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ABSTRACT
Objectives: Hormonal changes during the peri- and postmenopausal age, especially decreasing estradiol levels as the 
result of the expired ovarian function, are an established link of the pathogenesis of postmenopausal osteoporosis.  
The objective of the study was to examine the association between the circulating sclerostin levels and nutritional status, 
sex hormones and selected bone markers turnover levels in peri- and postmenopausal women.

Material and methods: The study enrolled 84 stable-body mass women (31 perimenopausal and 54 postmenopausal). 
Anthropometric measurements and serum estrone, testosterone, androstenedione, DHEA-S, osteocalcin, β-CTx, 25-OH-
Vitamin D and sclerostin levels were obtained.

Results: There were not any differences between body mass, BMI, body fat and waist circumference between the study 
groups. The serum androstenedione and DHEA-S levels were similar in both study groups. However, estrone and total 
testosterone levels were observed to be notably higher in the perimenopausal group, unlike in the postmenopausal group 
(124.1 pg/mL vs. 98.3 pg/mL, p < 0.01 and 0.3 pg/mL vs. 0.22 pg/mL, p < 0.01, respectively). Higher plasma osteocalcin and 
β-CTx levels were shown in the postmenopausal rather than in the perimenopausal group (19.8 ng/mL vs. 16.8 ng/mL, 
p < 0.001 and 0.35 ng/mL vs. 0.29 ng/mL, p < 0.05, respectively). Plasma sclerostin and 25-OH-Vitamin D levels were similar. 
There was not any correlation between plasma sclerostin levels and the other studied parameters. In the multivariate 
regression analyses, sclerostin levels were proportional to the androstenedione ones (b = 0.06; p < 0.05) but inversely 
related to the log10(testosterone) levels (b = -0.18; p < 0.05).

Conclusions: Circulating sclerostin levels are similar in peri- and postmenopausal women and are related to the 
androstenedione and testosterone levels regardless of the nutritional status. 
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INTRODUCTION
Hormonal changes during peri- and postmenopausal 

age, especially decreasing estradiol levels as the effect 
of the expired ovarian function, are an established link 
of the pathogenesis of postmenopausal osteoporosis.  
The experimental study showed that osteogenesis decreased 

just 5 days after the removal of the ovary [1]. It has been sug-
gested that estradiol inhibits the apoptosis of osteoblasts [2].  
Currently, it is believed that the main signaling pathway 
regulating bone mass is the Wnt/β-catenin pathway [3, 4]  
and sex hormones may affect the activity of this path
way [5]. However, the main regulator of this pathway ac-
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tivity is sclerostin — Wnt antagonist produced by osteo-
cytes. Sclerostin binds to LRP5 and LRP6 receptors and 
inhibits the activity of the Wnt/β-catenin pathway [6–9]. 
Higher sclerostin levels were observed in the post- rather 
than perimenopausal women and its levels are inversely 
proportional to the free estradiol index. Thus, it seems that 
estradiol is the factor regulating sclerostin synthesis [10]. 
This hypothesis confirms the observation that the adminis-
tration of estradiol reduces the concentration of circulating 
sclerostin [11]. However, it is not known whether estradiol 
affects the synthesis of sclerostin directly or indirectly. In-
terestingly, the changes in sex hormones levels during the 
menstrual cycle did not affect sclerostin levels in regularly 
menstruating women [12]. It has also been shown that in 
men testosterone increased circulating sclerostin levels [11]. 
On the other hand, one study showed that sclerostin levels 
weakly correlated with bone mass density (BMD), bone 
turnover and parathormone (PTH) levels in postmenopausal 
women [13], whereas another study revealed an inverse as-
sociation between bone mineral density and sclerostin in 
postmenopausal women. In addition, among women with 
osteoporosis positive association between sclerostin levels 
and BMI was observed. There were no correlations between 
sclerostin levels and circulating vitamin D, PTH, FSH, E2 and 
thyroid hormones [14]. However, the results assessed the 
relationship between circulating sclerostin levels and BMI 
as inconclusive. Some studies showed a positive correla-
tion [14, 15], while others did not observe this association 
[16]. As a consequance, examining the association between 
circulating sclerostin levels and the nutritional status, sex 
hormones and selected bone markers turnover levels in 
peri- and postmenopausal women was the main objective 
of the study.

