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ABSTRACT
Neurodegenerative diseases are a growing problem of ageing societies. Their insidious onset, and the lack of reliable bio-
markers, result in significant diagnosis delays. This article summarises the results of studies on the use of positron emission 
tomography (PET) in the diagnosis of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. It focuses on 
clinical-pathogenetic aspects of individual diseases, as well as disease-specific patterns relevant in differential diagnosis and in 
assessing the risk of disease development and prognosis.
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Introduction

Positron emission tomography (PET) is a nuclear func-
tional imaging technique that enables an assessment of 
physiological parameters, such as metabolic rate, receptor 
density or protein deposition. The images are obtained with 
scanners detecting radioactive ligands usually administered 
intravenously (Tab. 1). Radiotracers used in PET imaging are 
mainly labelled with carbon-11 or fluorine-18. Carbon-11 la-
belled radiotracers have a short half-life time of 20 minutes, 
which requires a cyclotron on-site and restricts their use 
only to highly specialised hospitals. With a half-life time of 
110 minutes, fluorine-18 labelled radiotracers can be manu-
factured off-site and transferred to the place of administration 
[1]. Although considerable information can be acquired from 
the PET functional image (especially if the functional signal 
is preserved), a detailed anatomical analysis may require nor-
malisation by image fusion of PET and computed tomography 
(CT) or magnetic resonance imaging (MRI) [2]. 

Alzheimer’s disease

Alzheimer’s disease (AD) is a chronic neurodegen-
erative disease with an accumulation of amyloid-β (Aβ) 
and hyperphosphorylated tau proteins resulting in the 
formation of amyloid plaques (AP) and neurofibrillary 
tangles (NFTs). It is characterised by a progressive decline 
in memory functions, deterioration of other cognitive 
abilities (language functions, visuospatial abilities, complex 
tasks involving planning/handling), as well as changes in 
behaviour and personality. In 2015 dementia was estimated 
to affect 46.8 million people worldwide, with AD being its 
most common cause. This number is expected to double 
every 20 years [3].

PET in diagnosis of AD
The majority of PET studies in AD are performed with two 

groups of radioligands: biomarkers of neuronal dysfunction, 
and biomarkers of Aβ and tau protein depositions. 
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18F-FDG
Neuronal dysfunction is mainly evaluated with 18F-fluoro-

deoxy-glucose (18F-FDG), a well-established biomarker of 
cerebral glucose metabolism. Glucose uptake in AD patients 
is characterised by hypometabolism in posterior cingulate-
precuneas, posterior lateral and medial temporal-parietal asso-
ciation cortex and lateral frontal cortex [4–7] (Tab. 2). A more 
pronounced and extensive hypometabolism is present in early-
onset compared to late-onset AD [8]. Interestingly, reaching 

the same severity of clinical dementia requires a greater 
hypometabolism in early- as compared to late-onset disease 
[8]. Both the aphasic (aphasic AD) and the posterior cortical 
atrophy (PCA) variant of AD (visuospatial AD), present dif-
ferent glucose uptake patterns when compared to typical AD 
(memory AD). A marked lateralisation of the hypometabolism 
to the left hemisphere has been found in the aphasic form of 
AD, while predominant posterior temporoparietal and oc-
cipital hypometabolism has been found in the visuospatial 

Table 1. PET radioligands used in diagnostics of neurodegenerative diseases

PET radioligand (short 
names)

Target Clinical utility

18F-FDDNP amyloid-β (Aβ) and tau-protein 
assessing  Aβ and tau-protein 
depositions

diagnosis and evaluation of AD (18F-FDDNP); 
differentiating between PSP and PD (18F-FDDNP)

18F-AV-1451 (T807), 
18F-T808, 
18F-THK-5105, 
18F-THK-5117, 
18F-THK-5351, 
11C-PBB3

tau-protein 
assessing  tau-protein deposi-
tions

diagnosis of AD (18F-THK-5351, 11C-PBB3); 
evaluation of AD (18F-AV-1451, 11C-PBB3); 
differentiating between AD and CN/MCI (18F-THK-5351, 11C-PBB3)

11C-PiB, 
florbetapir, 
florbetaben, 
flutemetamol, 
3H-BF-227, 
18F-AZD4694 (18F-
NAV4694)

amyloid-β (Aβ) 
assessing  Aβ depositions

diagnosis of AD (11C-PiB,  florbetapir, florbetaben, flutemetamol); 
differentiating between AD and CN/MCI or FTD (11C-PiB,  florbetapir); 
predicting the MCI-AD conversion (11C-PiB)

11C-MP4A 
acetylcholinesterase enzyme 
assessing the brain acetylcholin-
esterase activity

diagnosis of AD (11C-MP4A); 
differentiating between AD and DLB (11C-MP4A)

18F-DOPA, 

18F-FMT

amino acid decarboxylase 
assessing striatal dopaminergic 
presynaptic function

diagnosis and evaluation of PD (18F-DOPA, 18F-FMT);  
differentiating between PD and APS (18F-DOPA)

11C-CFT,  
18F-beta-CFT, 
11C-MP,  
11C-FE-CIT, 
11C-PE2I, 
18F-FP-CIT

dopamine transporter (DAT) 
assessing DAT distribution

diagnosis of PD (11C-CFT , 18F-beta-CFT, 11C-MP, 11C-FE-CIT, 11C-PE2I, 18F-FP-CIT); 
evaluation and prognosis of PD (18F-beta-CFT, 18F-FP-CIT); 
differentiating between PD and APS (11C-PE2I, 18F-FP-CIT); 
differentiating between PD and ET (11C-FE-CIT); 
differentiating between  MSA-P and MSA-C (11C-CFT)

