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Aim of the study: Our main purpose was to investigate if the chronic treatment with the

disease-modifying drug natalizumab shows quantifiable effect on BDNF levels in multiple

sclerosis patients.

Materials and Methods: BDNF plasma concentration was evaluated using enzyme-linked

immunosorbent assay in healthy individuals, not treated multiple sclerosis patients and

patients treated with natalizumab.

Results: Multiple sclerosis patients have a significantly lower amount of peripheral BDNF

than healthy individuals. Patients treated with natalizumab have significantly higher BDNF

levels than not treated patients.

Conclusions: Chronic natalizumab treatment is associated with significantly increased plas-

ma BDNF concentration in multiple sclerosis.
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1. Introduction

Multiple sclerosis (MS) is the most frequent demyelinating
disease of the central nervous system (CNS), inducing a
considerable disability in sufferers and having an important
social impact [1].

The most widely accepted theory regarding the patho-
physiology involves an immune attack against the myelin [2].
Following an initial, insufficiently identified trigger, the
activated T lymphocites are orchestrating an inflammatory
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cascade of cytokines [3], disturbing the integrity of the blood–
brain barrier (BBB). Further on, disease development requires
probably a molecular mimicry-like behavior, a crossed auto-
reactive injury of the myelin sheath, involving other cytokines
and macrophage activation [4]. The aforementioned attack
triggers and accompanies neurodegeneration, expressed
clinically by progressive brain atrophy [5]. The latter is a good
marker for disability progression also [6].

After the attack takes place, several defense pathways are
activated [7]. As an effect, migrating oligodendrocytes partially
substitute the lost myelin [8]. The mentioned pathways are
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activated, among other means, by the production and release
of neurotrophic growth factors [9]. They have several beneficial
effects in the central nervous system (CNS): stimulating cell
differentiation – glia and neuronal cells, neurite growth and
plasticity, etc. [10]. Neurotrophins also modulate immune
response through activated auto-reactive T-cells [11]. Thus, a
neuroprotective treatment, potentially influencing also im-
mune attack, might represent a valuable approach [12].

Available treatment is unsatisfactory to this point. High
doses of glucocorticosteroids target relapses, frequently
obtaining remission. The problematic part is the disease-
modifying therapy, which fails to offer a symptom-free
improvement; it only reduces the frequency of relapses, and
eventually the severity of individual attacks [13]. Progression is
slower, but never stops. For this purpose interferons, glatir-
amer acetate, natalizumab and other disease modifying drugs
are available [14]. We focus here on natalizumab.

Natalizumab is a monoclonal antibody used for the
treatment of relapsing-remitting multiple sclerosis (RRMS),
proposed already even as first line approach [15] and under
evaluation with promising results for secondary progressive
multiple sclerosis (SPMS) [16], showing an impact on both
progression and relapse frequency [17].

The drug targets the a4 subunit of integrins [18], surface
molecules of T lymphocytes, or the integrin very late antigen
(VLA-4) [19]. Integrins are playing a role when coupling with
vascular endothelial receptors, like the vascular cellular
adhesion molecule VCAM-1. The coupling facilitates adhesion
of lymphocytes to vessel walls and crossing through the
blood–brain barrier (BBB). If the adhesion is interfered, crossing
the attack into the CNS compartment is also diminished [20].

A possible proof for the effect, contributing to the overall
outcome, is that natalizumab probably induces through a co-
stimulatory signaling pathway an increase of effector memory
T-cells in the blood, but with no elevation of myelin-reactive
cells: a sequestration outside the CNS [21]. Furthermore,
natalizumab not only reduces the migration by blocking the
integrins, but seemingly also by down-regulation of vascular
cell adhesion molecule 1 (VCAM-1) expression [22].

Activated immune cells are capable of producing neuro-
trophic factors [23]. Early intervention in the cascade of
inflammation might have an impact also on neurotrophic
factor production [24]. Thus, reducing BBB crossing might have
a dual impact.

