertex v(t), then

Uj^(t) = t' ,

where t' is equivalent to t with vertex v(t) removed, and

v(t') = pv(t).

By Definitions 4, 5 and 8, it is seen that u„k(t) = t, and therefore the
K

Retract Undo is Thorough.
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For the Retract Undo, R9f(t ) “ t, giving the same current document 
state dv(t) as the Travel Undo.

We can set up a hierarchy of the undo commands from strong to weak re
covery based on how completely the state is recovered.

For any k belonging to K, the Retract Undo satisfies the following 
equations :

uk(t) = t

v(uk(t)) = v(t) (3.1)
«

dv(uk(t)) = dv(t) (3.2)

As shown above, the Travel Undo satisfies only equations (3.1) and (3.2), 
and the Recall Undo satisfies only equation (3.2) (the Basic Undo Property 
(2.4)).

With the Travel Undo and the Retract Undo, undo is considered a time ma
chine, providing the capability to move back to a previous state in the 
history. With the Recall Undo, we interpret undo as perfect memory, 
providing a copy of a previous state and making it the most recent state *
in the history. We showed that the Travel and Retract Undo are Unstack
ing, producing the result in equation (2.10a) and that the Recall Undo «
is Self-applicable, producing the result in equation (2.10b).

Figure 6 displays the three forms of undo in the Venn diagram of figure 
1. In summary, the Retract Undo is Thorough and, as such, is not 
Invertible. The Travel Undo is Invertible by a redo operator and so is 
not Thorough and not Self-applicable. The Recall Undo is Self-applicable 
and so cannot unstack.
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Uhstacklng

Fig. 6 Types of Undo

We will explore the consequences of the Travel Undo and the Retract Undo 
in Section 4 and then determine the corresponding results for the Recall 
Undo in Section 5.



4. The Travel Undo and the Retract Undo

In this section, we examine the characteristics of the Travel Undo and 
the Retract Undo. First, we look at the result of successive applications 
of the Travel Undo. This leads us to examine how to recover from an undo 
and to determine the history structure that results from the use of the 
Travel Undo. Then we summarize the implications of these results for the 
Travel Undo and determine the corresponding results for the Retract Undo.

The Travel Undo is not Self-applicable. From the definition of the Travel 
Undo, we see that applying the Travel Undo i times moves us back i prior 
states from the current state in history and unstacks i edit commands.

The Travel Undo is a metacommand. By this we mean that unlike edit com
mands, the Travel Undo command is not "undone" by the next execution of 
a Travel Undo and does not add a vertex to the history tree.

Because repeatedly executing the Travel Undo moves the value of the cur
rent vertex function v back in history, the Travel Undo provides no ca
pability to move the current vertex forward again, that is to recover from 
an undo. Therefore, we need to define a second command, which we will call 
redo. We would like the redo and the undo commands to allow us to recover 
to any prior state.

First we define nv(t) to be the next (successor) vertex to v(t) on the 
highest ordered arc emanating from v(t), and if v(t) is a terminal vertex, 
we define nv(t) = v(t).

Definition 9. If t is a history tree with current vertex v(t), then the



r(t) = t'

>re t' is equivalent to t and v(t') = nv(t).

with the Travel Undo, the redo command does not change the history tree 
ructure; it changes only the value of the current vertex. The redo 
imand r is the inverse of u^:

ru^(t) = t.

iever, we still do not have the capability to recover to any prior state 
:h the redo and undo commands. We cannot recover to a state once we 
inge the state with an undo command followed by another edit command.

r example, suppose we start with an original report, document state 
[t), and insert text A with command f, undo to the original report, 
sert text B with command g, and undo to the original. Redo then 
Lminates the last undo, and we have text B inserted again in the report, 
/(t) .

3t is, by Definitions 5, 6, and 9, the document state of the current 
rtex of tree ru^gu^f(t) is gdv(t), since

f(t) = a(t,fdv(t)) with current state fdv(t).

= t’ where v(t') = v(t) with state dv(t).

gu^f(t) = a(t',gdv(t)) with current state gdv(t).

u^gu^f(t) = t" where v(t") = v(t) with state dv(t).

ru^gu^f(t) = t'" with current state gdv(t).
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However, we cannot recover the state fdv(t), although there are situations 
when we want this to be the result. Consider the following scenario for 
ru^gu^f(t). We insert text A with command f, undo to the original report, 
insert text B with command g and decide that we prefer text A. We would 
like to issue an undo command to eliminate text B and then a redo command 
to get back text A. However, we only get back text B.