11C-DTBZ,  
18F-AV-133 (florbenazine) 

vesicular monoamine trans-
porter 2 (VMAT2) 
assessing VMAT2 distribution

diagnosis of PD (11C-DTBZ, 18F-AV-133); 
differentiating between DLB and AD (18F-AV-133); 
evaluation of cognitive performance in DLB (18F-AV-133); 
evaluation of motor performance in PD (11C-DTBZ)

11C-raclopride,  
11C-n-methylspiperone, 
11C-FLB 457, 
18F-fallypride, 
18F-desmethoxyfallypride

D2 receptor 
assessing  postsynaptic dopami-
nergic function

diagnosis of PD (11C-raclopride, 18F-fallypride); 
differentiating between PD and APS (18F-desmethoxyfallypride); 
assessing the  risk of developing “wearing-off” fluctuations (11C-raclopride)

11C-(R)-PK11195,  
11C-PBR28

translocator protein-18 kDa 
(TSPO) 
assessing microglia activation

differentiating between PDD and non-demented PD (11C-(R)-PK11195); 
diagnosis of ALS (11C-(R)-PK11195)

11C-flumazenil GABA-A 
assessing GABA-ergic function

diagnosis, evaluation and prognosis of ALS (11C-flumazenil); 
differentiating between ALS and PLS (11C-flumazenil)

11C-deprenyl-D2 MAO-B 
assessing astrocytosis activation

diagnosis of ALS (11C-deprenyl-D2)

PET — positron emission tomography; AD — Alzheimer’s disease; PSP — progressive supranuclear palsy; PD — Parkinson’s disease; CN — cognitively normal; MCI — mild cognitive impairment; FTD — fron-
totemporal dementia; DLB — dementia with Lewy bodies; ET —essential tremor; MSA-P — multiple systemic atrophy-parkinsonian; MSA-C — multiple systemic atrophy-cerebellar; PDD — Parkinson’s disease 
dementia; APS — atypical parkinsonian syndromes; ALS — amyotrophic lateral sclerosis; PLS — primary lateral sclerosis
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variant [9]. Additionally, the retention of a tau radioligand, 
18F-AV-1451, significantly differs between typical and atypical 
AD and also between visuospatial and aphasic (logopenic) 
AD [10, 11]. In a meta-analysis of 18F-FDG PET studies 
with cognitively normal controls, the pooled sensitivity and 

specificity in distinguishing AD from healthy controls (HCs) 
were 86% and 86%, respectively [12]. 18F-FDG PET imaging 
has a superior diagnostic accuracy in distinguishing AD from 
non-demented patients or individuals with mild cognitive 
impairment (MCI) compared to other diagnostic methods 

Table 2. Glucose uptake patterns in neurodegenerative disorders 

Disorder Prevalent pattern Anatomical distribution of glucose uptake patterns

Hyperme-
tabolism

Hypometa-
bolism

Cerebrum cortex Basal 
Gan-
glia

Tha-
lamus

Cere-
bel-
lum

Brain-
stem

Ante-
rior 
cin-

gula-
te

Po-
ste-
rior 
cin-

gula-
te

Refe-
ren-
ces

Fron-
tal

Parie-
tal

Tem-
poral

Occi-
pital

Alzheimer’s 
Disease

- predominantly 
in posterior re-
gions: posterior 
temporoparietal 

association 
cortex and po-

sterior cingulate 
cortex

↓ ↓ 
(spared 

SMC)

↓ (po-
sterior 
part)

Nor-
mal/↓

N N N N N ↓ 68–73

Frontotempo-
ral Dementia

- predominantly 
in anterior 

regions: frontal 
lobes, anterior 

temporal cortex 
and anterior 

cingulate cortex

↓ N ↓

(TP)

N N/↓a N/↓a N N ↓ N 6, 53, 54

Dementia 
with Lewy 
bodies

- occipitoparietal 
area with the 

preservation of 
the posterior 

cingulate region 
(cingulate island 

sign)

↓ ↓ ↓ ↓

(PVC)

N/↓ ↓ N N N ↓ 9, 59, 60

Idiopathic 
Parkinson’s 
Disease

dorsolateral 
putamen, 

globus pallidus, 
thalami, ponti-
ne, cerebellar, 
cortical motor 

area

dorsolateral 
prefrontal 

cortices and 
parietooccipital 

cortices

↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ N 88–91

Multiple 
System 
Atrophy

bilateral frontal 
and superior 

parietal cortices, 
bilateral tha-

lamus

bilateral dorso-
lateral putamen, 
cerebellum and 

pons

↑ ↑ ↑/↓ ↓ ↓ ↑ ↓ ↓ ↓ N 60, 88, 
89, 108, 

109

Progressive 
Supranuc-
lear Palsy

bilateral: cortical 
motor areas, 

parietal cortex, 
thalamus and 
caudate nuclei

brainstem 
(especially mid-
brain), midline 

frontals regions

-

↑ ↑ ↓ N ↑ ↑ N ↓ ↓ (pre-
domi-
nantly)