One of the extensively investigated growth factors is the
brain-derived neurotrophic factor (BDNF) [25], a representative
of the neurotrophin gene family, along with NGF, NT3 and NT
4/5 [26]. It is produced by several cells, mainly astrocytes, but
also immune cells, as it was mentioned before, and acts in both
a pro-neurotrophin form, and a mature form [27], both
presenting different functional aspects. Even the coupling
differs: the immature form binds with the p75 receptor, with
low affinity, showing pro-apoptotic effects on neurons, and
overall inhibitory effect on regeneration [28]. On the other
hand, the tyrosine receptor kinase B, or BDNF/NT-3 growth
factors receptor (TrkB) coupling of the mature form induces
neuroprotective mechanisms as plasticity, or survival mech-
anisms [29]. TrkB receptors are expressed on oligodendro-
cytes and oligodendrocyte progenitor cells [30], influencing
myelinization-linked processes. In vitro, for example, BDNF
enhances the number of the oligodendrocytes with topo-
graphic selectivity in the basal forebrain, not in the cortex
[31]. Animal studies reveal similar observations, BDNF knock-
out mice showing decrease in myelin proteins in the optic
nerve and spinal cord in early development, with recovery
during aging [32], and without recovery in the basal forebrain
[33]. The effect on myelinization is even more expressed in
case of previous injuries producing demyelinization [34].

Growing evidences are available regarding BDNF involve-
ment in different CNS diseases. Among others, schizophrenia
[35], Huntington's disease [36] and even Alzheimer's dementia
[37] seems to involve alterations in BDNF homeostasis at a
pathophysiological level.

Several studies investigated already the expression and
different roles of BDNF in MS: on one hand from the point of
view of genetic variations, with insufficient proof for associa-
tion [38], on the other hand regarding the effect during disease
course [39]. There are studies presenting that peripheral
plasma concentration of BDNF is lowered [40], excepting
perhaps transitory elevations during relapses [41]. These
observations seem to be applicable for different clinical
presentations, like RRMS and SPMS [42]. As presented in the
in vitro and preclinical studies, if demyelinization occurs,
BDNF has an important role in repair processes. Human
studies on this effect reveal that BDNF expression increases
around MS lesions and in perivascular spaces, its secretion
being assured by microglia, astrocytes, but also by infiltrating
immune cells [43].

In relation with the applied treatment, most studies were
conducted on glatiramer acetate treated patients [44], results
being heterogeneous, some reported increases (Azoulay et al.,
2005)[40], and some decreased or no significant effect on
plasma concentration [45]. There are also available data
regarding BDNF levels under novel treatments, like laquini-
mod [46].

Our goal was to investigate the possible impact of
natalizumab on BDNF plasma concentration, for which, to
our knowledge, there are no similar available investigations.

2. Materials and method

Patients with confirmed RRMS were recruited, in accordance
with the revised McDonalds criteria. SPMS group was formed
from RRMS patients under natalizumab treatment, confirmed
at inclusion as having already SPMS, the two diagnostic
instances forming a continuum. Even if natalizumab is not an
accepted treatment option for SPMS, they formed a new group,
as they were already on this treatment. For comparison we
have selected an age- and sex-matched group of normal
subjects. The study was approved by the ethics committee of
our university, being in accordance with the Helsinki princi-
ples for biomedical research. All participants signed an
informed consent.

We have formed four groups: the control group (CTRL) with
20 healthy age and sex matched individuals, a group of 11
newly diagnosed patients with RRMS, non-treated, (NT), a
group of 11 natalizumab-treated RRMS patients (Nat-RRMS)
and a group of 9 SPMS (Nat-SPMS), previously RRMS, restaged
at inclusion as SPMS, based on EDSS score increase without a



Table 1 – The table presents the demographic data (age, sex) of the participants, including the average EDSS score at
inclusion for each group.

