Original research article

MLPA based detection of mutations in the dystrophin gene of 180 Polish families with Duchenne/Becker muscular dystrophy

Janusz G. Zimowski ${ }^{a, *}$, Diana Massalska ${ }^{\text {c }}$, Mariola Holding ${ }^{\text {a }}$, Sylwia Jadczak ${ }^{a}$, Elżbieta Fidziańska ${ }^{a}$, Anna Łusakowska ${ }^{b}$, Anna Kostera-Pruszczyk ${ }^{b}$, Anna Kamińska ${ }^{\text {b }}$, Jacek Zaremba ${ }^{a}$
${ }^{\text {a }}$ Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
${ }^{\mathrm{b}}$ Department of Neurology, Medical University of Warsaw, Warsaw, Poland
${ }^{\text {c }}$ I Department of Obstetrics and Gyneacology, Centre of Postgraduate Medical Education, Warsaw, Poland

ARTICLE INFO

Article history:

Received 23 April 2014
Accepted 15 October 2014
Available online 24 October 2014

Keywords:

Duchenne/Becker muscular
dystrophy
Molecular diagnostics
Multiplex ligation-dependent probe amplification

Abstract

Duchenne/Becker muscular dystrophy (DMD/BMD) is a recessive, X -linked disorder caused by a mutation in the dystrophin gene. Deletions account for approximately $60-65 \%$ of mutations, duplications for $5-10 \%$. The remaining cases are mainly point mutations. According to Monaco theory clinical form of the disease depends on maintaining or disrupting the reading frame. The purpose of the study was to determine frequency and location of deletions and duplications in the dystrophin gene, to determine the compliance between maintaining/disrupting the reading frame and clinical form of the disease and to check the effectiveness of MLPA (multiplex ligation-dependent probe amplification) in the detection of these mutations in hemizygous patients and heterozygous female carriers. The material is composed of combined results of molecular diagnosis carried out in years 20092012 in 180 unrelated patients referred with the diagnosis of DMD/BMD tested by use of MLPA. We identified 110 deletions, 22 duplication (in one patient two different duplications were detected) and 2 point mutations. Deletions involved mainly exons 45-54 and 3-21, whereas most duplications involved exons 3-18. The compliance with Monaco theory was 95% for deletions and 76% for duplications. Most of mutations in the dystrophin gene were localized in the hot spots - different for deletions and duplications. MLPA enabled their quick identification, exact localization and determination whether or not they maintained or disrupted the reading frame. MLPA was also effective in detection of deletions and duplications in female carriers.

© 2014 Polish Neurological Society. Published by Elsevier Urban \& Partner Sp. z o.o. All
rights reserved.

[^0]
1. Introduction

Duchenne/Becker muscular dystrophies (DMD/BMD) are genetic X-linked recessive disorders. DMD and BMD are the most common dystrophinopathies, with an incidence of 1:3500 and 1:1800 live birth males, respectively [1,2]. Both diseases lead to progressive irreversible muscle deterioration [3,4]. DMD shows an earlier onset and a more severe progression [5].

DMD and BMD are caused by mutations in the dystrophin gene (2.4 Mb), localized on the chromosome Xp21.2 [6,7], comprises 79 exons encoding a 14 kb mRNA transcript [6]. The protein product, dystrophin, has a molecular weight of 427 kDa , connects extracellular matrix with cytoskeleton [8]. Dystrophin is missing in DMD patients ($<3 \%$), whereas BMD patients have $10-40 \%$ of the normal protein or produce dystrophin of abnormal molecular weight [9].

Approximately 65% DMD cases and up to 85% of BMD cases are caused by large deletions in DMD gene [6,10,11]. Duplications account for approximately $5-10 \%$ of the mutations [12-15], whereas the remaining $25-30 \%$ are point mutations and microlesions [16].

According to Monaco's theory, frameshifting mutations generally cause more DMD, while in BMD the reading frame is usually intact. This frameshifting model complies with phenotype in 92%. This rule, however, is more in keeping with deletions than with duplications in whom the reading of ORF is less predictable and that may be due to the fact that some duplications are inverted [17-20].