↓ 60, 88, 
89

Corticoba-
sal Degene-
ration

- asymmetrical, 
contralaterally 

to the most 
affected side: 

parietal cortices 
and basal 

ganglia

↓ ↓ ↓ N ↓ ↓ N ↓ ↓ N 88, 89, 
104, 115, 

116

Amyotrop-
hic Lateral 
Sclerosis

midbrain, 
temporal pole, 
hippocampus 

and cerebellum

frontal, motor 
and occipital 

cortex

↓ ↓ ↑ (TP) ↓ ↓  
(↑ LGP)

N ↑ ↑ (pre-
domi-
nantly 
mid-

brain)

↓ N 136–138

LGP — Lateral Globus Pallidus; TP — temporal pole; SMC — sensory motor cortex; PVC — primary visual cortex; ↓ — decreased metabolism; ↑ — increased metabolism; N — normal; .a in advanced stage
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half-life time of this radiotracer restricts its clinical use, and 
a fluorine-18 labelled PBB3 is expected to be developed in 
the near future.

Aβ tracers
A retention of Aβ PET tracers highly correlates with brain 

biopsy findings [40, 41]. The first Aβ plaques PET radioligand 
was the Carbon-11-labelled Pittsburgh compound B (11C-PiB) 
with a pilot human study performed in 2002 and the first 
peer-reviewed article published in 2004 [42, 43]. The 11C-PiB 
retention in AD is most prominent in the frontal cortex, fol-
lowed by the parietal, temporal and occipital cortex and the 
striatum, compared to HCs [43]. 11C-PiB retention negatively 
correlates with glucose uptake but not with MMSE or CDR 
[43, 44]. Other Aβ amyloid tracers include fluorine-18-labelled 
radioligands such as florbetapir, florbetaben and flutemetamol, 
all approved for clinical use by the US Food and Drug Admin-
istration (FDA). An analysis of seven AD individuals showed 
a thorough agreement between visual reads of flutemetamol 
PET scans and histological brain biopsy findings [45]. In 
a meta-analysis of 19 studies, the pooled sensitivity and speci-
ficity rates in distinguishing AD from HCs for florbetapir were 
89.6% and 87.2%, and for florbetaben 89.3% and 87.6%, re-
spectively, while in a phase II trial with flutemetamol they were 
93.1% and 93.3% [46, 47]. A prospective study of 211 patients 
suspected of early-onset dementia showed that the addition of 
flutemetamol PET imaging to clinical examination, medical 
history, laboratory tests, brain MRI and neuropsychological 
testing, increased the diagnostic confidence from 69% ± 12% to 
88% ± 15%. The study resulted in a change of diagnosis in 19% 
and initiation of treatments in 37% of patients with AD [48]. In 
the early stage of the disease, amyloid PET imaging showed as 
high an accuracy in AD diagnosis as Aβ42/total tau or Aβ42/
hyperphosphorylated tau CSF. A combination of CSF and PET 
biomarkers were not however able to increase the diagnostic 
accuracy [49]. In recent years both flutemetamol and flor-
betapir have become widely available in the US and Western 
Europe and have been used in a number of clinical trials. Other 
accessible Aβ selective biomarkers clearly differentiating AD 
from HCs are BF-227 and 18F-AZD4694 (NAV4694) [50, 51].

PET in differential diagnosis of AD
Determining the cause of dementia is challenging, even 

for specialists. Accurate diagnosis is essential because each 
dementia subtype has a specific mechanism, treatment, family 
risk, and prognosis. 

AD vs FTD
Frontotemporal dementia (FTD) is a neurodegenerative 

disease characterised by progressive deficits in behaviour, ex-
ecutive functions, or language. Its pathological hallmark is the 
degeneration of the prefrontal and anterior temporal cortices 
[52]. Cognitive impairment may be absent in the prodromal 
phase with only behavioural changes, which can lead to an 

such as clinical guideline, CSF biomarkers, MRI, CT and 
SPECT [13]. AD-related hypometabolism pattern correlates 
significantly with disease severity assessed with Mini-Mental 
State Examination (MMSE), Alzheimer’s Disease Assessment 
Scale–Cognitive scales and Everyday Cognition scale [14, 15].

Aβ and tau tracers
Although Aβ and tau protein brain depositions are the 

neuropathological hallmarks of AD, neither of them is AD-
specific. Positive Aβ scans are also present in dementia with 
Lewy bodies (DLB), cerebral amyloid angiopathy (CAA), and 
in up to 35% of cognitively unimpaired individuals > 60 years 
[16–18]. Positive tau protein scans are also seen in tau positive 
frontotemporal lobar degeneration (FTLD-tau), progressive 
supranuclear palsy (PSP), corticobasal degeneration (CBD), 
and chronic traumatic encephalopathy. Interestingly, FTLD 
with TDP43 (FTLD-TDP), which is a non-tau pathology 
disorder, presents positive tau protein scans. This suggests an 
off-target binding of the radiotracers [19–24]. On the other 
hand, negative AP PET scans are obtained in rare forms of AD 
with unusual amyloid plaques that cannot be detected with 
commonly used Aβ tracers. 

Developed in 1999, 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)
amino]-2-naphthyl}ethylidene) malononitrile (18F-FDDNP) 
was the first PET radiotracer to be used effectively in the visu-
alisation of AD pathophysiology in living humans [25, 26]. It 
non-selectively binds to both AP and NFTs, but is less sensitive 
for tau deposits detection compared to further-mentioned 
radiotracers. Global brain 18F-FDDNP uptake is significantly 
higher in AD patients compared to HCs. Its binding in the 
anterior cingulate and frontal region correlates inversely with 
MMSE score, while the neocortex uptake strongly correlates 
with cell losses in the hippocampus [27, 28]. A significantly 
lower global retention of 18F-FDDNP has been shown in HCs 
compared to MCI and in MCI compared to AD [29].