MATERIAL AND METHODS
The cross-sectional study involved 31 perimenopausal 

and 54 postmenopausal women. The inclusion criteria 
for perimenopausal women were irregular menstruation, 
hormonal confirmation of perimenopause and for 
postmenopausal women the time of their last menstruation, 
minimum 2 years. The inclusion criteria for both groups 
included normal thyroid function, stable body mass in the 
last 3 months and not using a hypocaloric diet in the last 
6 months. The exclusion criteria included using any kind 
of a hormonal therapy, smoking and excessive drinking. 
Informed consent was obtained from all of the participants 
and the study protocol was granted the approval of the 
Ethical Committee of the Medical University of Silesia. 

Anthropometric measurements (body mass, height 
and waist circumference) were carried out, and BMI was 
calculated in accordance with the standard formula.  
The participants’ body composition was measured by us-

ing the bioimpedance method with the aid of Bodystat 
1500 (Douglas, Isle of Man). 10 mL samples of venous blood 
were taken in the morning between 8.00–9.00 a.m., after 
an overnight period of fasting (16 h). The blood samples 
were accumulated following the kit manufacturer’s recom-
mendations. All the serum and plasma samples were stored 
frozen in -70°C.

Biochemical measurements
Total testosterone, dehydroepiandrosterone sulfate 

(DHEA-S) were determined by the ECLIA method using 
Cobas E411 analyzer (Roche Diagnostics GmbH, Mannheim, 
Germany) with a lower limit of sensitivity 0.025 ng/mL, 
0.003 μmol/L, respectively; the respective intra- and inter-
assay coefficients of variations were 4.7% and 8.4% for 
testosterone, 2.8% and 4.7% for DHEA-S.

Estrone (BioVendor, Czech Republic) and androstendione 
(DRG Instruments GmbH, Marburg, Germany) were 
determined by using ELISA with a lower limit of sensitivity 
10.0 pg/mL and 0.019 ng/mL, respectively; and the respective 
intra- and inter-assay coefficients of variations 7.7% and 
9.1% for estrone and 9.1% and 12.1% for androstendione.

ELISA kits, all commercially available, were used to 
measure plasma levels of sclerostin (TECOmedical AG, 
Sissach, Switzerland; the mean intra- and inter-assay 
coefficients < 4.0% and the < 4.8%, respectively), 25-OH-
Vitamin D (DRG Instruments GmbH for Hybrid XL, Marburg, 
Germany; the inter-assay precision < 14.2%). Osteocalcin 
and β-CTxwere assessed utilizing ECLIA (Roche Diagnostics 
GmBH, Mannheim, Germany for Cobas e 411 analyser) set 
up to sensitivity < 3.3% and < 4.2% respectively.

Statistical analysis
The statistical analysis was carried out utilizing the Sta-

tistica 12.0 software (TIBCO Software Inc., Palo Alto, USA). 
Nominal and ordinal data were expressed as percentages, 
while interval data were expressed as mean value ± stan-
dard deviation in the case of the normal distribution or 
as median with lower and upper quartile in the case of 
data with the skewed or non-normal distribution. The 
distribution of variables was evaluated by means of the 
Shapiro-Wilk test and quantile-quantile (Q-Q) plot, whereas 
the homogeneity of variances was assessed by using the 
Fisher test. To compare the data between the fitness and 
control group, the t-Student test for independent data  
(in the case of the normal data distribution or after loga-
rithmic normalization — if appropriate – in the case of the 
skewed distribution) or the non-parametric U Mann-Whit-
ney test (in non-normal data distribution) were used. The 
Pearson correlation coefficient was used as a measure of 
association between the analyzed variables. The multivari-
able stepwise backward regression analysis was carried 
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out for plasma sclerostin levels as an independent variable 
with potentially explanatory variables: postmenopausal 
status, body mass index BMI (model I), fat percentage (mod-
el II), waist (model III) and HOMA-IR values, serum levels 
of estrone, total testosterone, androstenedione, DHEA-S, 
25-OH-Vitamin D, osteocalcin and β-CTx. The Cook-Weisberg 
test was used to test heteroskedasticity and the Remsey 
RESET test was used to test the linearity of regression. The 
variance inflation factor VIF was calculated to check multicol-
linearity. The goodness of fit of the acquired regression mod-
els was assessed with the adjusted determination coefficient 
R2. All the tests were two-tailed. The results were regarded 
as statistically significant with a p-value of less than 0.05.

