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Abstract 

Scientific research often involves testing more than one hypothesis at a time, which can 
inflate the probability that a Type I error (false discovery) will occur. To prevent this Type 
I error inflation, adjustments can be made to the testing procedure that compensate for the 
number of tests. Yet many researchers believe that such adjustments are inherently 
unnecessary if the tests were “planned” (i.e., if the hypotheses were specified before the 
study began). This longstanding misconception continues to be perpetuated in textbooks 
and continues to be cited in journal articles to justify disregard for Type I error inflation. I 
critically evaluate this myth and examine its rationales and variations. To emphasize the 
myth’s prevalence and relevance in current research practice, I provide examples from 
popular textbooks and from recent literature. I also make recommendations for improving 
research practice and pedagogy regarding this problem and regarding multiple testing in 
general. 
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1. Background 

1.1. Null Hypothesis Testing 

The null hypothesis is the hypothesis that a particular independent/grouping variable has 
no effect on (or no association with) a particular outcome variable. Often, the null 
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hypothesis is the hypothesis that the researcher’s prediction is wrong. For instance, if a 
researcher predicts that a particular treatment reduces depression in humans (on average), 
then the null hypothesis is that the treatment does not work. If a researcher predicts that a 
certain genetic allele is associated with Alzheimer’s disease, then the null hypothesis is 
that the allele has no association with Alzheimer’s disease. However, the null hypothesis 
applies even when the researcher makes no official prediction, so long as there is a 
possibility that there is no effect/association. 

Because hypotheses typically cannot be tested on the entire population of interest (e.g., 
by analyzing the genomes of every living human being), hypotheses are instead tested on 
a finite sample of the population. Thus, a researcher never knows with 100% certainty 
whether an ostensible effect observed in the sample actually applies to the population or 
whether it is due to “chance.” For instance, despite random assignment, a treatment group 
may happen to be, on average, more predisposed to improve than the subjects in a 
placebo group. 

In conventional (frequentist) hypothesis testing, the researcher addresses this inevitable 
uncertainty by computing a p-value based on the observed data. Roughly speaking, the p-
value represents the theoretical probability that the observed effect (or a larger effect) 
would occur by chance if the null hypothesis were true. Once computed, the p-value is 
then compared to a predesignated critical value called the alpha level (α), such that if p < 
α, then the null hypothesis may be rejected. Once the null hypothesis is rejected, the 
observed effect may be declared statistically significant, and a corresponding decision 
can be made (e.g., a treatment is recommended, an association is claimed, a follow-up 
study is pursued, etc.). 

A statistically significant result that occurs when the null hypothesis is true is called 
a Type I error. Hence, α represents the maximum Type I error rate that the researcher is 
willing to tolerate. For example, among tests that use the conventional .05 alpha level, a 
Type I error is allowed to occur up to 5% of the time. 

Type I error rates can be reduced by making alpha levels lower (i.e., more stringent), but 
only at the expense of statistical power (the likelihood of producing statistically 
significant results when the null hypothesis is false). Because frequently the goal of 
research is to discover/demonstrate some effect or association, and because researchers 
typically face considerable pressure to find statistical significance (e.g., in order to get 
published), researchers are often reluctant to sacrifice statistical power. 

Another way to reduce the effective Type I error rate is to require that significant results 
be promptly replicated by a second study with a completely new sample. In terms of the 
effective Type I error rate, making statistical significance conditional on two independent 
tests, each at α, is equivalent to conducting a single test at α2 (e.g., at .0025 when nominal 
α = .05). However, immediate full-scale replications are rare, largely for practical 
reasons. More commonly, significant results are reported shortly after they are obtained, 
rather than withheld pending an independent corroboration. 
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1.2. The Problem of Multiple Testing 

The Type I error rate is fairly straightforward when there is only one test. However, 
scientific research often involves testing more than one hypothesis at a time, for example, 
when evaluating more than one mean difference or more than one correlation. The 
resulting problem of multiplicity (multiple testing) is known to many researchers: Every 
hypothesis test added to a data analysis carries additional potential for error, so 
the testwise alpha levels (i.e., the nominal alpha levels at which tests are conducted) can 
substantially understate the effective Type I error rate for the investigation as a whole. 
For example, when two tests are conducted, each at the .05 level, the probability that at 
least one of them would produce a Type I error if both hypotheses were true may be as 
high as .10, though the exact probability depends on the statistical dependence (e.g., the 
correlation) between the tests. 