Tau tracers
Post mortem histopathological studies have shown a stron-

ger correlation of neuronal loss and MMSE score with NFTs 
compared to AP deposits [30, 31]. The group of tau protein 
radiotracers include 18F-AV-1451 (T807), T808, 18F-THK-5105, 
18F-THK-5117, 18F-THK-5351 and 11C-PBB3. High T807 bind-
ing is present in both MCI and AD patients, and is especially 
marked in the inferior temporal gyrus where its uptake cor-
relates with MMSE and Clinical Dementia Rating scale sum 
of boxes (CDR-SOB) [32, 33]. Its use is however limited due to 
a significant off-target binding, including iron, neuromelanin, 
and MAO [34–36]. 18F-THK-5351 retention differs signifi-
cantly in AD compared to HCs or MCI and it correlates with 
neuropsychological tests in both MCI and AD patients. It also 
inversely correlates with the FDG uptake [37, 38]. 11C-PBB3A 
neocortex retention is significantly higher in AD compared 
to HCs and its uptake in the frontal and temporo-parietal 
junctions correlates inversely with MMSE [39]. The short 
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erroneous diagnosis of psychiatric disorder. The behavioural 
variant of FTD can also clinically overlap with the frontal 
variant of AD as both disorders develop behavioural changes. 
18F-FDG PET imaging in FTD patients shows hypometabolism 
predominantly in anterior regions: frontal lobes, anterior 
temporal cortex and anterior cingulate cortex, while in AD 
the hypometabolism is present in posterior regions including 
posterior temporoparietal association cortex and posterior 
cingulate cortex [6, 53, 54] (Tab. 2). The sensitivity and speci-
ficity rates for differentiating AD from FTD with 18F-FDG PET 
imaging have been estimated at 99% and 65%, respectively 
[55]. Interestingly, 18F-FDG PET imaging is superior to clinical 
assessment in differentiating AD and FTD by an experienced 
dementia specialist, reaching a diagnostic accuracy of 89.6% 
[56]. As Aβ protein depositions are not features of FTD, there 
is a significantly lower florbetapir uptake compared to AD [57]. 
A study performed in 62 AD and 45 FTLD patients showed 
a higher sensitivity rate for 11C-PiB-PET visual read (89% vs 
73%) and higher specificity for 18FDG PET visual read (83% 
vs 98%) in differentiating AD from FTD [58].

AD vs DLB
DLB accounts for 20% of late-onset dementias. Its pathologi-

cal hallmark is the presence of Lewy bodies within the neocorti-
cal and limbic regions and usually deposits of AP and NFTs. It 
is characterised by cognitive fluctuations, visual hallucinations 
and spontaneous features of parkinsonism. DLB may present 
a clinical overlap with AD in terms of cognitive impairment 
with executive and memory dysfunction and spontaneous par-
kinsonism. The glucose uptake pattern in DLB is characterised 
by a predominant occipito-parietal hypometabolism with the 
preservation of the posterior cingulate region presenting a ‘cin-
gulate island sign’ on PET scans (Tab. 2) [9, 59, 60]. Revised 
criteria for the clinical diagnosis of probable and possible DLB 
have included 18F-FDG PET imaging as a supportive biomarker. 
The sensitivity and specificity rates for differentiating DLB from 
FTD with 18F-FDG imaging have been estimated to be 71% and 
65%, respectively [55]. Since the deposition of Aβ is present in 
the majority of DLB patients, Aβ tracers are not useful in differ-
entiating DLB from AD. However, high neocortical Aβ cortical 
deposits are associated with a shorter prodromal phase in DLB 
[16]. 18F-AV-133, a biomarker of dopaminergic nigrostratial 
function, has a > 95% accuracy in differentiating DLB from 
AD and significantly correlates with cognitive performance in 
DLB patients [61, 62]. The combination of dopaminergic tracers 
and FDG has been shown to be useful in differentiating DLB 
from AD, Parkinson’s disease (PD) and HCs [63]. Also, brain 
acetylcholinesterase (AChE) activity, measured with N-[11C]-
methyl-4-piperidyl acetate (11C-MP4A), reveals a significant 
difference between AD and DLB [64]. 

AD vs VD
Although vascular dementia (VD) is the biggest clini-

cal challenge in differential diagnosis of AD, it is primarily 

evaluated by MRI [65]. 18F-FDG PET scans reveal cortical and 
subcortical hypometabolism areas corresponding to signal 
changes in MRI.

In the most recent European Association of Nuclear 
Medicine (EANM) and European Academy of Neurology 
(EAN) recommendations for the use of brain FDG PET in 
neurodegenerative cognitive impairment and dementia, the 
panel agreed on recommending 18F-FDG PET in diagnosing 
MCI due to AD, FTLD or DLB, in the diagnosis of atypical 
AD and pseudodementia, and in differentiating between AD 
and DLB, FTLD or VD, and between DLB and FTLD [66].