RESULTS
There were no differences between body mass, BMI, 

body fat and waist circumference between the study 
groups. Serum androstenedione and DHEA-S levels 
were similar in study groups, whereas estrone and total 
testosterone levels were significant higher in the peri- rather 
than the postmenopausal group (124.1 pg/mL vs. 98.3 pg/mL, 
p < 0.01 and 0.3 pg/mL vs. 0.22 pg/mL, p < 0.01, respectively). 
Higher plasma osteocalcin and β-CTx levels were shown 
in the postmenopausal rather than the perimenopausal 
group (19.8 ng/mL vs. 16.8 ng/mL, p < 0.001 and 0.35 ng/mL 
vs. 0.29 ng/mL, p < 0.05, respectively). However, plasma 
25-OH-Vitamin D and sclerostin levels were similar. Table 1  
presents the characteristics of the study groups. 

There was a significant negative correlation between 
estrone levels and age, body mass and BMI (r = -0.25; 
p < 0.01, r = -0.24; p < 0.01, r = -0.21; p < 0.01, respectively). 

The negative correlation between 25-OH-Vitamin D levels 
and body mass, BMI, fat mass and waist circumference and 
positive with androstenedione levels was found (r = -0.24; 
p < 0.01; r = -0.24, p < 0.01; r = -0.25, p < 0.01 and r = -0.25, 
p < 0.01, r = 0.33; p < 0.001, respectively). Plasma β-CTx levels 
correlated negatively with estrone levels (r = -0.26; p < 0.01) 
and plasma osteocalcin correlated positively with DHEA-S 
and androstenedione levels (r = 0.29; p < 0.001 and r = 0.41; 
p < 0.0001). No correlation between plasma sclerostin levels 
and the other studied parameters was detected. 

Multivariate stepwise backward linear regression 
models for sclerostin as an independent variable, with 
explanatory variables: postmenopausal status, BMI values 
or waist circumference or fat percentage and estrone, total 
testosterone, androstenedione and DHEAS levels revealed 
that the the alterations in sclerostin levels are proportional 
to androstenedione levels and inversely proportional to total 
testosterone levels. The model with explanatory variables: 
vitamin D, β-CTx and osteocalcin did not show their effect 
on the changes in sclerostin levels (Tab. 2).

DISCUSSION
So far numerous studies assessed circulating sclerostin 

levels and the factors affecting them in peri- and postmeno-
pausal women [13, 14, 17, 18]. To the best of our knowledge, 
the study is most likely to be the first one to assess circulat-
ing sclerostin levels and the factors influencing them in 
peri- and postmenopausal women. In contrast to the stud-
ies which showed higher plasma sclerostin levels in post-
menopausal rather than perimenopausal women [10, 11]  
we did not observe any differences between perimenopau-