Most deletions cluster within two hot spot regions, the major site encompassing exons 44-52 (70\%) and a minor site including exons 3-19 (30\%). Duplications concentrate in proximal part of the dystrophin gene. Point mutations do not cluster in certain regions therefore they are more difficult to detect [16]. Since no effective therapy is available for DMD/BMD patients so far, the identification of female carriers is essential for genetic counseling and prenatal diagnosis. Although approximately 98% of deletions can be found in patients by using a multiplex polymerase chain reaction (PCR), this technique is not useful in detecting female carriers since deletions in one dystrophin allele are masked by the presence of the normal chromosome X. Multiple ligation-dependent probe amplification (MLPA) is a new reliable method for detection deletions and duplications both in male patients and female carriers [21-23]. MLPA technique may also be a very useful tool for mutation detection in female carriers from DMD/BMD families, where DNA sample from a patient is not available.

2. The aim of the studies

1. Detection of deletions and duplications in 180 unrelated DMD/BMD patients by MLPA method.
2. Determination of size and frequency of the deletions and duplications found in the dystrophin gene of 180 DMD/BMD families.
3. Detection of deletions and duplications in 62 females, mothers of a single affected male, including 4 women from DMD families, in which DNA samples from probands were not available.
4. Verification of Monaco's theory for detected deletions and duplications.

3. Materials

A total of 180 DMD/BMD families entered this study. A group of 134 patients was diagnosed with DMD (Duchenne muscular dystrophy), 37 with BMD (Becker muscular dystrophy), 8 with DMD/BMD (presymptomatic period in very young patients) and 1 with IMD (intermediate form). In 4 DMD cases DNA from a patient was not available and DNA from the mothers was used for mutation analysis. Diagnosis was based on clinical presentation, family history, markedly elevated serum kinase levels and electromyography and progression of the disease, results immunohistochemistry in most of the cases was not available. In addition to these cases 62 mothers of a single affected male were added to this study, including 4 mothers of patients who deceased before molecular analysis was carried out. All the examined families originated from Poland. All the participants gave written informed consent to this study. The institute performing the study is a referral center receiving most samples from throughout the whole country.

4. Methods

DNA samples were obtained from peripheral blood lymphocytes according to standard procedures (MagNA Pure Compact, Roche). Mutations in the DMD gene were detected by multiple ligation-dependent probe amplification (MLPA) technique according to instructions of the manufacturer (MRC-Holland, Amsterdam, The Netherlands). Two sets of reagents for analysis of all 79 exons of the dystrophin gene were used: SALSA probe mix 034 (exons 1-10, 21-30, 41-50 and 61-70) and SALSA probe mix 035 (exons 11-20, 31-40, 51-60 and 71-79). Amplified products were run on ABI PRISM 3100 Genetic Analyzer. The obtained data were visually analyzed for the detection of deletions and duplications. Two or more peaks missing, corresponding to two or more exons, were representing a deletion. Absence of only one peak was additionally investigated by standard PCR method. If PCR did not confirm a deletion, amplified product of analyzed exon was subsequently sequenced according to Sanger [24].

5. Results

MLPA analysis showed the presence of 134 mutations in 133 DMD genes in 180 DMD/BMD patients (73.9\%). Deletions have been detected in 110 patients (61.1%) (Table 1), duplications - in 21 (11.7\%) (Table 2), point mutations in - 2 (1.1\%) (c.134delA in exon 3, c.5407C $>\mathrm{T}$ in exon 38). Two independent duplications have been found in one family [25]. No mutations were identified in 47 probands (26.1\%). There were 75 DMD ($75 / 134$, 56.0%), 29 BMD (29/37, 78.4\%), 5 DMD/BMD ($5 / 8,62.5 \%$) and 1 IMD (1/1) patients with deletions and 17 DMD (17/134, 12.7\%), 3 BMD (3/37, 8.1\%), 1 DMD/BMD probands with duplications. Two DMD patients had point mutations.

Table 1 - Deletions in DMD gene detected by use of MLPA in the group of 180 unrelated patients with the clinical suspicion of DMD/BMD. Most frequent deletions were: exons $48-50 \times 7$ (6.4\%), exons 45×5 (4.5\%), exons $45-47 \times 5$ (4.5%) and exons $45-50 \times 5$ (4.5\%).