PET in prognosis of AD
Patients with MCI are at a higher risk for developing AD, 

with an estimated conversion rate of 10% to 15% per year [67]. 
In a one-year follow-up study performed in 37 MCI patients, 
all eight individuals who converted to AD showed reduced 
cerebral glucose metabolic rates in the inferior parietal cor-
tex, in contrast to the non-converters [68]. Moreover, among 
APOE4 genotype positive groups, a prediction of conversion 
to AD reached the sensitivity of 100% and the specificity of 
90%. Bilateral hypometabolism in the medial temporal cortex 
is also linked to a higher risk of conversion, while hypome-
tabolism in the dorsolateral frontal cortex is present in stable 
MCI patients [69, 70]. The presence of the APOE4 gene in 
cognitively unimpaired individuals is linked with significant 
hypometabolism in posterior cingulate, parietal, temporal and 
prefrontal cortex as observed in the group with probable AD 
[71, 72]. A large meta-analysis that included six 18F-FDG-PET 
studies with 280 patients showed a 18F-FDG PET imaging 
sensitivity of 88.9% and specificity of 84.9% in the prediction 
of conversion to AD in patients with MCI. The results were 
more accurate than SPECT and structural MRI [73]. Positive 
11C-PiB scans in MCI patients at baseline strongly predicted 
conversion to AD, although negative 11C-PiB scans did not 
exclude a further conversion [74–76]. 11C-PiB PET imaging 
was able to clearly distinguish MCI from AD and MCI from 
HCs, and to differentiate those groups better than 18F-FDG 
PET imaging [77–79]. 

A combination of markers including hippocampal 
volumetry (Hippo), 18F-FDG PET, amyloid PET and CSF 
Aβ42 has a good predictive value in assessing the risk of 
conversion of MCI patients to AD. In a seven-year follow-up 
study, 73 patients were divided into four groups depending 
on biomarker positivity. The lowest conversion rate (5%) was 
reported for Aβ42(-),18F-FDG-PET(-) Hippo(-), while the 
highest (100%) for concomitant Aβ42(+), 18F-FDG-PET(+) 
and Hippo(+). The latter was also found to convert in the 
shortest time [80].

PET in progression and treatment of AD
18F-FDG-PET has been established as a sensitive marker 

of disease progression of AD in a one-year follow-up study. 
On the other hand, 11C-PiB-PET retention remained stable 



104

Neurologia i Neurochirurgia Polska 2019, vol. 53, no. 2

www.journals.viamedica.pl/neurologia_neurochirurgia_polska

in a two-year observation [4, 81]. A significant decline in 
AD-related glucose uptake pattern was observed in a one-
-year follow-up study in a non-treated group compared to 
a rivastigmine-treated group [82]. A similar outcome was 
obtained in a 24-week follow-up study with donepezil [83].

Parkinson’s disease

PD is the second most common neurodegenerative disor-
der after AD. It is characterised by a dopaminergic neuronal 
loss in substantia nigra caused by intraneuronal proteina-
ceous inclusions, called Lewy bodies, mainly composed of 
α-synuclein. The diagnosis of PD is based on clinical criteria 
including bradykinesia, rigidity, resting tremor and postural 
instability. With disease progression, non-motor features such 
as cognitive decline, depression, psychosis, sleep dysfunction 
and dysautonomia may also be present [84, 85].

PET in diagnosis of PD
The most commonly used radioligands in PD PET studies 

are 18F-FDG and dopamine-specific radiotracers that can be 
divided into three groups: biomarkers of dopamine (DA) 
synthesis (18F-DOPA); biomarkers of synaptic dopamine 
transporters (DAT) (11C-CFT, 11C-MP, 11C-FECIT, 11C-PE2I, 
18F-FP-CIT) and vesicle monoamine transporters (VMAT2) 
(11C-DTBZ, 18F-AV-133); and biomarkers of postsynaptic 
dopaminergic function (D2/3 receptors, D2/3) (11C-raclo-
pride, 11C-n-methylspiperone, 11C-FLB 457, 18F-fallypride, 
18F-desmethoxyfallypride) (Tab. 1). Other radioligands used 
in PD PET imaging include microglia activation biomarkers 
(11C-(R)-PK11195) and AChE activation biomarkers (11C-
-MP4P) [86, 87].

18F-FDG
A PD-related pattern is characterised by hypermetabolism 

in the basal ganglia, ventral thalamus, pons and cerebellum 
with concurrent hypometabolism in the dorsolateral prefron-
tal, posterior parietal and occipital cortex [88-91] (Tab. 2). Its 
expression correlates positively with Hoehn and Yahr (H&Y) 
and Unified Parkinson’s disease rating scale (UPDRS) motor 
scores [90]. 

Dopamine-specific tracers
Radiotracers assessing dopaminergic function are useful 

in PD diagnosis. There is a significant reduction of 18F-DOPA 
uptake in the caudate nucleus and putamen and the 11C-CFT 
uptake in the posterior putamen compared to HCs [92, 
93]. Interestingly, a different 11C-CFT distribution occurs 
in young-onset PD, where caudate nuclei are more spared 
compared to putamen. The late-onset subtype is characterised 
by a more uniform pattern [94]. As dopaminergic tracers’ 
retention inversely correlates with motor disability (UPDRS 
motor scores in case of 18F-DOPA, 11C-CFT, 18F-FP-CIT and 

18F-DTBZ), these may be useful in the evaluation of disease 
progression [94–96]. Furthermore, the retention of DAT 
(11C-CFT) and VMAT2 (18F-DTBZ) correlates with disease 
duration [94, 96].