Table 1. Characteristics of study group

Perimenopausal
N = 31

Postmenopausal
N = 54 p

Age [years] 49.0 ± 4.0 52.2 ± 4.0 < 0.001

Body mass [kg] 76.3 ± 13.6 74.6 ± 11.5 NS

BMI [kg/m2] 27.1 (24.0–32.5) 27.3 (24.3–30.4) NS

Body fat [%] 37.8 ± 5.6 37.7 ± 5.8 NS

Body fat [kg] 26.5 (22.8–37.1) 28.7 (23.3–35.2) NS

Waist circumference [cm] 88.7 ± 10.0 89.4 ± 10.2 NS

Estrone [pg/mL] 124.1 (104.3–153.3) 98.3 (74.3–118.9) < 0.01

DHEA-S [mg/mL] 143.7 ± 77.9 141.3 ± 66.2 NS

Androstenedione [ng/mL] 2.1 ± 0.9 2.4 ± 0.9 NS

Total testosterone [pg/mL] 0.30 (0.23–0.38) 0.22 (0.13–0.29) < 0.01

25-OH-Vitamin D [ng/mL] 28.0 (23.1–31.5) 30.0 (22.5–36.5) NS

Osteocalcin [ng/mL] 16.84 (11.50–18.60) 19.81 (15.74–23.43) < 0.001

Sklerostin [ng/mL] 0.63 ± 0.2 0.71 ± 0.2 NS

β-CTx [ng/mL] 0.29 (0.21–0.36) 0.35 (0.27–0.48) < 0.05

Mean (SD) or median (lower quartile — upper quartile)
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sal and postmenopausal women. The factor explaining the 
lack of differences in sclerostin levels between our study 
groups is the fact that women at the age of 45 and over 
were enrolled in our study. This hypothesis is confirmed 
by the observation made by Ardavi et al. [17], which made 
an observation of circulating sclerostin levels increasing 
with age, up to the age of 45. Moreover, the results of the 
longitudinal study revealed that sclerostin levels increased 
from reproductive age to menopause and from menopause 
to early postmenopause [18]. Additionally, Amrein et al. [15] 
detected a positive correlation between sclerostin levels and 
age in healthy subjects regardless of gender. Among other 
suggested factors influencing circulating sclerostin levels is 
the nutritional status. However, the results of recently pub-
lished studies are inconclusive. Some studies showed a posi-
tive correlation between sclerostin levels and BMI [15, 19],  
WHR [15] and fat mass [20] as well as the percentage of 
visceral and gynoid fat [21]. Contrary to these studies we did 
not observe any associations between sclerostin levels and 
BMI, waist circumference, fat mass and fat percentage. It is in 
line with the conclusions made by Klangjareonchai et al. [16], 
which found a negative correlation between sclerostin levels 
and BMI in men, and no association in women. It should 
be noted that the differences in these studies may be the 
result of having participants of various races with distinct 
patterns of fat distribution. Although one study showed 
similar circulating sclerostin levels in Chinese-American and 
white women [22], the effect of race cannot be excluded. 
Moreover, studies performed in a large group are necessary 
to explain the effect of race and nutritional status on scle-
rostin levels. Another explanation of these differences may 
be the impact of gender on the fat content. Higher sclerostin 
levels were observed in men rather than in women [23]. An-
other factor influencing sclerostin levels and its association 
with anthropometric parameters is physical activity. Some 
studies showed that regular physical activity significantly 
reduces circulating sclerostin levels in postmenopausal 
women [24, 25]. However, due to the lack of objective as-
sessment of physical activity in our study, we did not confirm 
its impact on the obtained results. 

The circulating estradiol levels in the postmenopausal 
group were very low therefore we did not assess any asso-
ciation between sclerostin and estradiol levels. However, it 
should be noted that we no association between sclerostin 
and estrone levels was observed. Furthermore, despite sig-
nificantly higher estrone levels in the peri- rather than in the 
postmenopausal group, sclerostin levels were similar. It is in 
accordance with the study that showed that bone mass posi-
tively correlates with estradiol and estrone levels in premeno-
pausal but not postmenopausal women [26]. On the other 
hand, it has been observed that a 4-week-long estrogenic 
hormonal therapy reduced circulating sclerostin levels [27].  
It should be noted that this study was performed in a very 
small group. Further studies are necessary to assess the effect 
of estrone on sclerostin levels and the role of this hormone in 
bone turnover. However, our study showed that changes in 
sclerostin levels are proportional to androstenedione levels 
and inversely proportional to total testosterone levels. Con-
trary to our results, it has been observed that in men testoster-
one replacement increased circulating sclerostin levels [27].  
The impact of androstenedione on sclerostin levels may 
be explained by the results of the experimental study that 
showed that androstenedione could improve the prolifera-
tion and differentiation of osteoblasts in vitro [28].

In accordance with the results of the previously published 
study [10, 19] no association between sclerostin and vitamin 
D levels was observed. However, contrary to other studies  
[17, 22, 28, 29], we did not observe any relationships between 
sclerostin and osteocalcin as well as β-CTx levels. It should be 
noted that the results of the studies described the association 
between sclerostin and β-CTx as inconclusive because both 
a positive [28, 29] and a negative [22] correlation were found. 
Multivariate stepwise backward linear regression models in 
our study revealed that the effect ofβ-CTx on sclerostin lev-
els is negative and close to significance. Further studies are 
necessary to explain the association between sclerostin and 
bone turnover markers levels in postmenopausal women. 

The main limitation of the present study is the small 
sample size and not including women of reproductive age in 
the study. Other limitations are also the assessment of body 
composition on the basis of the bioimpedance method, not 
using the DXA method, which makes it impossible to assess 
subcutaneous and visceral fat deposits, and the lack of as-
sessment of bone density. However, it should be noted that 
our study is the first one to assess the complex association 
between sclerostin levels and nutritional status and sex 
hormone levels in perimenopausal women.

CONCLUSIONS
Circulating sclerostin levels are similar in peri- and 

postmenopausal women and are related to androstenedione 
and testosterone levels regardless of the nutritional status.

Table 2. A multivariate stepwise backward linear regression

Sclerostin [ng/mL] b SE(b) p

Androstenedione [ng/mL] 0.0595 0.0263 < 0.05

log10 (total testosterone) [pg/mL]) -0.1786 0.0450 < 0.05

log10 (β-CTx[ng/mL]) -0.1859 0.0972 0.06
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