Thus, if Type I errors are to be controlled (i.e., contained at a given rate), then 
adjustments should be made to compensate for the number of tests in the family (the set 
of tests being examined). These adjustments, sometimes called “corrections,” typically 
involve reducing testwise alpha levels (or equivalently, adjusting p-values upwards), 
thereby reducing statistical power. However, multiplicity adjustments also apply to the 
widths of confidence intervals, even when p-values are not used (Benjamini & Yekutieli, 
2005; Dunn, 1961; Hsu, 1996; Miller, 1981). Confidence intervals are computationally 
related to null hypothesis tests, but are used to make inferences about the estimated effect 
sizes, rather than merely about whether the effects are zero or nonzero. Note that although 
this article generally discusses multiplicity in terms of null hypothesis testing, the same 
principles of multiplicity are relevant to computing confidence intervals for effect size 
estimates. 

1.3. Ways to Define the Type I Error Rate in Multiple Testing 

Many multiple testing procedures (i.e., methods of adjustment for multiplicity) have been 
devised. Which multiple testing procedure is preferable for which situation is a complex 
question that cannot be definitively answered, but using no method at all is clearly a poor 
default strategy. In any case, before choosing a multiple testing procedure, one should 
first decide which error rate is relevant for the given investigation (Benjamini, 2010). 
Many error rates have been defined, most notably the following three, presented here in 
order of decreasing stringency. Note that each of these three error rates is equal to the 
testwise alpha level when there is only one test, but can inflate as the number of tests 
increases. 

1.3.1. Per-Family Type I Error Rate (PFER) 

The PFER (Tukey, 1953) is the expected number of Type I errors per family. Note that 
the “expected number” is a long-term average, not an upper bound on the number of 
Type I errors likely to occur in any single investigation. The PFER is typically controlled 
using the Bonferroni procedure, which can be applied to any set of p-values by setting the 
testwise alpha level at α / m, where α is the designated overall alpha level and m is the 
number of tests. The Bonferroni procedure can be similarly applied to confidence 
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intervals, by expanding the width of each interval at the nominal 1 − α confidence level to 
what it would be at the 1 − α / mconfidence level (Dunn, 1961). 

1.3.2. Familywise Type I Error Rate (FWER) 

The FWER (Tukey, 1953) is the probability that at least one Type I error will occur in a 
given family. Thus, FWER control is more permissive of Type I errors than PFER control 
is, because multiple simultaneous errors do not add to the tally of “at least one Type I 
error” any more than a single error does. However, in many cases, the FWER is only 
negligibly lower than the PFER, especially when the number of tests is small and the 
dependency among the tests is low (because simultaneous Type I errors are relatively rare 
under such conditions). 

The Bonferroni procedure is often described as controlling the FWER, which it does, 
because any procedure that controls the PFER at α controls the FWER at ≤ α. However, 
by sacrificing strict PFER control, other methods of FWER control (e.g., Holm, 1979; 
Hommel, 1988) can provide more statistical power; see Dmitrienko, Tamhane, and Bretz 
(2010) for a litany of such methods, each with its own advantages and limitations. Thus, 
given the multitude of FWER-controlling procedures available, the oft-lamented 
“conservatism” of the Bonferroni procedure is not an adequate excuse for forgoing 
FWER control altogether. 

It is important to distinguish FWER control from “weak FWER control,” which is FWER 
control that is reliable when all null hypotheses are true, but can fail when one or more 
null hypotheses are false. Weak FWER control is typically achieved by making several 
simultaneous tests (none of which are adjusted) conditional on the statistical significance 
of a single omnibus test (e.g., ANOVA or MANOVA), a technique that is sometimes 
called “protected” testing. Because this approach does not reliably control Type I error 
(except in certain circumstances), it has very limited applicability (Benjamini, 2010; 
Goeman & Solari, 2014; Hsu, 1996; Tamhane, 2009). In fact, most methods of Type I 
error control do not require omnibus tests at all (Dmitrienko, Tamhane, & Bretz, 2010). 