Due to up-regulation of D2 receptors, D2/D3 tracer uptake 
is usually increased in PD [97]. A recent publication consi-
dering 18F-fallypride, one of the D2/D3 tracers, presented 
a significantly reduced retention in PD compared to HCs and 
a correlation between its uptake in the putamen and globus 
pallidus with UPDRS [98].

Non-motor dysfunctions in PD
PET has also been used in the assessment of psycho-

-behavioural and olfactory dysfunction. Limbic AChE activity 
correlates positively with cognitive and memory functions, 
but not with visuospatial functions [87]. While PD-dementia 
(PDD) is associated with a generalised cortical hypometabo-
lism, PD-MCI patients develop hypometabolism in the tem-
poroparietooccipital junction and the frontal cortex [99–101]. 
11C-(R)-PK11195-uptake, reflecting microglia activation, is 
significantly increased in cingulate, striatum and neocortex 
in PDD compared to HCs, and in the left parietal lobe in 
PDD compared to non-demented PD patients, and correlates 
inversely with MMSE score [86]. 

Hyposmic PD shows significantly reduced DAT (18F-FP-
-CIT) binding in bilateral caudates and in left anterior and 
posterior putamen compared to normosmic PD patients [96]. 
Also the degree of DAT uptake (18F-FP-CIT, 11C-β-CFT) in 
the hippocampus, amygdala and striatum, VMAT2 (11C-di-
hydrotetrabenazine) in the striatum and AChE activity tracer 
(11C-MP4P) in the hippocampus, amygdala and neocortex 
correlates with the University of Pennsylvania Smell Identifi-
cation Test (UPSIT) scores [87, 102, 103]. 

PET in differential diagnosis of PD
Due to its different prognosis and response to pharma-

cological and surgical treatment, it is especially important to 
differentiate PD from other diseases with parkinsonian featu-
res (known as atypical parkinsonian syndromes, APS), such as 
multiple system atrophy (MSA) and PSP, accounting together 
for 80% of misdiagnosed PD, as well as CBD and DLB [104].

Putamen hypermetabolism is one of the crucial elements 
of PDRP and the only feature distinguishing PD from APS 
[88, 89]. However, along with disease progression, the me-
tabolism of the putamen normalises turning hypometabolic 
in the advanced stage, which may decrease its usefulness 
in differentiating a diagnosis [88, 89, 105]. An analysis of 
putamen-related parameters including posterior putamen 
binding, posterior-to-anterior putamen ratio, and posterior 
putamen-to-caudate with D2/3 receptor ligand (18F-DMFP) 
results in high sensitivity, specificity and accuracy (92%, 
96% and 94%, respectively) in distinguishing PD from APS 
[106, 107].
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PD vs MSA
MSA is characterised by a combination of parkinsonism, 

autonomic dysfunction, and cerebellar ataxia. Bilateral cere-
bellar and putaminal hypometabolism are distinguishing PET 
features of the disease [60, 88, 89]. Cerebellar hypometabolism 
is present in both patients with cerebellar dysfunction (MSA-
-C) and those without ataxia (MSA-P) [89]. Although not all 
MSA-P patients present cerebellar hypometabolism, it is rarely 
observed in other parkinsonian condition. Only a few MSA 
patients develop parietal hypometabolism, while it is a com-
mon finding in non-demented PD patients [108]. A significant 
correlation has been found between the degree of cerebellum 
and pons hypometabolism and cerebral ataxia and autonomic 
dysfunction. No such correlation has been observed between 
striatal hypometabolism and the severity of parkinsonism [109]. 
18F-FDG-PET sensitivity/specificity rates in the clinical diag-
nosis of MSA are 76%/98% with visual reading, and 96%/99% 
with statistical parametric mapping (SPM)-supported reading, 
respectively [89]. MSA-P patients present more pronounced 
DAT (11C-CFT) reduction compared to MSA-C [110]. 

PD vs PSP
PSP is clinically characterised by a vertical gaze dysfun-

ction, extrapyramidal features and cognitive decline. The 
specific glucose uptake pattern in PSP is characterised by 
bilateral reduction of metabolism in midline frontal regions 
and in the brainstem [60, 88, 89]. The evaluated sensitivity 
and specificity rates in the clinical diagnosis of PSP with the 
18F-FDG-PET visual reading are 60% and 96%, respectively, 
and with SPM-supported reading they account for 85% and 
99% [89]. Caudate 18F-dopa uptake is significantly lower in 
PSP compared to PD, and equally decreased in anterior and 
posterior putamen in PSP, in contrast to PD where the anterior 
putamen is relatively spared [92]. Since PSP is a tauopathy, 
tau radiotracers are useful in differentiating PSP from PD. 
18F-FDDNP shows a distinctive pattern at early disease stages 
and its binding in the frontal lobe correlates with the PSP 
rating scale (PSPRS) score [111]. High 18F-AV-1451 uptake 
within the putamen, pallidum, thalamus, midbrain and den-
tate nucleus of the cerebellum is observed in PSP compared 
to HCs, and it also correlates with the PSP clinical severity 
score [112–114]. Compared to healthy individuals, PSP is also 
characterised by a higher 11C-PBB uptake in globus pallidus, 
putamen, thalamus, subthalamus, midbrain, pons and peri-
-rolandic areas [23].