CTRL NT Nat-RRMS Nat-SPMS

Age (Years) 35.83 � 2.82 37.36 � 2.05 39.27 � 1.02 40.89 � 1.71
Sex
M 33.33% 28.57% 27.27% 22.23%
F 66.67% 71.43% 72.73% 77.77%

EDSS / 2.50 � 0.27 3.37 � 0.32 5.78 � 0.34

Fig. 1 – The figure shows the plasma concentration of BDNF,
expressed in pg/ml, for the four study groups (means and
error bars for standard error). One can observe the
significantly lower concentration in all MS groups (non-
treated (NT) ( pNT vs. CTRL = 0.0004) and natalizumab-treated
( pNat-RRMS vs. CTRL = 0.0003, pNat-SPMS vs. CTRL = 0.003)), and
also the significantly increased plasma BDNF for the
Natalizumab treated groups ( pNat-RRMS vs. NT = 0.04, pNat-

SPMS vs. NT = 0.02), when compared with the NT group.
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history of relapse. These patients, after inclusion, continued
their treatment until reassigned to another, accepted regimen.
Treated MS groups had a history of at least one year of chronic
natalizumab treatment. There was no treatment-naïve SPMS
group formed, since even if this is statistically desirable, not
treating a SPMS patient to this stage (having RRMS for a time
period, as this is the natural course of the disease) is not
ethical. There was no participant included during relapse, and
no participant had glucocorticoid treatment four weeks prior
inclusion. Average EDSS scores were higher in the treated
groups as in the treatment-naïve group at inclusion, this being
understandable, given the much longer disease course in the
former groups. The patients recruited in the NT group were at
the beginning of the disease, either around the moment of the
diagnosis, or waiting to be included on a proper treatment
regimen. EDSS score-matched treatment-naïve group cannot
be formed, not being ethical to keep a patient without
treatment up to a higher disability. Demographic data and
Extended Disability Status Scale (EDSS) score for the MS groups
are presented in Table 1.

We have collected blood samples in Li-heparinized tubes,
7 ml from each patient, and centrifuged the samples for 7 min
at 1200 rpm at 4 8C. The resulting plasma was refrigerated at
�80 8C, until tested. Plasma level of BDNF (mature form) was
measured using an enzyme-linked immunosorbent assay. The
assay procedures were performed in accordance with the
manufacturer's instructions (RayBio Human BDNF ELISA Kit,
by RayBiotech Inc.). Reading was carried out with a Stat Fax
ELISA microplate reader against a blank.

For the statistical analysis SPSS 20 and MS Excel were used,
consisting of descriptive statistics, normality testing, non-
parametric tests: Kruskal–Wallis (K–W) and Mann–Whitney
(MW) tests for independent samples. Threshold for signifi-
cance was p < 0.05.

3. Results

The BDNF plasma concentration of the participants was
determined using ELISA. The Kolmogorov–Smirnov test
revealed a normal distribution (not shown), but both the
number of investigated subjects, and the unequal variances
demonstrated by Levene's test (not shown) oriented the
statistics toward a non-parametric approach (Fig. 1).

First we have tested between groups differences, four
independent samples, using the Kruskal–Wallis (K–W) test,
unveiling a highly significant difference ( pNat-RRMS vs. Nat-SPMS

vs. NT vs. CTRL = 0.00003, K–W), normal subjects having a higher
concentration than the groups of MS patients, but there were
differences also among the latter: both natalizumab-treated
groups showing a slightly higher plasma concentration than
NT.

Then a pairwise approach was applied, using Mann–
Whitney (MW) test. We have compared the non-treated group
with healthy controls and found a significant difference ( pCTRL
vs. NT = 0.0004, MW). The second test was the comparison of the
controls with the treated patients, their BDNF plasma
concentrations being also significantly lower ( pCTRL vs. Nat-

RRMS = 0.0003, pCTRL vs. Nat-SPMS = 0.003, MW). Finally we have
compared both treated MS groups with the treatment-naïve
MS group, having significant differences in all instances, the
treated groups showing a higher concentration ( pNT vs. Nat-

RRMS = 0.04, pNT vs. Nat-SPMS = 0.02, MW). All statistical signifi-
cances are summarized in Table 2.

4. Discussion

As presented earlier, overall plasma BDNF levels found during
our study were in accordance with the data from the literature
[41], each MS group showing a significantly lower titer as the
normal group. We have previously mentioned also that patients
were not presenting relapses at the time of sample taking.

