$\ensuremath{\mathbb O}$ Department of Physics, FEE CTU in Prague, 2017

STUDY OF THE INSULATING AND ARC-QUENCHING PERFORMANCE OF CO $_2$ AND ITS MIXTURES: A BRIEF REVIEW

H. Zhao^{a,*}, W. Gu^b, X. Li^c

^a School of Automation, Northwestern Polytechnical University, Xi 'an, Shaanxi, 710072, China

^b Sieyuan Electric Co., Ltd. Shanghai, 201108, China

^c State Key Laboratory of Electrical Insulation and Power Equipment, Xi 'an Jiaotong University, Shaanxi, 710049, China

* hzhao@nwpu.edu.cn

Abstract. SF₆, which is widely used as an insulating or arc-quenching medium in electrical apparatus, has a strong global warming potential. Recently, CO_2 and its mixtures attract great attention as a promising alternative gas. This paper presents our calculation and measurement results on the insulating and arc-quenching capabilities of CO_2 and its mixtures, including the discharge parameters, arc characteristics, post-arc breakdown properties, and arc-quenching capabilities. On the basis of our study and other published literatures, a discussion of and perspectives on current research and future research directions are presented as well.

Keywords: insulating, arc-quenching, CO_2 .

1. Introduction

 SF_6 has been widely used in high voltage apparatus, due to its excellent insulation and arc-quenching performances. However, this gas is a serious greenhouse gas, and was designated a regulated gas at COP3 (3rd Framework Convention on Climate Change) in 1997. As a result, seeking an environmentally friendly gas to replace SF_6 partially or wholly becomes even more urgent and important.

 $\rm CO_2$ have received lots of attentions as a potential candidate for SF₆. However, the dielectric strength of CO₂, 1.93 kV/mm, is significantly lower than that of SF₆, 8.9 kV/mm. Adding a gas with higher dielectric strength into CO₂ may be an effective way to improve its performance. The authors have carried out some investigations on the insulating and arcquenching performances of CO₂ and its mixtures, and this paper presents our typical results and discussions on the application of CO₂ mixtures for high voltage apparatus.

2. Insulating performance

2.1. Critical reduced electric field strength at room temperature

The critical reduced electric field strength $(E/N)_{\rm cr}$, where E is the electric field strength and N is the number density of particles, was calculated by Boltzmann analysis. The Boltzmann equation was solved by means of the zero-dimensional two-term spherical harmonic approximation. The collision cross section data for the gas molecules were taken from the Plasma Data Exchange Project. The secondary and ionizing electrons after an ionization collision were assumed to have equal energy. In addition, the three-body collisions and Coulomb interactions between charged

Figure 1. Comparison of $(\alpha - \eta)/N$ in CO₂ with literature data.

particles were removed from consideration, and the influence of excited states was also disregarded.

Fig.1 compares the calculated values of the reduced effective ionization coefficient $(\alpha - \eta)/N$ of pure CO₂ gas at room temperature with the literature data [1]. A good agreement can be found between the calculated and the literature values [1].

The calculated $(E/N)_{\rm cr}$ of the mixtures of CO₂ with 10 typical gases are plotted in Fig. 2. For comparison, the values of $(E/N)_{\rm cr}$ of the CO₂ mixtures with C₄F₇N and C₅F₁₀O were also derived from the reported experiment value in literatures [2–4].

Among these gas mixtures, the $(E/N)_{\rm cr}$ of CO₂-C₄F₇N possesses the largest values at same mixed ratios, followed by the results of the CO₂ mixtures with C₅F₁₀O, CF₃I, c-C₄F₈ and SF₆. However, because of the large molecular weight, the liquefaction

Figure 2. Comparison of $(E/N)_{cr}$ in CO_2 mixtures with different gases.

temperatures of C₄F₇N, C₅F₁₀O, CF₃I and c-C₄F₈ are all very high. For example, the boiling points are -4.7 °C, 26.5 °C, -22.5 °C and -8 °C of C₄F₇N, C₅F₁₀O, CF₃I and c-C₄F₈ at 0.1 MPa, respectively. Therefore, the analysis of the relations of saturated vapor pressure, mixed ratio and dielectric strength is necessary.