Family	Mutation	Reading frame	Phenotype	Family	Mutation	Reading frame	Phenotype
1298 I/C	Del 1-18	In	DMD	1474 I/NC	Del 45-50	Out	DMD
1345 I/C	Del 2-16	Out	DMD	1515 I/C	Del 45-50	Out	$\mathrm{DMD}^{\text {a }}$
1364	Del 3-7	Out	DMD	1306 I/C	Del 45-52	Out	DMD
1343	Del 3-9	In	BMD	1386	Del 45-52	Out	$\mathrm{DMD}^{\text {a }}$
1354 I/C	Del 3-9	In	BMD	1411	Del 45-52	Out	DMD
1392 I/NC	Del 3-11	Out	IMD	1497	Del 45-52	Out	DMD
1430 I/NC	Del 3-12	In	D/BMD	1413 I/C	Del 45-53	In	BMD
1396	Del 3-20	In	BMD	1483	Del 45-53	In	BMD
1503	Del 3-30	In	DMD	1408	Del 45-54	Out	DMD
1390 I/C	Del 4-7	Out	DMD ${ }^{\text {a }}$	1473	Del 45-54	Out	DMD
1333 I/C	Del 4-16	In	DMD	1332	Del 45-55	In	BMD
1400 I/NC	Del 5-7	Out	DMD	1353	Del 45-55	In	BMD
1461 I/C	Del 5-7	Out	BMD	1344	Del 46-47	Out	DMD
1490	Del 5-7	Out	DMD	1429 I/NC	Del 46-47	Out	DMD
1465	Del 5-9	In	BMD	1457 I/NC	Del 46-47	Out	DMD
1404 I/C	Del 6	Out	DMD	1301	Del 46-48	Out	DMD
1393	Del 7-34	Out	DMD	1253	Del 46-50	Out	DMD
1297	Del 8-9	Out	DMD	1453	Del 46-51	Out	DMD
1438 I/NC	Del 8-10	Out	DMD	1398 I/C	Del 46-52	Out	DMD
1395 I/C	Del 8-13	Out	DMD	1489 I/NC	Del 46-52	Out	DMD
1403 I/C	Del 9-20	In	BMD	1439 I/NC	Del 46-55	Out	DMD
1480	Del 10-21	Out	DMD	1347	Del 47-50	Out	DMD
1315	Del 12-13	Out	DMD	1314 I/C	Del 48	In	BMD
1447	Del 12-25	Out	DMD	1428 I/C	Del 48	In	BMD
1326	Del 12-43	In	BMD	1523	Del 48	In	BMD
1266	Del 13-41	In	BMD	1366	Del 48-49	In	BMD
1471 I/C	Del 16-43	Out	DMD	1401	Del 48-49	In	BMD
1278	Del 17-43	Out	DMD	1317 I/NC	Del 48-50	Out	DMD
1436 I/C	Del 18-21	Out	DMD	1319 I/C	Del 48-50	Out	DMD
1324 I/C	Del 19-48	In	D/BMD	1328 I/NC	Del 48-50	Out	DMD
1318 I/NC	Del 20	Out	DMD	1346	Del 48-50	Out	DMD
1339 I/NC	Del 41-43	Out	DMD	1464 I/NC	Del 48-50	Out	DMD
1342	Del 44	Out	DMD	1466	Del 48-50	Out	DMD
1418	Del 44	Out	DMD	1491	Del 48-50	Out	DMD
1426 I/NC	Del 44	Out	DMD	1275	Del 48-51	In	BMD
1376	Del 44-47	Out	D/BMD	1510	Del 48-51	In	BMD
1352	Del 44-55	Out	DMD	1450 I/C	Del 48-52	Out	DMD
1302 I/NC	Del 45	Out	DMD	1475	Del 48-52	Out	DMD
1355	Del 45	Out	DMD	1280 I/C	Del 48-54	Out	DMD
1368	Del 45	Out	DMD	1460 I/NC	Del 48-56	Out	DMD
1373 I/C	Del 45	Out	DMD	1300	Del 49-50	Out	DMD
1525 I/NC	Del 45	Out	DMD	1369	Del 49-50	Out	DMD
1287	Del 45-47	In	BMD	1380	Del 49-50	Out	DMD
1321 I/NC	Del 45-47	In	BMD	1476	Del 49-52	Out	DMD
1350	Del 45-47	In	D/BMD	1495 I/NC	Del 49-54	Out	DMD
1399 I/C	Del 45-47	In	D/BMD	1335	Del 50	Out	BMD
1493 I/C	Del 45-47	In	BMD	1263	Del 50-51	In	BMD
1270 I/NC	Del 45-48	In	BMD	1414 I/NC	Del 51-55	Out	DMD
1336	Del 45-48	In	BMD	1256 I/NC	Del 52	Out	DMD
1446 I/C	Del 45-48	In	BMD	1292	Del 52	Out	DMD
1281	Del 45-49	In	BMD	1513 I/C	Del 52	Out	DMD
1459 I/NC	Del 45-49	In	BMD	1265	Del 52-54	Out	DMD
1377 I/NC	Del 45-50	Out	DMD	1517	Del 53-54	Out	DMD
1379 I/NC	Del 45-50	Out	DMD	1274	Del 56-79	Out	DMD
1449 I/C	Del 45-50	Out	DMD	1309 I/C	Del 65-79	Out	DMD