A vertex can have several immediate successor vertices, as the vertex v(t) 
in the above example has successor vertices corresponding to states fdv(t) 
and gdv(t). Therefore, the redo command must have a parameter to select 
the desired vertex, and thus, we require the form Tj. We shall examine 
the structure of the history that results frort the Travel Undo and define 
Pj formally.

The need for a parameter for the redo command is a result of the fact that 
with the Travel Undo the states correspond to the nodes of a tree with 
possibly multiple branches emanating from a node, and we need to specify 
which branch to redo. The edit commands create successor vertices forming 
a branch, with each vertex having only one immediate predecessor. The 
tree structure arises, because the Travel Undo points back to a previous 
vertex, making it the current vertex. Any further editing from that point 
causes an additional branch to be created from that node. All the 
vertices are edit-created and all the arcs are the edit commands in the 
resulting arborescence.

The Travel Undo allows the user to move, to the predecessor of the current 
vertex. The redo command Pj allows the user to move to the successor
vertex on the i^^ branch from the current vertex. The two commands 

and Pj thus provide the means to traverse all vertices of the tree.

Definition 9A. If the outdegree of the vertex v(t) is m > 1, then we



sequence based on the order that the branches were last reached, e.g. 
branch m was visited most recently. We identify the successor vertex of 
v(t) on branch i by n^v(t). If v(t) is a terminal vertex (outdegree = 
0), then n^vCt) = v(t).

We define the redo command Tj from T to T, such that

r¡(t) = t’

where t' is equivalent to t except for branch ordering from v(t), and 
v(t') = n^v(t) making this branch the highest ordered.

In general then Tj will change the ordering of the arcs emanating from 
v(t) . The arc selected by redo will be given the. highest order, and the 
others will be resorted.

The redo command r of Definition 9 is equal to r , where m is the out-m
degree of the current vertex; r selects the successor vertex on the most 
recent branch to redo. Therefore,•this is the only parameter value for 
redo that does not reorder the arcs.

The recovered state behaves the same with respect to edit commands and 
the undo command as when originally created by an edit, because its vertex 
in the tree structure is not changed by undo or redo. It therefore has 
the same predecessor vertex as when first created. However, more infor
mation (successor vertices) is available after undo. Thus redo can select 
the successor vertices which were not known when the state was first 
created. Because redo may reorder the arcs, the redo command will in 
general give different results when applied to the same recovered state 
at different times in the process.
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By viewing prior states, we mean the ability to see a prior state without 
disturbing history, without any record that the state was visited. This 
gives the user a chance to examine a past state before deciding whether 
to undo to the state and change the history. Issuing undo and redo com
mands without edit commands in between allows movement back and forth 
through the vertices of the tree without altering the tree structure, 
except for branch ordering. Thus, this viewing of prior states can be 
accomplished without impact on future edit and undo commands, but it will 
impact future redo commands. We will examine facilities in section 6 to 
move through the history tree without any change to the history.

Examining the characteristics of the Retract Undo, we note that successive 
issuances of this undo give the same current vertex as the Travel Undo. 
Therefore the Retract Undo is Unstacking. For the Retract Undo, 
URURgf(t) = t, and for the Travel Undo, u^u^gf(t) = t', with v(t') .= v(t).

There is no meaning to a redo function with this undo, since the successor 
vertices have been deleted. Therefore the Retract Undo is not Recovera
ble. The history tree is identical to the history tree when the recovered 
state was first created. There is no knowledge of successor states. The 
effect of future edit and undo commands on the history tree is therefore 
the same as when originally created. By Definitions 5 and 8, it is seen 
that the Retract Undo is the inverse function for all the extended com
mands in K, i.e., the Retract Undo satisfies equation (2.3) and is 
Thorough.

The Retract Undo is a metacommand. It is not "undone" by the issuance of 
the next Retract Undo, as an edit command is, and in terms of the history 
structure, it does not add any vortices as does an edit command.
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If only the Retract Undo is used, the history tree consists of one branch, 
because the original successor branch is eliminated by this undo and the 
edit commands just add successor vertices along one branch.