1.3.3. False Discovery Rate (FDR) 

The term false discovery is generally synonymous with Type I error, but the term FDR 
refers to one particular form of Type I error rate (Benjamini & Hochberg, 1995). Roughly 
speaking, the FDR is the expected proportion of statistically significant tests that are 
Type I errors in a given family (except when all null hypotheses are true, in which case 
the FDR is equivalent to the FWER). Note that the expected proportion is a long-term 
average, not an upper bound on the proportion of statistically significant tests likely to be 
false in any single investigation. Note also that the computation of this long-term average 
defines the proportion as zero when no tests are significant. 

Any procedure that controls the FWER at α controls the FDR at ≤ α, but by sacrificing 
strong FWER control, dedicated FDR-controlling procedures can provide more statistical 
power. FDR control can be useful when there are numerous tests and allowing some Type 
I errors is not very harmful (e.g., when screening for associations to be examined in 
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subsequent studies). However, FDR control is not sufficient when stronger, more 
confirmatory inference is required (Benjamini, 2010; Dmitrienko, Tamhane, & Bretz, 
2010). Note also that the relevance of the FDR is limited when hypotheses have unequal 
likelihoods, because tests that are known to produce low p-values (call them “ringers”) 
can drive down the FDR, thereby allowing tests with higher p-values to become 
statistically significant (Finner & Roters, 2001). 

1.4. Scientific Harm Caused By Type I Errors 

Subjecting hypotheses to rigorous testing is a cornerstone of the scientific method. If 
false discoveries were inconsequential, then researchers’ speculations and intuitions 
could simply be declared correct without being tested at all. However, false discoveries 
can cause “scientific harm,” for example, by impeding scientific progress, misdirecting 
scientific understanding, impairing scientific credibility through poor replicability 
(reproducibility of results), and causing resources to be squandered on spurious findings. 
Hence, although Type I errors cannot be eliminated, they should be controlled. 

Of course, “missed true discoveries” (Type II errors) can be scientifically harmful in their 
own way, which is why it is important to use sample sizes that provide adequate 
statistical power. However, Type II errors are arguably more likely to be corrected than 
Type I errors, because they tend to be less reinforced by factors such as confirmation bias 
and publication bias, and because promising leads are unlikely to be abandoned without a 
second look simply because statistical significance was missed by some nominal amount; 
note that a failure to reject the null hypothesis does not necessarily constitute an 
acceptance of the null hypothesis. Moreover, as Ryan (1962) opined regarding the 
comparative threats of Type I and Type II errors in psychology research, “I believe that it 
is less important if we miss some very small effect of a variable, than it is to claim that 
the variable has an effect (of unspecified magnitude) which does not actually exist at all” 
(p. 305). Note also that uncontrolled Type I error rates threaten the credibility even of 
true discoveries, as statistical significance ceases to be meaningful when it is too easily 
achieved by chance. 

By limiting the rate at which false discoveries are allowed to occur, hypothesis testing 
provides some protection against the scientific harm caused by false discoveries. The 
purpose of multiplicity adjustment is simply to preserve that limit when there are multiple 
simultaneous opportunities for scientific harm. Hence, multiplicity adjustments should 
account for each opportunity for scientific harm, that is, each test that would constitute a 
discovery on its own if statistically significant. The number of potential discoveries in a 
given study is often straightforward, but sometimes subjective. As the following two 
examples illustrate, whether certain tests qualify as potential discoveries depends on how 
the results might be used: 

First, consider a 2 (teaching method: old, new) × 2 (student gender: male, female) 
factorial design with three planned orthogonal contrasts: main effect for teaching method, 
main effect for gender, and an interaction, with some measure of student achievement as 
the dependent variable. Imagine that the researchers will publish their findings if any of 
the three contrasts are statistically significant. In this case, the probability of publishing a 
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false discovery can be nearly three times the testwise alpha level, so adjustment for 
multiplicity is advisable. 