D/BMD - young patient, without possibility of observation and classification of clinical symptoms. I/C - isolated case of DMD/BMD, mother is a carrier. I/NC - isolated case of DMD/BMD, mother is not a carrier.
${ }^{\text {a }}$ Cases of mutations detected in women from the families with DMD examined in situation of lack of proband's DNA.

Table 2 - Duplications in DMD gene detected by use of MLPA in the group of 180 unrelated patients with the clinical suspicion of DMD/BMD.

Family	Mutation	Reading frame	Phenotype
1279	Dup 2	Out	DMD
1299 I/C	Dup 2-7	In	DMD $^{\text {b }}$
1420	Dup 3	In	BMD
1506	Dup 3-5	In	DMD
1311	Dup 4-7	Out	DMD
1507	Dup 5-18	In	BMD
1422 I/C	Dup 7-15	Out	DMD
1273 I/NC	Dup 8-11	Out	DMD
1434 I/C	Dup 8-17	Out	DMD
1486	Dup 8-44	Out	DMD
1295	Dup 11-44	In	BMD
1378	Dup 12-13	Out	DMD
1329	Dup 28-43	Out	DMD
1250 I/C	Dup 44	Out	DMD
1500	Dup 45-51	In	DMD
1524 I/C	Dup 50	Out	DMD
1299	Dup 50-59	In	DMD
1271	Dup 50-60	In	DMD
1522 I/C	Dup 51-72	Out	DMD
1249	Dup 53	Out	D/BMD
1257	Dup 63	Out	DMD
1501 I/NC	Dup 64-67	Out	DMD

D/BMD - young patient, without possibility of observation and classification of clinical symptoms. I/C - isolated case of DMD/ BMD, mother is a carrier. I/NC - isolated case of DMD/BMD, mother is not a carrier.
${ }^{\text {a }}$ Cases of mutations detected in women from the families with DMD examined in situation of lack of proband's DNA.
${ }^{\mathrm{b}}$ Two independent duplications detected in one allele.

Small deletions involving less than 10 exons accounted for $79.1 \%(87 / 110)$ of all the deletions identified in the study, of which 3 -exons deletions were the most frequent (19/110, 17.3%), followed by single-exon ($17 / 110,15.5 \%$) and two-exon deletions (12/110, 10.9\%).

Exons $45-54$ ($74 / 110,67 \%$) and 3-21 (31/110, 28\%) were the most commonly deleted. Single-exon deletions occurred mainly in exons $44,45,48$ and 52 (14/17). Exon 48 was the most frequently deleted ($51 / 110,46 \%$), followed by exon 49 (45/110, 41\%).

Small duplications involving less than 10 exons accounted for $63 \%(14 / 22)$ of all the duplications detected in this study, of which single-exon duplications were the most frequent ($6 / 22$, $27 \%)$. Exons $8-15$ (7/22, 31\%) were most frequently duplicated. Exons $11-13$ were most commonly duplicated ($6 / 22,27 \%$).

Frame-shift deletions were identified in 96% of $D M D$ deletions (72/75). In frame deletions resulted in 93% of BMD patients (27/29). Out of frame duplications were detected in 72% of DMD duplications (13/18); all three BMD duplications were in frame. Monaco's theory has been proved in 95% of deletions (99/ 104) and in 76% of duplications $(16 / 21)$ in our study.

MLPA analysis showed presence of a mutation in 34 of 62 mothers from DMD/BMD families with a single affected male (56%). Deletion was identified in 28 females ($28 / 5452 \%$) and duplication - in 6 ($6 / 875 \%$) (Tables 1 and 2). In 4 of these carriers mutations were identified in absence of DNA from probands (3 deletions, 1 tandem duplication). Cases
representing "de novo" mutation, deletion or duplication, account for 44% (28/62).

