
Molloy College
DigitalCommons@Molloy

Faculty Works: Mathematics & Computer Studies

3-25-1994

Rule-Based Run Control and Evaluation for
Simulation
Robert F. Gordon Ph.D.
Molloy College, rfgordon@molloy.edu

Kow C. Chang

Edward A. MacNair

Follow this and additional works at: https://digitalcommons.molloy.edu/mathcomp_fac

Part of the Graphics and Human Computer Interfaces Commons, Other Computer Sciences
Commons, and the Partial Differential Equations Commons
DigitalCommons@Molloy Feedback

This Research Report is brought to you for free and open access by DigitalCommons@Molloy. It has been accepted for inclusion in Faculty Works:
Mathematics & Computer Studies by an authorized administrator of DigitalCommons@Molloy. For more information, please contact
tochtera@molloy.edu,thasin@molloy.edu.

Recommended Citation
Gordon, Robert F. Ph.D.; Chang, Kow C.; and MacNair, Edward A., "Rule-Based Run Control and Evaluation for Simulation" (1994).
Faculty Works: Mathematics & Computer Studies. 14.
https://digitalcommons.molloy.edu/mathcomp_fac/14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Molloy College: Digital Commons @ Molloy

https://core.ac.uk/display/268534609?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.molloy.edu?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.molloy.edu/mathcomp_fac?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.molloy.edu/mathcomp_fac?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/120?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://molloycollegelibrary.com/machform/view.php?id=6801
https://digitalcommons.molloy.edu/mathcomp_fac/14?utm_source=digitalcommons.molloy.edu%2Fmathcomp_fac%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tochtera@molloy.edu,thasin@molloy.edu

RC 19494 (84719) 3/25/94
Computer Science 7 pages

Research Report
Rule-Based Run Control and Evaluation for
Simulation

Kow C. Chang, Robert F. Gordon and Edward A. MacNair

IBM Research Division
T. J. Watson Research Center
Yorktown Heights, NY 10598

LIMITED DISTRIBUTION NOTICE
This report has been submitted for publication outside of IBM and will probably be copyrighted If accepted for
publication. It has been issued as a Research Report for early dissemination of Its contents and will be distributed
outside of IBM up to one year after the date indicated at the top of this page. In view of the transfer of copyright to
the outside publisher, Its distribution outside of IBM prior to publication should be limited to peer communications
and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies
of the article (e.g., payment of royalties).

Research Division
Almadén • T.J. Watson • Tokyo • Zurich

RULE-BASED RUN CONTROL AND EVALUATION FOR SIMULATION

Kow C. Chang
Robert F. Gordon

Edward A. MacNair

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598, U.S.A.

ABSTRACT

Modeling projects are often faced with a large parameter space that has to be explored in order to produce a set
of performance measures representing the behavior of the systems under study. In this paper, we describe a
software component that provides the analyst with the functionality to specify a design of experiments and ex
ecute a search algorithm over the resulting parameter space. The component invokes the associated simulation
runs and compares the results to a goal to determine the solution. This component has been implemented as
the run control mechanism in the RESearch Queueing Modeling Environment (RESQME).

We demonstrate the use of this experimental run control and evaluation component for simple enumeration
of the parameter space, interactive evaluation, as well as generalized rule-based control.

1 INTRODUCTION
The developments in simulation software over the last decade have focused on providing graphical model
specification and graphical output, including animation. The objectives of these graphical environments (BeU
1985, Bell 1991, Binnie and Martin 1988, Bishop and Baici 1990, Browne et al. 1985, Cox 1987, ElMaraghy
1982, Gordon et al. 1991, Hurrion 1986, Kurose et al. 1986, Sinclair, Doshi, and Madala 1985, White 1986) have
been to make model building/debugging easier, faster, and more flexible and to improve the communication of
the model and its results to other analysts and to management. The purpose of which is to arrive at better de
cisions by allowing the analyst to spend more time analyzing alternatives to make a recommendation and giving
both the analyst and management more confidence in the decision. In this paper, we address the need to now
provide tools to support the decision-making phase of the simulation process.

Because of the descriptive rather than normative aspect of simulation, it is necessary to design and run a series
of simulation experiments, comparing the performance measures of each scenario, to arrive at a recommenda
tion. For example, the analyst might vary a single parameter's value (say, number of servers) over a permissible
range and examine the simulation output for each value to determine the performance improvement. He or she
mi¿rt weigh that improvement against the cost of the different parameter values to arrive at a decision. Real
istically, the number of parameters and their possible value points may be quite large and the parameter inter
actions may be imclear a priori, resulting in a complex parameter space to examine.