The Retract Undo cannot be used for just viewing, because it changes the 
history tree when it is executed.
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5. The Recall Undo

This section follows the same ordering of results and consequences for 
the Recall Undo as Section 4 followed for the Travel Undo. We examine 
the result of successive Recall Undo commands. This leads us to inves
tigate how to reach any previous state in the history and to determine 
the resulting history structure. We then examine the implications of 
these results on the undo state and on viewing previous states.

The Recall Undo is Self-applicable. The effect of the Recall Undo on 
itself is the same as its effect on any command in K. From the definition 
of the Recall Undo,

where

= t’ ,

dv(t') - dv(t) for m even,

- dpv(t) for m odd.

The Recall Undo causes oscillation between two states, the current and 
the preceding state, when applied successively.

Based on the above, the Recall Undo requires a parameter to reach vertices 
beyond the immediate prior vertex.

Definition 10. For i > 1, the Recall Undo with parameter, u . from T
F / I

to T, selects the document state dp^v(t) corresponding to the i^^ prior 
vertex along the history path from the current vertex v(t) and appends a 
new vertex corresponding to that document state.
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Any prior state can be recovered by this parameterized undo. The Recall 
Undo with parameter corresponds to the undo command in PEDIT [6] and 
P-EDIT [8].

Since for each selected prior state, a vertex is added to the history as 
the current vertex by the Recall Undo with parameter, and each edit com
mand adds a vertex to the history, the resulting history tree reduces to 
one branch. Then the history tree t reduces to theJiistory path h with 
terminus at the current vertex. The history path h can be viewed as a 
vector, whose components are in chronological order from the root h^ 
(corresponding to the initial state of the document) to the current ver
tex, say h^. The chronological order is the order that the corresponding 
states are seen by the user, both when first created and again if selected 
by an undo command. A state selected by an undo command then corresponds 
to more than one component of h. The function p^v(t) is equal to h

ra-i

The tree structure that results from the Travel Undo and the single branch 
that results from its variation, the Retract Undo, consist solely of 
edit-created vertices, in contrast to this history structure which is 
comprised of edit and undo vertices.

We will determine the effect of successive issuances of the Recall Undo 
with parameter. Assume h has components h^, for n = 0,...,m , then with 
t = h.

and

Up jU^ j(t) = a(a(t,d(h^_^)),d(h^^^_^ )) for 1 < i < m, 1 < j < m+1.
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The resulting document state d(h ,, . ) of the current vertex (last com-m+l-j
ponent) of u ¡U .(t) is the document state of the last component of

the results are analogous to those for the 0 operator in [10, p. 22].
Note that . will recover from for any allowable i.

r,l r,j’ ^

The resulting state behaves the same with respect to edit commands as when 
originally created, but behaves differently with respect to undo. This 
is because the selected state is added as the last component of the his
tory path. Therefore, the state's corresponding vertex has a different 
predecessor than the original state's vertex.

Viewing, without altering history, cannot be accomplished with the Recall 
Undo with parameter, because executing this undo changes the history tree 
by adding a vertex to the history path h. Viewing then would require the 
introduction of another command.

Variations of the Recall Undo with parameter can bo defined based on the 
number of vertices that are added to the history path with one e.xecution 
of undo. These variations follow the second interpretation of undo, that 
is; that undo expands history by creating a new vertex which corresponds 
to a prior state. The Recall Undo with parameter creates one new vertex, 
corresponding to the selected prior state. We could define an undo com
mand that creates a sequence of vertices corresponding to all states back 
from the current state to the selected state, adding them sequentially 
(reverse sequence to original creation) to the end of the history path. 
This command may be useful, because the Recall Undo with parameter causes 
abrupt changes in states along the history, which may make it confusing 
for the user to search back over the history, whereas this undo provides
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a continuous stream of state changes. However, this undo does cause an 
increasing repetition of state sequences along the history path. To re
cover to the state that existed prior to the execution of this undo, say 
with parameter equal to j, we would issue this undo again with the same 
parameter value j.
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6. User Interface Implications

In section '6.1, we summarize the results pertaining to the minimum re
quirements for the Travel Undo and the Recall Undo to recover to any prior 
state of the document. In section 6.2, we state the difficulties that a 
user may encounter with the undo command, and in section 6.3, we offer 
suggestions to add to the minimum requirements to enhance the use of undo.