6. Discussion

Multiple ligation-dependent probe amplification (MLPA) is a very reliable method for detection deletions and duplications in DMD/BMD patients [21-23,26]. Deletions have been identified in 61% of patients, duplications - in 12%, point mutations in two cases (1%), which resulted in sensitivity of mutation detection by MLPA of 74%. Our data confirm an observation that deletions are more frequently found in BMD patients (78%) than DMD patients (56\%). MLPA analysis showed presence of a deletion or duplication in 86% of BMD patients and in 69% DMD patients. A search for point mutations in the remaining patients (26\%) is going to be carried following immunohistochemistry of the muscle samples to confirm clinical diagnosis. Point mutations occurring in sequences hybridizing to the MLPA probes may be detected as false-negative results [21,27]. Two point mutations identified in this study, were first identified as MLPA single exon deletions. Both exons, were successfully amplified by standard PCR and sequenced, showing presence of point mutations: c.134delA in exon 3 (p.Q45Rfs*7) and c.5407C $>$ T in exon 38 (p. Q1803*).

Location of deletions and duplications, detected in this study, stayed in agreement with data published by other authors [21-23,26-28]. Deletions clustered within two hot spots, mayor encompassing exons 44-52 (68\%) and minor site including exons 3-19 (28\%). The highest concentration of duplications was found in proximal part of the gene, between exons 8 and 15 (27\%) (Fig. 1). Distribution of breakpoints (Fig. 2) is in accordance with the published data for the West-European population [29].

Like in our previous report [28], small deletions, including less than 10 exons, were found to be predominant in this study (84%). We also confirm an observation made by other researchers that majority of duplications are small ones, encompassing less than 10 exons (73%) [10,13-15].

Off all the exons, exon 48 was the most frequently deleted, followed by exon 49 , and exons 50 ; exons $11-13$ were most commonly duplicated.

According to Monaco's theory, clinical severity of the disease results from either disruption or preservation of the reading frame by a mutation. Frameshifting mutations usually cause DMD, while in BMD the reading frame stays intact. Monaco's theory complies with phenotype in 90% [13-15]. In our study 96% of deletions in DMD and 93% of deletions in BMD were consisted with the reading frame rule. In our study, two cases of BMD resulted from out of frame deletions (exons 5-7 and 50), inconsistently with Monaco's rule. Most likely additional exons were removed by alternative splicing, restoring reading frame: exon 8 in the first and exon 51 in the second case. Out of frame deletion of exons 5-7 was also detected in two DMD patients. Different phenotypes resulting from the same mutation were also reported by other researches [30]. Accuracy of the model for duplications is lower and should be applied carefully [14]. Out of frame duplications were found in 72% of DMD patients. This is in accordance with the results of other authors [14,19,30]. Less regular accordance with the reading frame rule in cases of

Fig. 1 - Relative frequency of deletions and duplications in exons of dystrophin gene for 110 deletions and 22 duplications detected by use of MLPA in the group of 180 unrelated patients with the clinical suspicion of DMD/BMD.
duplications may be explained by their effects on splicing RNA and the resulting synthesis of dystrophin. The inverted duplications were reported [20] to cause disruption the transcription [26].

Identification of female carriers is essential for DMD/BMD families, since there is no effective treatment for the disease. In the families with a single affected male, it is fundamental to determine whether the disease resulted from a 'de novo'

Fig. 2 - Distribution of intronic breakpoints of deletions (A) and duplications (B) within the dystrophin gene. The number of starting breakpoints (5^{\prime} breakpoint, black) and ending breakpoints (3^{\prime} breakpoint, grey bars) of either deletions and duplications respectively localized in each intron are indicated.
mutation or a genetic defect, inherited from a carrier mother. MLPA technique is a very useful tool for mutation detection in female carriers, in which deletions and duplications are not detectable in by standard PCR method [21-23,27]. In our study 56% of the mothers of single affected males were found to be carriers of mutations, in remaining 44% carriership was ruled out proving the occurrence of 'de novo' mutations. Similar results were published for the populations of North India [31], Mexico [32] and Australia [33]. French results, however, were different; de novo mutations were reported only in 24.5% of the isolated cases [13]. The differences may be due to statistical biases e.g. - probability of familial cases being recorded is higher than in isolated cases; it is also possible that some noncarrier females - mothers of DMD/BMD isolated cases in our material are in fact germinal mosaics.