The analyst needs a software tool to automate the specification of the parameter space and the specification
of the algorithm to search that space and the goal to end the search. The software must then execute the al
gorithm to reach a decision, i.e., iteratively determine the next point in the parameter space, produce the asso
ciated simulation run, display and/or examine the performance results comparing them to the goal, and then
either interactively or rule-based determine the next iteration or end the search. This experimental run control
and evaluation tool therefore needs to provide functionality to:
1. Specify the experiment (parameter space and algorithm),
2. Execute its design, and

3. Compare and/or display the results and decide on the next action.
We describe in section 2 the experimental run control and evaluation component in the RESearch Queueing

Modeling Environment, RESQME. Section 3 provides an example of its use. Section 4 summarizes its benefits
to the analyst.

2 EXPERIMENTAL RUN CONTROL AND EVALUATION COMPONENT

The experimental run control and evaluation component in RESQME can be thouglit of as a control shell on
top of the graphical simulator. I'his component supports simple enumeration of the parameter space, interac
tive evaluation, as well as generalized rule-based control.

In RESQME, we view the modeling process as consisting of three phases: create/edit the model, evaluate the
model, analyze the results of the simulation. The analyst can move back and forth through these phases until
a decision is made. We incorporated the experimental run control and evaluation component in the evaluate
phase. When the analyst selects this phase from the command menu, a pop-up window appears. In that win
dow, the analyst can specify the parameter space and the algorithm to execute the experimental design. The first
prompt in the pop-up window allows the analyst to specify an upper limit to the number of simulation runs to
produce:

MAX NO RUNS/EVALUATION: _

The analyst then uses a C-Iike syntax to specify the experiment, execute its design, compare the resulting per
formance measures, and determine the next action.

The language is comprised of the standard C operators, operands, statements, and blocks. The C built-in
functions ior fabs (absolute), sqrt (square root), exp (exponent), In (natural log), ceil, floor, max, min,pow and
fmod are supported.

'Fhe language supports as operators, the model performance measures. These are the keywords defined in the
RESQ modeling language that store the results, such as QT for queueing time, QL for queue length, UT for
utilization. They take as an argument the names the analyst gives to nodes and queues in the model. The

1

language operands include any symbolic names used in the model to refer to constants, variables, parameters,
and network elements.

The C programming language constructs for while loops and if-else statements are supported. The C stand
ards for expressions are followed. An expression becomes a statement when it is followed by a semicolon.
Braces { and } are used to group statements into a compound statement or block, so that they are syntactically
equivalent to a single statement.

Two keyword commands are added:
1. Evaluate initiates a simulation run based on the cxirrent values of the parameters.
2. Quit ends the execution of the rules.

As an example, we use tliis syntax to execute a simple enumeration of three parameter values. The analyst
enters this code fragment in the above-mentioned pop-up window.

parami = O;
while (parami < 0.5){ /* loop 1 */

parami += 0.1;
param2 = 0;
while (param2 < 0.4){ /* loop 2 */

parane += 0.1;
parane = 0;
while(param3 < 0.3){ r loop 3 */

param3 += 0.1;
evaluate;

}
}

}
Alternatively, the component allows the analyst to enter a matrix of parameter values to specify the enu

meration. In this view, each parameter appears as the label of a row. The initial values of the parameters are
entered by the analyst to form the first column. The analyst can supply the parameter values for each run de
sired. Column i contains the values for run i of the experiment. To reduce the input required, the last value
given for a parameter is taken as fixed for any further runs of the experiment.

More generally, we provide an example of using the component's syntax for mle-based control of the simu
lation experiment. Here the control is used to execute a number of experiments, evaluating a perfortnance
measure, ql, (mean queue length) and adjusting a parameter, svratel (mean service rate for the server) until a
stopping condition is reached (number of runs equals 10 or service rate reaches 0). The name given to the queue
is "quel".

MAX NO RUNS/EVALUATION: 10
svratel = 0.3;
evaluate; /* first run */
while (1) {

if (ql(quel) <= 5){
svratel -= 0.1; /* decrease service rate */
if (svratel <= 0)

quit;
}
else

svratel += 0.1; /* increase service rate */
evaluate;

}

3 EXAMPLE
To illustrate using the experimental run control feature, we examine alternatives for a given model by varying
two of its parameters. Each parameter can be varied over a range of nine values. The objective is to find the
combination of parameter values that produces the worst case in terms of the mean queue length for a particular
service center in the model.

i

•e*

2

The structure of the model is not of interest for this discussion; the model was constmcted so that we could
produce a convex response surface within the range of the parameter values, resulting in a single “optimum”
point.

3.1 Simple Enumeration
We name the parameters iati and sti. The iati parameter will be varied over the nine values 1.8, 1.6, ..., 0.2.
The stl parameter will be varied over the nine values 0.1, 0.3, ..., 1.7. We evaluated the model over all combi
nations of the two parameter values.

