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Abstract  
Measuring intraoperative pain and stress during general anesthesia is still problematic. Instead of having access to 

meaningful and robust pain measurements, anesthetists must use their experience and intuition to ensure a proper pain 

therapy. The correct dosage of analgesics is crucial for a stable patient, since underdosing may lead to neurogenic 

shock. Overdosing can result in critically low blood pressures and heart rates. Several possible approaches towards 

measuring pain have been proposed in the last years. We briefly summarize them and evaluate their usability in 

a general anesthesia setting. A promising approach is given by the Analgesia Nociception Index. We developed an 

advanced algorithm, called the Surgical Analgesia Index, which improves its concept for the use in a fully connected 

smart operating room. This paper is dedicated to its description, preliminary validation and comparison against the 

original index. 
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Introduction 

Several approaches towards the measurement of pain 

have been proposed in the past. The span reaches from 

statistic-, model-, or physiology-based algorithms 

towards more complex approaches facilitating machine 

learning. 
The Noxious Stimulation Response Index (NRSI) 

from Luginbuehl et al. [1] uses a pharmacokinetic 

model to make predictions about the effect-side 

concentration of opioid analgesics and Propofol to 

estimate the probability of a patient's reaction onto 

painful stimuli. Implemented in syringe pumps, the 

NRSI allows the anesthetist to set a target anesthetic 

depth, instead of volume flows. Since the NRSI doesn’t 

include any feedback measurements, it is less a pain 

measuring and more a pain estimating algorithm. 
A measurement-based pain index was proposed by 

Wennervirta et al. [2]. The collected PPG signals from 

26 patients during general anesthesia were used for 

statistical analysis. Increased blood pressure, move-

ment or coughing were interpreted as pain-related 

responses and treated with opioid analgesics. Through 

a correlation analysis, the heartbeat interval (HBI) and 

the amplitude of the pulse wave (PPGA) were identi-

fied to be the most pain sensitive characteristics in the 

PPG signal. The Surgical Stress Index (SSI) uses these 

two characteristics to provide an automated pain scale, 

ranging 0 to 100: 

)3.07.0(100 HBIPPGASSI   (1) 

It is well known that pain influences a person’s 

mimic significantly. Advanced image recognition and 

machine-learning algorithms have been applied by 

multiple research groups to measure the pain level 

automatically. For example, Gholami et al. [3] 

described how relevance vector machine (RVM) 

learning techniques can be used to compute the 

similarity of a facial expression to different base 

emotions. This approach allows to tell how many 

percent of any base emotion are detectable in the 

shown mimic. While this approach is trendsetting for 
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pain measurement in awake patients, it can’t be used 

during general anesthesia.  

All so far presented pain indices are limited or non-

usable in a general anesthesia setting. The NRSI is 

a purely predictive model, the SSI depends on rela-

tively unreliable PPG signals and facial recognition 

doesn’t work with anesthetized patients. A promising 

approach to fill this gap utilizes the measurement of the 

heart rate variability (HRV) to estimate the patients 

pain. 

The Analgesia Nociception Index (ANI), proposed 

by Logier et al. [4], analyzes the modulation of the 

heart frequency through respiratory activity, the so 

called Respiratory Sinus Arrhythmia (RSA) [5]. It has 

been shown that this modulation originates from the 

parasympathetic activity of the Vegetative Nervous 

System (isn’t a pain measuring index in the exact case. 

It rather VNS), which is responsible for relaxation, 

regeneration and digestion. In contrast to its antagonist, 

the sympathetic part, which is responsible for 

activation in stressful events, the parasympathetic 

neurons conduct signals faster. Therefore, they can 

modulate the heart frequency within a breath cycle. 

This modulation appears between 0.15–0.4 Hz, in the 

range of normal respiratory activity. 

As the sympathetic- and parasympathetic part of the 

VNS work antagonistically, stressful events lead to an 

increased sympathetic- and decreased parasympathetic 

tone. This phenomenon allows the indirect observation 

of the patient’s stress level. Since the patient is 

hypnotized, no psychological factors influence the 

activity of the VNS. By implication, this means that 

only physical pain leads to a lowered parasympathetic 

and increased sympathetic activity. 

To quantify pain in an easily interpretable scale, 

Logier et al. used a normalized HRV, obtained by 

division with the signals own 2-norm. To neglect other 

influences onto the HRV, the signal was bandpass-

filtered between 0.15 Hz and 0.5 Hz, so that only RSA-

induced HRV remains. Ideally, the remaining signal 

only consisted of one component, the parasympathetic 

activity. To recover this amplitude, Logier et al. 

calculated the upper and lower envelope of the signal 

and computed the Area Under the Curve (AUC) of the 

difference-signal in analysis windows of 64-second 

length. After dividing the window into four sub-

windows of 16-second length, the minimum area under 

the curve AUCmin was determined. In a last step this 

value was used to compute the index through a linear 

transformation: 

minAUC
ANI 100

12.8

 
  (2) 

The parameters were published as α = 5.1 and 

β = 1.2. The commercially available Metro-Doloris 

ANI-monitor, however uses a short initialization phase 

to compute these parameters individually for each 

patient. Unfortunately, the initialization algorithm 

proprietary and therefore can’t be independently 

assessed. 