2.2. Saturated vapor pressure and dielectric strength

The saturated vapor pressures for the CO_2 - C_4F_7N and CO_2 - $C_5F_{10}O$ mixtures were calculated by combining the vapor-liquid equilibrium and Antoine equation in the previous paper [4] with:

$$\log P_1 = A_1 - B_1 / (T + C_1) \tag{1}$$

$$\log P_2 = A_2 - B_2 / (T + C_2) \tag{2}$$

$$P_1 x = P y \tag{3}$$

$$P_2(1-x) = P(1-y)$$
(4)

where P_1 and P_2 are the saturated vapor pressures of component 1 and 2, P is the saturated vapor pressure of the gas mixture, T is the liquefaction temperature of the gas mixture, A_1 , B_1 , C_1 and A_2 , B_2 , C_2 are the Antoine constants for component 1 and 2, xand y are the mole fractions for liquid phase and vapor phase of component 1 at the moment of vapor-liquid equilibrium.

Fig. 3 shows the saturated vapor pressure and $E_{\rm cr}$ characteristics at saturated vapor pressures of the CO₂ mixtures with C₄F₇N and C₅F₁₀O [4], taking the case of -15 °C as an example. It is seen that the attainable electrical strength of CO₂-C₄F₇N is clear superior to CO₂-C₅F₁₀O at saturated vapor pressures, and the maximal electrical strengths of these two mixtures are both decreased with the reduction of CO₂ concentration. Under the limitation of -15 °C, the maximum

Figure 3. Saturated vapor pressure and E_{cr} characteristics of the CO_2 mixtures with C_4F_7N and $C_5F_{10}O$ at a gas temperature of -15 °C [4]

allowable operating pressure of 90 % CO₂-10 % C₄F₇N is about 0.58 MPa, and the value of $E_{\rm cr}$ is approximately 45.97 kV/mm, which slightly surpasses the $E_{\rm cr}$ of 44.76 kV/mm in pure SF₆ at 0.5 MPa. However, the dielectric strength of CO₂-C₅F₁₀O is much lower than that in pure SF₆ at 0.5 MPa in the whole range. It indicates that from the view of dielectric strength, the CO₂-C₄F₇N mixture has a greater potential than the CO₂-C₅F₁₀O mixture as an insulating medium.

2.3. Critical reduced electric field strength at elevated temperatures

The critical reduced electric field strengths of the CO_2 mixture with O_2 at elevated temperatures were also studied by Boltzmann analysis, in order to obtain a better understanding of the dielectric property of the hot gas and to provide the fundamental data for evaluating the dielectric recovery performance in CO_2 or its mixtures during the post-arc phase. Fig. 4 presents the $(E/N)_{\rm cr}$ curves for different CO_2 - O_2 mixtures at 0.4 MPa and elevated temperatures.

As follows from the figure, at relatively low gas temperatures, raising the mole fraction of O_2 can effectively increase the values of $(E/N)_{cr}$ in the CO₂-O₂ mixture. At gas temperatures above 3500 K, however, the $(E/N)_{cr}$ in the CO₂-O₂ mixture is reduced with the increase of the O₂ concentration. This is mainly because of the electronegativity of O₂. In addition, it is also observed that a slow increase in the $(E/N)_{cr}$ with gas temperature occurs, and this increase appears clearer in the CO₂-O₂ mixture with fewer O₂. This variation is mainly due to the dissociation of CO₂ molecules at high gas temperatures, generating CO and O₂.

The influence of gas pressure on the $(E/N)_{cr}$ in the CO₂-O₂ mixture is shown in Fig. 5. It is clear that the elevation of the gas pressure can greatly delay the variation of the $(E/N)_{cr}$ with the gas temperature to the higher temperature range.

Figure 4. Critical reduced electric field strength in different CO₂-O₂ mixtures at 0.4 MPa and elevated temperatures

Gas temperature (K)

Figure 5. Critical reduced electric field strength in $50 \% CO_2$ - $50 \% O_2$ mixture at different gas pressures and elevated temperatures

3. Arc-quenching performance

In order to evaluating the arc-quenching performance of CO_2 and to study its arc characteristics, a series of experiments were carried out based a commercial 126 kV gas-puffer circuit breaker prototype [5]

The transient gas pressures at upstream of the throat of the nozzle were measured, and Fig. 6 gives the peak values of the gas pressure increment and the gas pressure increments at CZ in different SF_6 -CO₂ mixtures at the pre-charged gas pressure of 0.6 MPa and the prospective short-circuit current of 10 kA [5]. With increasing SF₆ concentration, both ΔP_{peak} and ΔP_{CZ} increase, and non-linearly variation is also found. ΔP_{peak} and ΔP_{CZ} in CO₂ are about 47.1 % and 47.7 % of that in SF_6 , respectively.