The following is the code fragment used to evaluate the model over the entire range of both parameter values,
iati = 1.8;
while (iatl>=0.2){

stl = 0.1;
while (stl<=1.7){

evaluate;
stl += 0.2;

}
iati -= 0.2;

}
lilis resulted in the eighty-one runs whose mean queue length values are shown in the following table.

I Parameter 2
P I 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7
a-----+..........................-..............................-... -
r 1.810.0502 0.1679 0.3108 0.4919 0.8186 0.5377 0.3306 0.1732 0.0523
a 1.6Í0.0665 0.2306 0.4573 0.7894 1.3567 0.8076 0.4582 0.2259 0.0645
m I.4I0.0792 0.2813 0.5674 1.0316 2.0654 1.2058 0.6936 0.3246 0.0832
e I.2I0.0929 0.3560 0.7775 1.5537 3.8715 1.6495 0.8050 0.3527 0.0935
t I.0I0.I054 0.3973 0.8821 2.0201 7.6098 2.3581 0.9953 0.4210 0.1080
e 0.8I0.0900 0.3274 0.6914 1.3878 3.5007 1.5807 0.7895 0.3574 0.0917
r 0.610.0758 0.2607 0.5050 0.8668 1.8800 1.0967 0.6042 0.2863 0.0754

0.4I0.0633 0.2181 0.4218 0.7042 1.1412 0.7242 0.4321 0.2159 0.0617
1 0.2I0.05I8 0.1727 0.3168 0.5049 1.0972 0.6732 0.3796 0.1911 0.0562

3.2 Interactive
To illustrate the interactive approach to finding the worst case for the mean queue length, we select a
number of points at random in the parameter space and evaluate the model at these points. From these
runs, we pick the one with the largest queue length. At the largest one, we evaluate all eight surrounding
points. If the selected point is the maximum, we stop. If it is not the maximum, we move to the maxi
mum and evaluate any unknown surrounding points until we have a maximum.

We arbitrarily pick the four points with values for (iatl,stl) at (1.6,0.3), (0.8,0.5), (1.4,1.5), and (0.4,1.3).
These points have mean queue lengths of 0.23056, 0.69141, 0.32464, and 0.43214, respectively. The code
fragment in the run control component to perform these evaluations are:

iati = 1.6;
stl = 0.3;

evaluate;
iati = 0.8;
stl = 0.5;

evaluate;
iati = 1.4;
stl = 1.5;

evaluate;
iati = 0.4;
stl = 1.3;

evaluate;

The second one, (0.8,0.5), gives the maximum. We select this point and evaluate all unknown surrounding
points using the following code:

3

iati = 1.0;
stl = 0.3;

while (1atl>.5){
while (stl<0.7){

evaluate;
stl += 0.2;

}
iati -= 0.2;
stl = 0.3;

}
This will reevaluate the known middle point, and we could avoid this réévaluation if we wanted to. Of
these eight new evaluation points, (1.0,0.7) is the maximum at a mean queue length of 2.02010. We move
to this point and evaluate five new points.

iati = 1.2;
stl = 0.5;

while (stl < 0.9) {
evaluate;
stl += 0.2;

}
iati = 1.0;
while (iati > 0.8) {

evaluate;
iati -= 0.2;

}
Of these five new evaluation points, (1.0,0.9) is the maximum at a mean queue length of 7.60982. We
move to this point and evaluate three new points.

iati = 1.2;
stl = 1.1

while (iati > 0.8) {
evaluate;
iati -= 0.2;

}
This gives us the local maximum at (1.0,0.9).

3.3 Rule-Based
In practice, the nature of the response surface would not be known, and so we would not know exactly how
to go about finding the maximum mean queue length. For illustrative purposes, we will assume that we know
that there is one maximum and that the results are well-behaved as illustrated by the values presented in Section
3.1.

Given the nature of the results, a simple algorithm could be to start at a comer of the region, say the lowest
value for both parameters (0.2,0.1) and run the simulation to get the mean queue length for that point. Then,
increase iati to (0.4,0.1) and see if there is an improvement and compare it to increasing stl to (0.2,0.3).
Whichever is higher, move there and again increase separately iati and then stl. Compare and move to the
point with higher mean queue length. When neither parameter change increases the mean queue length, stop.
It would take seventeen evaluations to reach the optimal value and two more to confirm it with this algorithm.
This can be accomplished with the following code where ql is the keyword for the mean queue length and nodel
is the name of the node that we are interested in:

4

iati = 0.2;
stl = 0.1;

evaluate;
maximum = ql(nodel);
while (1) {

iati += 0.2;
evaluate;
nextl = ql(nodel);
iati -= 0.2;
stl += 0.2;

evaluate;
next2 = ql(nodel);
if (nextl > next2 && nextl > maximum) {

iati += 0.2;
stl -= 0.2;

maximum = nextl;
}
if (next2 > nextl && next2 > maximum)

maximum = nexl^;
if (maximum > nextl && maximum > next2)

quit;

4 SUMMARY
We described the experimental run control and evaluation component of RESQME and gave an example of its
use in searching the parameter space. In that example, we considered search techniques from simple enumer
ation to interactive evaluation to generalized rule-based control.