On the other hand, imagine that for the same 2 × 2 design and the same three contrasts, 
the goal of the study is to get approval to replace the old teaching method with the new 
one, that is, the goal is to demonstrate a main effect for teaching method. Imagine that the 
other contrasts are merely descriptive (e.g., to verify an assumption that student gender is 
irrelevant to achievement in the course). Multiplicity adjustment is arguably not 
necessary in this case, because the opportunity for a harmful false discovery is confined 
to a single contrast: main effect for teaching method. A main effect for gender could 
make an interesting refinement of the results, and a method-gender interaction could be a 
relevant caveat to the results, but only a main effect for teaching method has the potential 
to generate approval for the new method (in fact, a method-gender interaction might even 
prevent approval). 

Clearly, the potential for harm caused by Type I and Type II errors must be evaluated on 
a case-by-case basis. There are other subjectivities to consider as well. For example, 
researchers may disagree on whether a particular study containing three experiments 
should be considered to have three distinct families of hypotheses, or whether all the tests 
in the study should be considered as a single family and adjusted accordingly. And even 
in the absence of multiplicity, researchers may disagree on what overall alpha level is 
appropriate, as there is no particular scientific specialness to the .05 level and some 
questions presumably require more confident answers than others. 

However, the fact that there is subjectivity regarding an issue does not mean that all 
statements about that issue are equally valid. For example, it would not be sensible to say, 
“Because there is subjectivity regarding what alpha level is appropriate, it is therefore 
appropriate to test all my hypotheses at α = .99.” Nor is it sensible to say, “Because there 
is subjectivity regarding how multiplicity should be handled, it is therefore appropriate to 
disregard multiplicity.” On the contrary, subjective issues frequently require more 
thoughtful consideration than objective issues. 

2. Planned-Hypotheses Exemption From Multiplicity Adjustment 
(PHEMA) 

As numerous authors have noted (e.g., Anderson, 2014; Glickman, Rao, & Shultz, 2014; 
Ha & Ha, 2012; Iacobucci, 2001; O’Keefe, 2003; Rutherford, 2011; Ryan, 1959, 1995; 
Sheskin, 2011; Stangor, 2015; Stanley, 1957; Steinfatt, 2006; Streiner, 2015; Thompson, 
1994; Tucker, 1991; Weiss, 2006), many in the applied sciences consider it appropriate 
not to adjust for multiplicity if the tests were planned (i.e., if the hypotheses were 
specified a priori, meaning before the study began). In fact, researchers have frequently 
defended their unadjusted tests explicitly on the basis that the tests were planned (see 
Table 1 for a few examples). The belief that stating one’s hypotheses a priori eliminates 
or excuses Type I error inflation—a belief this article refers to as the planned-hypotheses 
exemption from multiplicity adjustment (PHEMA)—has no apparent mathematical or 
scientific basis. Yet the myth continues to be perpetuated. For example, consider the 
following passage from a popular textbook: 
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With planned comparisons, we do not correct for the higher probability of Type I error 
that arises due to multiple comparisons, as is done with the post hoc methods . . . Because 
planned comparisons do not involve correcting for the higher probability of Type I error, 
planned comparisons have higher power than post hoccomparisons.” (Pagano, 2013, p. 
422; emphasis in original) 

See Tucker (1991) and Wang (1993) for similar statements. Note that although PHEMA 
does not come with an empirical justification, it does come with a seductive offer: more 
statistical power. 

Table 1. Defense of Unadjusted Multiple Testing 

Study Journal Excerpt 

Cachelin et al., 2014,  
p. 453 

Cultural Diversity and 
Ethnic Minority Psychology 

“The t-tests were planned and hypothesis 
driven, therefore no adjustment for multiple 
testing was employed.” 

Fenesi et al., 2014, p. 257 The Journal of 
Experimental Education 

“All post hoc t tests were Bonferroni corrected 
to p [sic] < .05; a priori planned comparisons 
were not (Perenger [sic], 1998; Rothman, 
1990).” 