6.1 Minimum Requirements for Recoverability.

In section 2 we showed that Unstacking undo commands satisfying the Root 
Property (2.13) and Self-applicable undo commands cannot provide 
Recoverability. That is, more than one undo button is necessary to pro
vide Recoverability for each of the above types of undo. We observed that 
in addition any undo_command requires a parameter to provide direct re
covery. In sections 4 and 5 we showed that the Travel Undo and the Recall 
Undo must have the following functions to provide direct recovery:

1. For the Travel Undo

a) Undo command:

b) Redo command with parameter: r.

2. For the Recall Undo

a) Undo command with parameter: u
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6.2 Problems.

The ability to recover to any prior state may give the user complete 
freedom to experiment without worry about backup, but this is only true 
if it is easy to identify the desired recovery state and to execute the 
appropriate undo command. However, the user may encounter difficulty with 
the basic undo facility in determining which state to recover, where the 
corresponding vertex is in the history, and how to reach it. The more 
the undo command is used, the’ more complicated will be the history.

The fact- that the underlying history space of the Travel Undo is a tree 
structure can create problems for the user in determining the path through 
the branches to the selected prior state's vertex and the sequence of undo 
and redo commands to traverse this path. Furthermore, the redo command 
changes the branch ordering. Depending on the user and the particular 
editing session, at times the relational order of edit-created states in 
the tree structure is the appropriate model for the user; at other times, 
a chronological state order may be preferable.

The Recall Undo changes the history each time it is issued. Each time 
the user executes this undo command, whether for changing a state or just 
viewing, he needs to supply a different parameter (previous parameter plus 
one) to roach the same past state. Furthermore, the Recall Undo creates 
duplicate states in the history, increasing its size and complicating its 
order. It may be confusing at times that the history consists of both 
edit-created and undo-created states, and that the states are in chrono
logical order based on when they were first created and when they were 
reproduced by undo.

Therefore, there is a need to add to the minimum requirements an enhanced 
capability to identify, view, and then select the desired prior state.
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to show the user graphically and textually the result of each redo option. 
At a branch point, the user is shown the alternative commands that he can 
redo and the resulting states, beginning with the most-recent branch and 
ending when the user agrees to'the displayed selection. Vitter suggests 
also alternative interfaces including display windows, as the road map 
above, that show the data structure tree to assist the user in selecting 
the proper branch.

Another suggestion is to label the arcs of the history tree, rather than 
the vertices. The arcs would be labeled with their corresponding com
mands, and these commands could be displayed on the road map or the 
chronological list. This list of commands corresponds to the log display 
in the user interface of COPE [2].

6.3.2 History Simplification.

There may be portions of the history that the user will never want to use 
again, and therefore we should provide a mechanism to delete these 
vertices, in order to simplify the history search. The use of the Retract 
Undo removes all successor vertices after the selected vertex, and the 
user may want to issue it when he knows that his recent editing path is 
not improving the document. More generally, in the case of the Travel 
Undo, we would want to give the user the capability to delete nodes or 
branches that no longer have value to him. Similarly, for the Recall 
Undo, the user could be provided with a facility to remove components that 
are erroneous or no longer needed or to delete some repeating sequences 
and duplicate states.

6.3.3 Viewing.
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Recall Undo command without first viewing. Secondly, he could view the 
desired vertex with the view command and be provided with a command to 
undo to that vertex (view-key/undo). Thirdly, he could be provided with 
a command (undo-key), similar to the view-key command, to undo to the 
vertex given by the identifier key.

In contrast to the view command which only selects the vertex to view, 
these three options execute the undo command, changing the value of the 
current vertex to the selected vertex. The latter two options recover 
to a specified vertex and are not dependent on the current vertex. They 
can be implemented independently of the history structure determined by 
each logical view of undo, or by a subroutine for each type of undo. The 
subroutine would determine the appropriate power for the Travel Undo and 
parameter(s) for the redo command(s) to obtain the selected vertex in the 
history tree or the appropriate parameter for the Recall Undo to obtain 
the selected component of the history vector.
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