PD vs CBD
CBD is a neurodegenerative disease classified as a primary 

tauopathy characterised by progressive asymmetric rigidity 
and apraxia accompanied by other cortical and extrapyrami-
dal dysfunction features [115]. The specific glucose uptake 
pattern in CBD is characterised by asymmetric basal ganglia 
and cerebral cortical hypometabolism, mainly expressed in 

frontoparietal area, contralateral to the clinically more affected 
side, and a bilateral occipital region hypermetabolism [88, 
89, 116]. The sensitivity and specificity rates in the clinical 
diagnosis of CBD with 18F-FDG-PET visual reading are 91% 
and 92%, respectively, and with SPM-supported reading they 
account for 91% and 99% [89]. The patterns of glucose and 
levodopa uptake differ in the early stages of CBD and PD [118]. 
Compared to HCs, CBD is characterised by a high retention 
of 11C-PBB3 in the peri-rolandic areas, supplementary motor 
area, subthalamus and midbrain, with greater binding in basal 
ganglia contralaterally to the affected side [23]. Both 18F-AV-
1451 and 18F-THK-5351 retention patterns are able to clearly 
differentiate CBD from HCs and AD, while 18F-AV-1451 - from 
PSP [118, 119].

Interestingly, 18F-FDG PET imaging has been found to be 
as predictive in risk stratification of APS as a one-year clinical 
follow-up. It was also superior to SPECT in differential diag-
nosis of APS [120, 121].

PET in assessment of treatment efficacy in PD
Long-term PD treatment results in late motor complica-

tions, such as fluctuations and dyskinesia. Patients who are at 
risk of developing ‘wearing-off ’ fluctuations present signifi-
cantly less expressed dopamine transporter activity in the pu-
tamen at baseline. Compared to individuals not experiencing 
‘wearing-off ’, they have been found to have a three times higher 
synaptic level of dopamine (measured with 11C-raclopride) at 
one hour and no changes at four hours after oral administra-
tion of levodopa [122–124]. Marked DAT impairment in the 
posterior putamen at baseline is significantly associated with 
early appearance of levodopa-induced bradykinesia [125]. The 
long-time effect of PD pharmacological treatment assessed 
with PET studies showed a slower loss of striatal dopamine 
storage in patients treated with ropinirole compared to levo-
dopa [126]. PD-related pattern (PDRP) decreases after subtha-
lamotomy, deep brain stimulation (DBS) of the subthalamic 
nucleus (STN) and levodopa treatment, showing a correlation 
with clinical improvement after therapy [127, 128]. PET studies 
have been introduced into clinical trials including gene or 
cell therapy, but their outcomes do not always correlate with 
clinical improvement [129].

PET in prognosis of PD
Dysfunction of nucleus accumbens and orbitofrontal 

cortex on the clinically intact side, presented with reduced 
dopamine transporter radiotracer (11C-CFT) uptake, positively 
correlates with the interval of developing bilateral parkinso-
nism [130]. Idiopathic rapid eye movement sleep behaviour 
disorder (iRBD) is considered to be one of the predictors of 
developing PD. In a clinical follow-up study of 10 iRBD pa-
tients and 10 HCs the phenoconversion to PD/DLB was more 
likely in individuals with high PDRP at baseline. In contrast, 
the iRBD patients who developed MSA 2–4 years later had 
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not expressed the PDRP at baseline [131, 132]. De novo PD 
patients with RBD present more pronounced hypometabolism 
in posterior cortical regions and anterior cortical regions of 
the more affected side, as well as a dopaminergic impairment 
of caudate nuclei and putamen measured with DAT uptake 
compared to non-RBD PD patients [133, 134]. Interestingly, 
iRPD patients present a significantly higher putamen/caudate 
ratio than both RBD-PD and non-RBD PD [134].

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative 
disease affecting the upper and lower motor neuron resulting 
in progressive neuromuscular weakness. The pathogenesis 
of the disease still remains unclear. Approximately 50% of 
patients develop language and executive dysfunction in the co-
urse of the disease, while 15% develop FTD (FTD-ALS) [135].

PET in diagnosis of ALS

18F-FDG
The majority of ALS PET studies have been performed 

with 18F-FDG. ALS glucose-uptake pattern is characterised by 
hypometabolism in frontal, motor, and occipital cortex and 
hypermetabolism in cerebellum, midbrain, temporal pole and 
hippocampus [136–138]. In a study with 195 ALS patients, 
significantly more expressed hypometabolism in left motor 
and premotor cortex was present in bulbar as compared to 
spinal onset patients [137]. In another study with 13 bulbar and 
19 spinal onset patients, similar patterns were observed, but 
with no significant difference between the two groups. In ALS 
patients with spinal onset, there was a relative hypermetabolism 
in the right midbrain compared to HCs [136]. No meta-analysis 
of the sensitivity and specificity in discriminating ALS patients 
from controls has been performed to date. A one-year follow-up 
study performed in 195 ALS patients and 40 controls showed 
a sensitivity of 95.4% and specificity of 82.5% in discriminating 
both groups with 18F-FDG imaging at baseline [137].