The ratios of critical values of RRRV to SF_6 in CO_2 -SF₆ for different mixed ratios at the pre-charged gas pressure of $0.6 \,\mathrm{MPa}$ and the prospective shortcircuit current of 10 kA are shown in Fig. 7 [5]. The values of critical RRRV in the CO_2 -SF₆ mixture for SF_6 content of 0%, 20% and 50% are about 39%, A brief review

Figure 6. Peak values of the gas pressure increment and gas pressure increments at CZ in different SF_6 - CO_2 mixtures at 0.6 MPa and 10 kA [5]

Figure 7. Ratios of critical RRRV to SF₆ in CO₂-SF₆ for different mixed ratios at 0.6 MPa and 10 kA [5]

45% and 70% of that of SF₆ respectively.

4. Discussions

The values of $(E/N)_{cr}$ in the CO₂ mixtures with $C_5F_{10}O$ and C_4F_7N are clear higher than that in the other mixtures without considering the liquefaction problem. By analyzing the saturated vapor pressure and $E_{\rm cr}$, it is found that the dielectric strength of the CO_2 - C_4F_7N mixture is much superior to the CO_2 - $C_5F_{10}O$ mixture. However, the GWP value of the CO_2 - $C_5F_{10}O$ mixture is much lower. More detailed and in-depth investigations are necessary. The decomposition when a discharge occurs and its influence on the insulation performance of the gas and harm to human health should be studied. It is also necessary to investigate the breakdown properties of those mixtures under different kinds of electric field, the sensitivity to metallic particles, etc.

The investigation of the interrupting capability of the CO_2 -SF₆ mixture shows that large differences exist in the dielectric strength at elevated temperatures and the pressure buildup characteristics in different gases. The matching characteristic between the gas performance and the GCB structure should be investigated. In addition, the detailed arc-quenching performances of new environment-friendly gases, including C_4F_7N and $C_5F_{10}O$, are also needed to study.

5. Conclusions

Based on the study, the following conclusions could be drawn:

1. The $(E/N)_{cr}$ of the CO₂ mixtures with C₄F₇N, C₅F₁₀O, CF₃I, c-C₄F₈ and SF₆ are clear higher than that of other mixtures, and that of CO₂-C₄F₇N possesses the largest values at same mixed ratios.

2. From the view of dielectric strength, the CO₂-C₄F₇N mixture has greater potential than the CO₂-C₅F₁₀O mixture as an insulating medium.

3. Both the interrupting capability and the gas pressure buildup increase with the increase of the SF₆ concentration in CO₂-SF₆ mixtures, and the critical RRRV in the CO₂-SF₆ mixture for SF₆ content of 0%, 20% and 50% are about 39%, 45% and 70% of that of SF₆ respectively.

Acknowledgements

The work was supported by National Natural Science Foundation of China (51607143, 51577143).

References

- D. A. Dahl. et al. Obtaining precise electron swarm parameters from a pulsed townsend setup. *Journal of Physics D: Applied Physics*, 45(48):485201, 2012.
 doi:10.1088/0022-3727/45/48/485201.
- [2] S. Silvant. et al. Detailed analysis of live tanks and gis circuit breakers using a new environmental friendly gas. *CIGRE*, pages A3–114, 2016.
- [3] P. Simka. et al. Dielectric strength of c5 perfluoroketone. 19th International Symposium on High Voltage Engineering, pages 23–28, 2015.
- [4] X. Li. et al. Insulation performance and application of environment-friendly gases mixtures of c4f7n and c5f10o with co2. *High Voltage Engineering*, 43(3):708–714, 2017.
- [5] H. Zhao. et al. Study of the arc interruption performance of sf6-co2 mixtures as a substitute for sf6. *IEEE Transactions on Dielectrics and Electrical Insulation*, 23(5):2657-2667, 2016. doi:10.1109/TDEI.2016.7736824.