Glaus et al., 2014, p. 39 Journal of Psychiatric 
Research 

“P-values were not adjusted for multiple testing 
because the hypothesized associations 
between mental disorders and inflammatory 
markers were specified a priori.” 

Holmes et al., 2014, p. 3 Mutation Research: 
Fundamental and 
Molecular Mechanisms of 
Mutagenesis 

“Since all comparisons among means were 
considered to be of substantive interest a priori, 
no adjustment for multiple comparisons was 
incorporated into the analysis.” 

Krane-Gartiser et al., 2014, 
p. 8 

PLoS ONE “A correction for multiple comparisons 
adjusting for the total number of statistical tests 
has not been done since the analyses were 
planned before they were conducted.” 

MacDonald & Barry, 2014, 
p. 103 

International Journal of 
Psychophysiology 

“Since all contrasts were planned and there 
were no more of them than the degrees of 
freedom for effect, no Bonferroni-type 
adjustment to α was necessary.” 

Pataki, Metz, & Pakulski, 
2014, p. 253 

Journal of Early Childhood 
Literacy 

“No correction for multiplicity was employed as 
our a priori intent was to test each variable 
independently.” 

Pyra et al., 2014, p. 1133 Journal of General Internal 
Medicine 

“All analyses were planned a priori; therefore, p 
values were not adjusted for multiple 
comparisons.” 

Stenfors et al., 2014, p. 5 BMC Psychology “Since the significance tests were used to 
evaluate a set of a priori hypotheses, individual 
test results were not corrected for multiple 
significance testing.” 
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3. Possible Origins of PHEMA 

The term planned comparisons is often used in the context of ANOVA-based analyses, 
but more generally can refer to any tests of hypotheses (sometimes called specific 
hypotheses) that were generated a priori from the original research questions. Planned 
comparisons are distinguished from unplanned comparisons, which are performed 
without any a priori expectation, for example, when relationships that were not 
previously considered interesting are detected in the data. Note that the number of 
unplanned comparisons implicitly includes not only those that are reported, but also any 
comparison that would have been reported had it been statistically significant (Tamhane, 
2009). Consequently, if a researcher is willing to tout the relevance of any relationship 
that happens to turn up, then the opportunity for Type I error is inflated by every spurious 
relationship that could potentially appear. Thus, it is true that controlling Type I error for 
all conceivable tests (e.g., all possible comparisons) typically requires more severe 
adjustment (and hence “costs” more in statistical power) than controlling Type I error for 
only a predetermined subset of tests (Cohen, Cohen, West, & Aiken, 2003; Hsu, 1996). 
But unfortunately, that truth seems to have been distorted into the myth that planned 
comparisons do not require adjustment at all. 

Ryan (1995) blamed this confusion partly on ambiguous use of the term post hoc, which 
means “formulated after the fact.” For example, the phrase post hoc tests is often used to 
mean unplanned tests (i.e., tests conceived post data-collection), but is sometimes used to 
mean multiple tests in general (especially multiple tests conducted following an omnibus-
test). This equivocation may lead some to believe that multiple testing is only of concern 
for unplanned tests—a confusion that is perhaps reinforced by statistical software, such as 
SPSS, that list all multiplicity adjustments, including the Bonferroni procedure, as “post 
hoc” options (Howell, 2013). 

4. Rationalizations for PHEMA 

4.1. Greater Importance of Planned Tests 

Keppel and Zedeck (1989, p. 172) noted that PHEMA “is generally defended by the 
argument that planned comparisons typically constitute the primary purpose of a study, 
and as such, they should be subjected to the most sensitive statistical test possible.” 
However, this approach allows the most important questions (i.e., “the primary purpose” 
of the study) to be investigated with the least rigor (i.e., with minimal control of Type I 
error). Moreover, using “the most sensitive statistical test possible” only makes sense 
under the constraint that Type I error is controlled. Otherwise, why not set the alpha level 
at .99 rather than at .05? After all, if Type I error control is not of concern, then any test 
can be made more “sensitive” (i.e., more statistically powerful) simply by raising the 
alpha level. A better way to achieve adequate statistical power would be to invest in a 
larger sample size. 