MLPA is also a powerful tool for carriership analysis in DMD families, in which DNA sample from patient is not available. In our study four of the mothers were found to be carriers of mutations detected in absence of DNA sample from a patient (three deletions, one case of two independent duplications).

MLPA technique seems to be a reliable tool in the screening of deletions and duplications in the dystrophin gene both in DMD/ BMD patients and potential female carriers, especially those, who cannot be investigated by other methods. The mutation data resulted from this study may be used for and experimental gene therapy of DMD patients, involving "exon skipping" approach [34] and further genotype/phenotype studies. The results of carriership status analysis are an essential tool for genetic counseling and prenatal diagnosis in DMD/BMD families.

7. Conclusions

1. Localization of "hot spots" in the dystrophin gene is different for deletions and duplications.
2. Precise determination of size and location of a deletion in the dystrophin gene allows for prediction of clinical form of the dystrophy; in case of duplication, this correlation is lower.
3. MLPA technique is a quick, convenient and efficient tool for deletion and duplication detection both in affected patients and female carriers, therefore carriership testing of DMD/ BMD is available in absence of DNA sample from an affected person.

Conflict of interest

None declared.

Acknowledgement and financial support

The authors would like to thank medical doctors from many diagnostic centers in the country for directing DMD/BMD patients for molecular diagnosis in the Department of Genetics of the Institute of Psychiatry and Neurology.

The work was partly supported by Grant nr 641/N-TREAT/ 09/2010/0 from the Ministry of Science and Higher Education.

Ethics

The work described in this article has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans; Uniform Requirements for manuscripts submitted to Biomedical journals.