Several recent developments have made it appropriate to incorporate such a component in simulation pack
ages. First, current grapliical, PC/Workstation-based, packages have made model building easier and faster,
freeing the analyst from having to develop and debug textual programs to represent the real-world system. The
result is that the analyst has the time and the inclination (not having invested so much in building one model)
to examine different scenarios in making a decision. Second, the graphical depiction of the model and the re
sults, combined with animation, enables the fast communication of the model, along with a range of alterna
tives, to the decision-makers. Third, the low-price processing power of the PC/Workstation platform supports
executing search algorithms that could require a large number of simulation runs to examine the parameter
space, especially considering that each pomt examined might require several replications.

The component we described gives the analyst direct access to the performance measures of each simulation
run to compare results interactively as well as automatically. It further provides, through its C-like language,
the abihty to implement any user-defined search algorithm.

ACKNOWLEDGMENTS

We are grateful to the many colleagues and RESQME users who have helped improve RESQME over the
years.

REFERENCES

BeU, P. C. 1985. Visual Interactive Modelling in Operational Research: Successes and Opportunities. Journal
of the Operational Research Society 36:975-982.

Bell, P. C. 1991. Visual Interactive Modelling: The Past, the Present and the Prospects. European Journal of
Operational Research 54:274-286.

Binnie, J. M., D. L. Martin. 1988. The Role of Animation in Decision-Making. In Proceedings of the 1988
Winter Simulation Conference, ed. M. A. Abrams, P. L. Haigli and J. C. Comfort, 272-276. Institute of
Electrical and Electronics Engineers, San Diego, California.

5

Bishop, J. L., and O. Bald. 1990. General Purpose Visual Simulation System: A Functional Description. In
Proceedings of the 1990 Winter Simulation Conference ed. O. Bald, R. P. Sadowski and R. E. Nance,
504-512. Institute of Electrical and Electronics Engineers, New Orleans, Louisiana.

Browne, J. C., D. Neuse, J. Dutton, and K.-C. Yu. 1985. Graphical Programming for Simulation of Computer k.
Systems. \a Proceedings of the I8th Annual Simulation Symposium dà, h.Mï&cx, \09-\26. IEEE Computer .
Society, Los Alamitos, California.

Cox, S. W. 1987. The Interactive Graphics and Animation of GPSS/PC. In Proceedings of the ¡987 Winter ^
Simulation Conference ed. A. Thesen, H. Grant and W. D. Kelton, 276-285. Institute of Electrical and
Electronics Engineers, Atlanta, Georgia.

ElMaraghy, H. A. 1982. Simulation and Graphical Animation of Advanced Manufacturing Systems, Journal
of Manufacturing Systems 1:53-64.

Gordon, K. J., J. F. Kurose, R. F. Gordon and E. A. MacNair. 1991. An extensible visual environment for
construction and analysis of hierarchically-structured models of resource contention systems. Management
Science 37:714-732.

Hurrion, R. D. 1986. Visual Interactive Modelling. European Journal of Operational Research 23:281-287.
Kurose, J. F., K. J. Gordon, R. F. Gordon, E. A. MacNair, and P. D. Welch. 1986. A Graphics-Oriented

Modeler's Workstation Environment for the RESearch Queueing Package (RESQ). In ¡986 Proceedings
ACMjlEEE Fall Joint Computer Conference, ed. H. S. Stone, 719-729. Institute of Electrical and Electronics
Engineers.

Sinclair, J. B., K. A. Doshi, and S. Madala. 1985. Computer Performance Evaluation with GIST: A Tool for
Specifying Extended Queueing Network Models. In Proceedings of the 1985 Winter Simulation Conference
ed. D.T. Gantz, G.C. Blais and S.L. Solomon, 290-300. Institute of Electrical and Electronics Engineers, San
Francisco, California.

White, D. A. 1986. PCModel and PCModel/GAF — Screen Oriented Modeling. In Proceedings of the ¡986
Winter Simulation Conference, ed. J.R. Wilson, J.O. Henriksen and S.D. Roberts, 164-167. Washington,
District of Columbia.

£ S

6

Copies may be requested from;

IBM Thomas J. Watson Research Center
Distribution Services F-11 Stormytown
Post OfTice Box 218
Yorktown Heights, New York 10598

	Molloy College
	DigitalCommons@Molloy
	3-25-1994

	Rule-Based Run Control and Evaluation for Simulation
	Robert F. Gordon Ph.D.
	Kow C. Chang
	Edward A. MacNair
	Recommended Citation

	tmp.1491506183.pdf.taqxU