Regarding the treatment with natalizumab, both investi-
gated groups, RRMS and SPMS, showed a significant increase of
the plasma concentration of the neurotrophin. Seemingly, the



Table 2 – The table shows the statistical significances found when the study groups were compared, presenting also the
statistical method which was used (Nat-RRMS – RRMS patients under natalizumab treatment; Nat-SPMS – SPMS diagnosed
at inclusion, under natalizumab treatment; NT – not treated MS patients; CTRL – healthy controls).

Statistical method Statistical comparison p – Asymp. sig. (2-tailed)

Mann–Whitney U Nat-RRMS vs. Nat-SPMS 0.52
Nat-RRMS vs. NT 0.04
Nat-RRMS vs. CTRL 0.0003
Nat-SPMS vs. NT 0.02
Nat-SPMS vs. CTRL 0.003
NT vs. CTRL 0.0004

Kruskal–Wallis Nat-RRMS vs. Nat-SPMS vs. NT vs. CTRL 0.00003

n e u r o l o g i a i n e u r o c h i r u r g i a p o l s k a 5 1 ( 2 0 1 7 ) 2 2 1 – 2 2 6224
level in the natalizumab treated SPMS group is even higher
than in the treated RRMS group, somehow in opposition with
the literature, which states that in SPMS the concentration is
usually even lower than in RRMS [47]. The increase was
significant compared with our treatment naïve RRMS group
(NT). This group had a lower degree of severity and a lower
EDSS score, but at this stage we could not correlate the EDSS
changes with the treatment, our approach being cross-
sectional, not a follow-up study. On the other hand, even if
the BDNF concentration was higher in the natalizumab treated
groups as in the non-treated patients, still, it was significantly
lower than in healthy volunteers.

Blocking the natalizumab-mediated reduction of CNS
transfer for activated immune cells reduces the extent of
immune attack [18], but also possibly reduces the BDNF
production induced by immune cells in the CNS compartment
[25]. Still, besides the immune cells, astrocytes and neurons
also produce BDNF at the level of the central nervous system
[29]. This additional quantity possibly contributes to the
overall positive outcome [48]. If this is true, then in case of
natalizumab treatment this production might outweigh the
loss of CNS immune mediated BDNF production [23]. Other-
wise, the loss is probably insignificant when faced with the
BDNF gain through the immune-attack reduction. Following
the same reasoning, the peripheral increase of activated
immune cells, without the possibility to cross into the CNS, but
capable of BDNF production [49], might contribute to periph-
eral BDNF increase.

Aforementioned are suggestions. There is a great amount
of uncertainty regarding the possibility to draw a parallelism
between CNS and peripheral BDNF levels: amounts uptaken
and released by platelets, the relative impermeability of the
BBB for BDNF according to some authors [50] or exactly the
opposite stated by others [51], etc. High importance is given
also by the paracrine-like activity of peripheral BDNF, which
leaves only a speculative approach to conclude from periph-
eral levels on central expression [52]. To eliminate other
sources of error, further studies are needed, using higher group
sizes, to increase the statistical strength of data. Eventually
CSF BDNF levels should also be investigated, along with
possible research on models of MS, EAE lineage, where tissue
samples might serve the proof for local natalizumab-related
BDNF expression and its correlation with plasma concentra-
tion, or even with BDNF produced by peripheral blood
mononuclear cells (PBMC). Other directions which should be
covered in the further research are the correlation of EDSS
scores with the changes of the BDNF levels. Research should
address also how changes in BDNF serum levels induced by
natalizumab treatment influence the progression of RRMS to
SPMS – for example if the treatment delays the onset to SPMS –

and also, in parallel, quantifying serum/CSF levels of TrkB. All
these would strengthen the study and more reliably charac-
terize the effect of natalizumab.

5. Conclusion

Chronic natalizumab treatment is associated with significant-
ly increased plasma BDNF concentration in multiple sclerosis.
Further studies are needed to evaluate the extent and impact
of the effect.
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