Incidentally, if a study involves one planned test of primary importance and multiple tests 
of somewhat lesser interest, there is a simple way to control the FWER without reducing 
the sensitivity of the primary test: 
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Step 1: Conduct the primary test at the unadjusted alpha level. 

Step 2: If the primary test is significant, then conduct the secondary tests using testwise 
alpha levels adjusted for the number of secondary tests. But if the primary test is not 
significant, then forfeit the significance of the secondary tests. Note that when using this 
method, the testing order and conditionality should be explicitly outlined a priori in a 
registered study protocol. 

4.2. Greater Credibility of Planned Tests 

Another common rationale for PHEMA is that a priori predictions are presumably logical 
extensions of extant knowledge and are therefore more likely to be correct (Abelson, 
1995; Anderson, 2014; Ha & Ha, 2012; McHugh & Ellis, 1957; Rutherford, 2011). One 
textbook advised the following: “Because you have preplanned these comparisons, 
typically based on prior data and theory, and you do not plan to do all possible 
comparisons, you are not required to make a correction for your alpha (α) level” (Ha & 
Ha, 2012, p. 206, emphasis in original). However, that appears to be a non sequitur. It 
may be true that a group of predictions are generally more likely to be correct if they have 
some theoretical basis, but the same would be true of a single prediction. Thus, why 
should “preplanning” excuse relaxed Type I error control for multiple tests if preplanning 
would not excuse relaxed Type I error control for one test? 

5. Dissemination of PHEMA: An Example 

Even a patently false heuristic such as PHEMA can become popular if it tells people what 
they want to hear, for example, that multiple tests may be conducted without sacrificing 
statistical power. For instance, Perneger’s (1998) manifesto against multiplicity 
adjustments, which promoted PHEMA and numerous other misunderstandings (as noted 
by Aickin, 1999; Bender & Lange, 1998; Goeman & Solari, 2014), has been cited by over 
3,000 articles as of this writing—and the majority of those articles were published in 
2010 or later (as per Google Scholar). One such article defended its unadjusted tests as 
follows: 

Because we were testing specific hypotheses, we performed planned 
comparisons, which, unlike post hoc tests, do not need to be adjusted. In light 
of criticism in the literature levelled at Bonferroni and other corrections (e.g., 
Perneger, 1998), the analyses were performed without adjustment. (Roche & 
Chainay, 2013, p. 1017) 

Sijbrandij, Engelhard, Lommen, Leer, & Baas (2013) offered a similar justification for 
their unadjusted tests, also citing Perneger: “Since pre-specified hypotheses were tested, 
no formal corrections for multiple comparison [sic] were carried out (Perneger, 1998)” 
(p. 1993). For other PHEMA-based statements citing Perneger, see Askari, Kirby, Parker, 
Thompson, & O’Neill (2013), Clifford et al. (2012), Fenesi, Heisz, Savage, Shore, & Kim 
(2014), Kawai et al. (2014), Krane-Gartiser, Henriksen, Morken, Vaaler, & Fasmer 
(2014), Lau, Lin, & Flores (2012), Weisse et al. (2013), and many others. 
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6. Variations on PHEMA 

6.1. Constraining PHEMA to Orthogonal Contrasts 

Many textbooks have suggested that although multiplicity may be of concern for some 
planned tests, multiplicity is not of concern for planned orthogonal contrasts (Abdi & 
Williams, 2010; Brown, 1990; Cohen, 2013; Cohen et al., 2003; Doncaster & Davey, 
2007; Kirk, 2013; Pedhazur & Schmelkin, 1991; Randolph & Meyers, 2013; Zieffler, 
Harring, & Long, 2011). In fact, some researchers have explicitly defended their 
unadjusted comparisons on that basis (e.g., Harkness & Luther, 2001; Nam & Zellner, 
2011; Nieuwenhuis, Folia, Forkstam, Jensen, & Petersson, 2013). 