REFERENCES

[1] Emery AE. Population frequencies of inherited neuromuscular diseases: a world survey. Neuromuscul Disord 1991;1:19-29.
[2] Helderman-van den Enden A, Ginjaar H, Bakker E. Impact of prenatal diagnosis on the incidence of DMD in the Netherlands. Neuromuscul Disord 2007;17:764-900.
[3] Passamano L, Taglia A, Palladino A, Viggiano E, D'Ambrosio P, Scutifero M, et al. Improvement of survival in Duchenne muscular dystrophy: retrospective analysis of 835 patients. Acta Myol 2012;31(October (2)):121-5.
[4] www.treat-nmd.eu.
[5] Jefferies JL, Eidem BW, Belmont JW, Craigen WJ, Ware SM, Fernbach SD, et al. Genetic predictors and remodeling of dilated cardiomyopathy in muscular dystrophy. Circulation 2005;112:2799-804.
[6] Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987;50(July (3)):509-17.
[7] Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2003;2:731-40.
[8] Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell 1991;66: 1121-31.
[9] Hoffman EP, Kunkel LM, Angelini C, Clarke A, Johnson M, Harris JB. Improved diagnosis of Becker muscular dystrophy by dystrophin testing. Neurology 1989;39:1011-7.
[10] Den Dunnen JT, Grootscholten PM, Bakker E, Blonden LA, Ginjaar HB, Wapenaar MC, et al. Topography of the Duchenne muscular dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13 duplications. Am J Hum Genet 1989;45:835-47.
[11] Forrest SM, Cross GS, Flint T, Speer A, Robson KJH, Davies KA. Further studies of gene deletions that cause Duchenne and Becker muscular dystrophies. Genomics 1988;2 (February (2)):109-14.
[12] Hu XY, Ray PN, Murphy EG, Thompson MW, Worton RG. Duplicational mutation at the Duchenne muscular dystrophy locus: its frequency, distribution, origin, and phenotype-genotype correlation. Am J Hum Genet 1990;46:682-95.
[13] Tuffery-Giraud S, Beroud C, Leturcq F, Yaou RB, Hamroun D, Michel-Calemard L, et al. Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMDDMD database: a model of nationwide knowledgebase. Hum Mutat 2009;30:934-45.
[14] Takeshima Y, Yagi M, Okizuka Y, Awano H, Zhang Z, Yamauchi Y, et al. Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. J Hum Genet 2010;55:379-88.
[15] Yang J, Li SY, Li YQ Cao JQ, Feng SW, Wang YY, et al. MLPA-based genotype-phenotype analysis in 1053 Chinese patients with DMD/BMD. BMC Med Genet 2013;14:29.
[16] Roberts RG, Gardner RJ, Bobrow M. Searching for the 1 in 2,400,000: a revive of dystrophin gene point mutations. Hum Mutat 1994;4(1):1-11.
[17] Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 1988;2:90-5.
[18] Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 1989;45:498-506.
[19] Gualandi F, Neri M, Bovolenta M, Martoni E, Rimessi P, Fini S, et al. Transcriptional behavior of DMD gene duplications in DMD/BMD males. Hum Mutat 2009;30(2):E310-9.
[20] Ishmukhametova A, Chen JM, Bernard R, de Massy B, Baudat F, Boyer A, et al. Dissecting the structure and mechanism of a complex duplication-triplication rearrangement in the DMD gene. Hum Mutat 2013;34 (August (8)):1080-4.
[21] Janssen B, Hartmann C, Scholz V, Jauch A, Zschocke J. MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene: potential and pitfalls. Neurogenetics 2005;6:29-35.
[22] Gatta V, Scarciolla O, Gaspari AR, Palka C, de Angelis MV, Di Muzio A, et al. Identification of deletions and duplications of the DMD gene in affected males and carrier females by multiple ligation probe amplification (MLPA). Hum Genet 2005;117:92-8.
[23] Lai KKS, Lo IFM, Tong TMF, Cheng LYL, Lam STS. Detecting exon deletions and duplications of DMD gene using multiplex ligation-dependent probe amplification (MLPA). Clin Biochem 2006;39:367-72.
[24] Bennett RR, den Dunnen J, O'Brien KF, Darras BT, Kunkel LM. Detection of mutations in the dystrophin gene via automated DHPLC screening and direct sequencing. Genetics 2001;2:17.
[25] Zimowski J, Fidziańska E, Holding M, Zaremba J. Two mutations in one dystrophin gene. Neurol Neurochir Pol 2013;47(2):131-7.
[26] White SJ, Aartsma-Rus A, Flanigan KM, Weiss RB, Kneppers AL, Lalic T.. et al. Duplications in the DMD gene. Hum Mutat 2006;27:938-45.
[27] Schwartz M, Duno M. Improved molecular diagnosis of dystrophin gene mutation using the multiplex ligationdependent probe amplification method. Genet Test 2004;8:361-7.
[28] Zimowski JG, Bisko MU, Fidziańska EJ, Fidzianska AZ, Badurska B, Nieboj-Dobosz I, et al. Detection of deletions within the dystrophin gene in Polish families affected with Duchenne/Becker muscular dystrophy. Eur J Neurol 1997;4:138-42.
[29] Danieli GA, Mioni F, Muller CR, Vitiello L, Mostacciuolo ML, Grimm T, et al. Pattern of deletions of the dystrophin gene in different European populations. Hum Genet 1993;91:342-6.
[30] Kesari A, Pirra LN, Bremadesam L, Marcintyre O, Gordon E, Dubrovsky AL, et al. Integrated DNA, cDNA, and proteins studies in Becker muscular dystrophy show high exception to the reading frame rule. Hum Mutat 2008;29:728-37.
[31] Sinha S, Mishra S, Singh V, Mittal RD, Mittal B. High frequency of new mutations in North Indian Duchenne/ Becker muscular dystrophy patients. Clin Genet 1996;50 (5):327-31.
[32] Alcántara MA, Villarreal MT, Del Castillo V, Gutirrez G, Saldana Y, Maulen I, et al. High frequency of de novo deletions in Mexican Duchenne and Becker muscular dystrophy patients. Implications for genetic counseling. Clin Genet 1999;55(5):376-80.
[33] Taylor PJ, Maroulis S, Mullan GL, Pedersen RL, Baumli A, Elakis G, et al. Measurement of the clinical utility of a combined mutation detection in carriers of Duchenne and Becker muscular dystrophy. J Med Genet 2007;44:368-72.
[34] Aartsma-Rus A, van Ommen GJB. Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA 2007;13:1609-24.

[^0]: * Corresponding author at: Department of Genetics, Institute of Psychiatry and Neurology, Al. Sobieskiego 9, 02-957 Warsaw, Poland. Tel.: +48 2245825 67; fax: +48 228589169.

 E-mail address: zimowski@ipin.edu.pl (J.G. Zimowski).
 http://dx.doi.org/10.1016/j.pjnns.2014.10.004
 0028-3843/© 2014 Polish Neurological Society. Published by Elsevier Urban \& Partner Sp. z o.o. All rights reserved.