Other tracers
A significantly lower uptake of a GABA-A biomarker 

(11C-flumazenil) has been found in the prefrontal, parietal, 
visual association and left motor and premotor cortex of ALS 
patients compared to HCs [139]. This may be due to the loss 
or dysfunction of inhibitory GABA-ergic neurons in ALS pa-
tients. Compared to HCs, sporadic ALS (sALS) show decreased 
cortical 11C-flumazenil uptake predominantly in the premotor 
regions, motor cortex and posterior motor associated areas. 
Patients with ALS-linked D90A SOD1 mutation show a decre-
ased radiotracer uptake in the left frontotemporal junction 
and anterior cingulate of the dominant hemisphere [140]. 11C-
flumazenil uptake in sALS correlates with upper motor neuron 
(UMN) damage, but not with revised ALS functional rating 
scale (ALSFRS-R), while in ALS SOD1 D90A homozygotes it 

correlates with ALSFRS-R and disease duration, but not with 
UMN damage. Patients harbouring a C9orf72 dynamic muta-
tion, the most frequent genetic cause for ALS, present relatively 
more expressed hypometabolism in the thalamus and posterior 
cingulate compared to C9orf72-negative individuals [141]. In 
a study performed in 70 ALS patients (11 C9orf72-positive, 
59 C9orf72-negative, 20 HCs), the sensitivity, specificity, and 
accuracy rates in distinguishing each patient group from HCs 
were 89.8%, 85.0%, and 88.6% in C9orf72-negative ALS, and 
90.9%, 100%, and 96.8%, in C9orf72-positive cases, respec-
tively [141]. Microglia activation, typically increased in ALS 
motor system, can be assessed with 11C-(R)-PK11195 and 
11C-PBR28 radioligands. In a group of 10 ALS patients and 
14 HCs, a significantly higher 11C-(R)-PK11195 binding was 
found in motor cortex, pons, dorsolateral prefrontal cortex and 
thalamus in ALS patients compared to HCs. There was a cor-
relation between radiotracer uptake in the motor cortex and 
UMN damage [142]. A significantly increased 11C-PBR28 bin-
ding was also observed in the precentral gyrus of ALS patients 
compared to HCs [143]. 11C-PBR negatively correlated with 
ALSFRS-R scale and positively with UMN damage, but there 
was no correlation with disease duration [143]. Bulbar onset 
patients showed increased 11C-PBR uptake in the brainstem 
while limb onset in the precentral gyri [143]. Neuronal loss 
in the central nervous system in ALS patients is accompanied 
by actrocytosis. As MAO-B is primarily located in astrocytes, 
actrocytosis activation can be measured with MAO-B radio-
tracers such as 11C-deprenyl-D2 (11C-DED). A significantly 
increased binding of 11C-DED has been observed in the pons 
and white matter of ALS patients compared to HCs [144].

PET in differential diagnosis of ALS
ALS vs FTD-ALS

FTD-ALS patients present more expressed hypometabo-
lism including bilateral premotor, frontal, anterior prefrontal 
cortex with left predominance, lateral prefrontal and orbito-
frontal cortex compared to ALS cognitively normal individu-
als. Significantly different patterns are also observed between 
cognitively normal and impaired ALS patients not fulfilling 
FTD criteria and cognitively impaired non-FTD ALS and 
ALS-FTD [145]. FTD-ALS patients present hypometabolism 
in the frontal area, while FTD alone have hypometabolism 
both in the frontal and temporal areas with a more symmetric 
pattern presented in FTD-ALS patients [146]. 

ALS vs PLS vs PMA
There is a significantly more expressed hypometabolism in 

the prefrontal cortex and posterior cingulate of ALS compared 
to primary lateral sclerosis (PLS) patients. It is also significan-
tly less expressed in the primary sensorimotor cortex of PLS 
compared to ALS. The sensitivity and specificity rates allowing 
a distinction between PLS and HCs are 57.1% and 100%, 
respectively [141]. 11C-flumazenil binding in anterior frontal 
and orbito-frontal regions was relative lower in both sALS 
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and D90A SOD1 ALS patients compared to PLS [147]. The 
glucose-uptake pattern in progressive muscular atrophy (PMA) 
did not differ from classic ALS, except for a less expressed 
hypometabolism in the motor cortex and the thalamus [141].

PET in prognosis of ALS
Extensive hypometabolism in the prefrontal or anterior 

temporal areas is associated with a significantly shorter sur-
vival in C9orf72-negative ALS patients [141]. As mentioned 
before, a reduced 11C-flumazenil uptake in SOD1 D90A ho-
mozygotes has been shown to correlate with disease duration 
[140]. A significantly increased uptake of an oxidative stress 
biomarker, 62Cu-ATSM, in the bilateral cortices around the 
central sulcus has been observed in ALS patients compared to 
HCs. It negatively correlated with ALSFRS-R [148]. 

Conclusion

PET imaging is a useful diagnostic tool in the assessment 
of various neurodegenerative diseases (Tab. 2). Specific glu-
cose uptake patterns observed in AD and in other dementias 
enable physicians to diagnose and differentiate these disorders 
with high degrees of sensitivity and specificity. A group of 
accessible Aβ and NFTs radiotracers present high uptake in 
AD. 18F-FDG-PET imaging can help predict MCI-AD con-
version. The glucose uptake patterns characteristic for PD 
and APS permit the distinction of a number of disorders with 
parkinsonian features. 

This is especially important in cases with different 
prognoses and responses to treatment. Dopamine radio-
tracers correlate well with disease severity and can predict 
further drug-induced motor implications. 18F-FDG and 
11C-flumazenil imaging seems to be helpful in the diagnosis 
of ALS and in differentiating it from PLS as both diseases 
differ in prognosis. 

In recent years, PET imaging has become widely accessible 
not only in scientific but also in clinical settings. The use of 
PET in the diagnostic process of neurodegenerative diseases 
provides the opportunity to decrease diagnosis delay, increase 
diagnostic confidence, and monitor treatment efficiency.
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