The reasoning for this version of PHEMA may be summarized as follows (Abdi & 
Williams, 2010, p. 248): “Planned orthogonal contrasts are equivalent to independent 
questions asked to the data. Because of that independence, the current procedure is to act 
as if each contrast were the only contrast tested” (see also Thompson, 1994). However, 
this rationale appears to depend on equivocal use of the word “independence”: Statistical 
independence (i.e., mutual orthogonality) among the tests does not imply that each result 
should be interpreted “independently” (i.e., without regard to how many other tests were 
conducted). 

In fact, the FWER is higher for orthogonal tests than for positively dependent tests. 
Specifically, the maximum FWER for unadjusted tests monotonically diminishes from 
1 − (1 − α)m to α as the correlation among the tests increases from 0 to 1, where α is the 
designated alpha level andm is the number of tests. Thus, not only is adjustment for 
multiplicity potentially important for orthogonal contrasts (Bechofer & Dunnett, 1982), 
one could argue that it is especially important for orthogonal contrasts. Incidentally, the 
maximum FWER can be higher for negatively dependent tests than for orthogonal tests, 
but typically only marginally so, and negative dependence is generally not plausible for 
two-sided tests. 

6.2. Constraining PHEMA to Small Numbers of Hypotheses 

Another variation on PHEMA asserts that multiplicity may be disregarded for planned 
tests provided that the number of tests is sufficiently small. Limiting the number of 
unadjusted tests that may be excused by PHEMA is often recognized as necessary 
“because otherwise, the researcher could delineate a very long list of contrasts and claim 
them all as planned” (Iacobucci, 2001, p. 7). 

For multigroup designs, some authors have set the maximum number of unadjusted 
comparisons at one less than the number of groups (e.g., Keppel & Zedeck, 1989; 
Tabachnick & Fidell, 2012). This limit is equal to the maximum number of orthogonal 
contrasts and also equal to the number of numerator degrees of freedom that would be 
available in an omnibus test. Other proposed limits on the number of unadjusted tests have 
been less precise, e.g., a “small number” (Armstrong, 2014, p. 505; Hays, 1988, p. 411; 
Helweg-Larsen & Nielsen, 2009, p. 91; McKillup, 2012, p. 163; Streiner & Norman, 2011, 
p. 18), or a “low” number (Baguley, 2012, p. 491), or “few” (Pagano, 2013, p. 402; 
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Welkowitz, Cohen, & Lea, 2012, p. 364). However, all of these proposed constraints are 
overly permissive of Type I error inflation, given that even going from one test to two tests 
without adjustment can roughly double the PFER and FWER. 

Moreover, allowing more Type I error inflation for a small number of tests than for a large 
number of tests is arbitrary and logically inconsistent. For instance, suppose that if there are 
only three tests, then it is deemed acceptable not to adjust for multiplicity, but that if there 
are ten tests, then FWER control is deemed necessary. Assuming an unadjusted alpha level 
of .05, the maximum FWER for three tests is roughly .14. But if .14 is an acceptable 
FWER for three tests, then why should .14 not be an acceptable FWER for ten tests? That 
is, why insist that the Type I error rate for one test should be controlled at .05, and that the 
FWER for ten tests should also be controlled at .05, but that the FWER for three tests may 
be controlled at .14? 

6.3. Reverse-PHEMA 

Some authors have proposed the opposite of PHEMA: that planned tests require 
multiplicity adjustment and that unplanned tests are exempt (e.g., Rovai, Baker, & Ponton, 
2014, p. 256). This heuristic, which is no more mathematically justifiable than PHEMA, is 
perhaps based on an assumption that unplanned tests are typically exploratory (i.e., not 
confirmatory) and therefore require less rigorous control of Type I error. However, even 
exploratory analyses often require some form of multiplicity adjustment, as one would not 
want to waste resources following up on an excessive number of spurious preliminary 
findings (Tamhane, 2009). It is true that in some unplanned testing scenarios, the number 
of implicit tests may be indeterminate, making formal multiplicity adjustment impossible 
(Bender & Lange, 2001). However, in such contexts, p-values can only serve a descriptive 
function and should not be interpreted—or reported—as if they are hypothesis test results. 

7. Conclusions 

There is considerable concern in the sciences about poor replicability of published 
findings and what is perceived as a high prevalence of false discoveries (Pashler & 
Wagenmakers, 2012). Adequate control of Type I error inflation directly relates to those 
issues and is essential to good research practice and scientific soundness (Benjamini, 
2010; Bretz & Westfall, 2014; Hsu, 1996). False heuristics such as PHEMA, that 
discourage thoughtful handling of multiplicity, are therefore a nontrivial hindrance to 
research quality. 

That is not to say that PHEMA necessarily reflects the dominant view among researchers. 
For example, in confirmatory trials to demonstrate drug efficacy, comparisons are 
typically required to be both prespecified in the study protocol and adjusted for any 
multiplicity (European Agency for the Evaluation of Medicinal Products, 2002; U.S. 
Department of Health and Human Services, 1998). But given that so many respected 
textbooks have endorsed PHEMA in one form or another, and given that so many recent 
articles have used PHEMA to justify forgoing multiplicity adjustment, it is evident that 
awareness, education, and standards of practice regarding this issue need improvement. 
Therefore, although the present article is not the first to criticize PHEMA (e.g., see Ryan, 
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1959, 1995), it aims to provide the most thorough refutation of PHEMA and its 
variations. 

7.1. Recommendations for Researchers 

(a) Avoid using PHEMA as an excuse for unadjusted (or under-adjusted) tests. In some 
cases, there may be a legitimate reason not to adjust—but PHEMA is not such a reason. 
Note that the mere fact that subjectivities and disagreements about multiple testing exist 
does not mean that the problem may be disregarded or that all statements about the 
problem are equally valid. 

(b) Select an error rate appropriate for the type of inference required. For example, PFER 
control is appropriate when the veracity of each claimed discovery is highly important, 
whereas FDR control provides more statistical power and may be preferable when it is 
sufficient merely to have an adequate preponderance of correct discoveries (e.g., when 
screening through a large number of associations to generate hypotheses for future study). 
In terms of stringency, FWER control occupies a middle ground between the other two 
rates: It considers avoiding even one Type I error important, but considers multiple 
simultaneous Type I errors to be no more worrisome than a single Type I error. 

(c) As recommended by the American Psychological Association (2012) and by other 
sources (including a previous article in this journal; Tromovitch, 2012), report precise p-
values rather than merely reporting “p < .05,” so that readers requiring a different level of 
inference can apply an alternative approach. Note also that confidence intervals are 
generally more informative thanp-values alone, given that the size of the effect—not 
merely whether the effect is different from zero—is presumably important in most cases. 

(d) Regardless of which approach to Type I error control is used, report the number of 
tests conducted (including those implicitly conducted when “fishing” through the data for 
significance), the structure of the testing (e.g., which comparisons were of primary and 
secondary interest a priori), and why the chosen approach to Type I error control was 
deemed appropriate for the study. Statistical power analysis is often valuable as well, 
especially when nonsignificant results are potentially interesting. When possible, all this 
information should be preregistered in a study protocol (or similar document) before the 
study begins—which typically should be no problem for analyses that truly are 
“planned.” 

7.2. Recommendations for Professors and Textbook Authors 

(a) Refrain from perpetuating PHEMA, and explicitly refute PHEMA when presenting 
the concept of multiplicity or when distinguishing between planned and unplanned tests. 

(b) Be wary of the term post hoc, which has become ambiguous through misuse. In fact, 
Ryan (1995) recommended that the term not be used at all in the context of hypothesis 
testing. The word exploratory may also be problematic: The term generally means “not 
confirmatory,” but is often used as a synonym for “unplanned” when describing a data 
analysis—even though planned tests can be exploratory also, especially in early stages of 
research. 
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(c) When discussing how statistical procedures should be applied, emphasize the 
fundamental goals of those procedures. For example, the purpose of null hypothesis 
testing is to limit the rate at which scientific harm is caused by false discoveries, and the 
purpose of multiplicity adjustments is to preserve that limit when there are multiple 
simultaneous opportunities for scientific harm. If these basic goals are understood, then it 
is easy to recognize that whether the tests were planned or not is irrelevant to those 
goals—a planned opportunity is an opportunity nonetheless. 
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