The working principle of the ANI seems to be the 

most suitable for the measurement of pain during 

general anesthesia. However, a few extensions and 

changes in the original algorithm can yield 

improvements for its use during general anesthesia: 

1. The actual respiratory frequency is not

considered, although it is set to a fixed fre-

quency through the anesthesia machine. In

a fully networked operating room, as described

by Koeny et al. [7], this parameter can be

obtained and used to reduce the influence of

signal noise drastically.

2. Through the long analysis window with length

of 64 seconds, the ANI has a noticeable low-

pass character. This prevents a fast reaction onto

a painful event.

3. The static scaling factors of the original index

yield a bad interpretability, because the RSA-

amplitude depends on multiple factors like

gender and age. A normalization can be

introduced to solve this problem.

Methods 

This section presents all details and requirements for 

the extended pain assessment algorithm, called the 

Surgical Analgesia Index (SAI). Firstly, an approach to 

obtain all required vitals through advanced hospital IT-

infrastructure concepts will be presented. Also, the 

computation of heart rate variability and breath rate 

from ECG, PPG or capnometry will be shown. This 

section will be concluded by describing the algorithm 

deign of the new index. 

The proposed algorithm works in a manufacturer-

independent, networked operating room, which is 

currently developed in the OR.NET project [7]. All 

medical sensors and actors can communicate with 

another over a standardized protocol, called the Open 

Surgical Communication Protocol (OSCP), which also 

allows the communication with other hospital IT-

systems. This setting builds the base for advanced 

algorithms that use signal-fusion or big data analysis to 

assist physicians with their decisions. 

The HRV, as well as the current breath rate can be 

obtained from a multitude of actors and sensors in 

a modern operating room. For example, the heart rate 

can be extracted from ECG-, PPG-, invasive blood 

pressure signals or even video (PPGI®) [8, 9]. Breath 

rates can be obtained from the ventilator settings, ECG- 

or even PPG signals. By fusing all different sources, 

noise and artifacts can be efficiently removed and more 

robust signals can be delivered. 
Heart beats or breaths can be extracted from raw 

signals by using peak detection algorithms, like the 
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ADAPIT-algorithm proposed by Yu et al. [6]. Firstly, 

this algorithm filters the raw signal with a median 

filter. The filter length depends on the underlying 

signal (ECG: 55 ms; PPG: 550 ms, CO2: 1 s). The 

filtered version of the signal gets subtracted from its 

original. The result is a residual signal with only high 

frequent components remaining. Every peak, greater 

than a threshold is considered a maximum value. In 

a second step, a new threshold is chosen to be the half 

the mean value of all detected signal maxima. All 

values above this new threshold are collected as 

a string of markers. The period time P between two 

consecutive markers may not vary more than fifty 

percent. Otherwise, the specific marker will be 

discarded. The time stamps of the resulting signals can 

be differentiated to compute the so called Inter-Beat-

Intervals (IBI), which represents the HRV in the time 

domain. The breath rate can be computed by 

differentiating the time stamps and computing their 

reciprocal values. 

In the frequency representation of the HRV, the RSA 

can be best seen [10]. Figure 1 shows the spectrogram-

representation of a HRV-signal, recorded from a me-

chanically ventilated patient during general anesthesia. 

The spectrogram was computed by calculating the 

short-time Fast Fourier transform (FFT) of the HRV 

with a Hamming window of length L = 30 s and 

a window overlap of 28 s. Explicitly noticeable is the 

maximum at breathing frequency (around 0.2 Hz). This 

is the RSA, caused by the mechanical ventilation with 

a static frequency (ventilator setting is highlighted in 

green). A slightly less prominent maximum at the 

double frequency can be interpreted as the second 

harmonic of the RSA. 

To analyze the signal, the amplitude of the frequency 

component that is the nearest to the given respiratory 

frequency fRSA is determined and called ARSA: 

)()(min)(
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
(3) 

Depending on its magnitude, the RSA might 

disappear in the signal noise. To only consider signals 

above the noise floor, the expected noise value µ inside 

the band of possible respiratory frequencies is 

computed and subtracted from ARSA. All components 

smaller than zero are clipped in the resulting signal: 
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 value of Aeff = 0 means that no RSA has been 

detected. To obtain an index that is comparable 

between patients, Aeff needs to be scaled properly. 

Since the maximum RSA magnitude for a specific 

patient, which occurs theoretically in a state of total 

relaxation is unknown, the scaling of Aeff  poses some 

problems. In the following a possible approach to solve 

this problem is provided. 

Fig. 1: Spectral signal representation of the heart rate 

variability trough short time Fourier transforms (tA10). 

Fig. 2: Unscaled Aeff computed over the time (tA10). 

In Figure 2, the time series of Aeff is split into two 

different components: one slowly changing baseline 

and one faster changing component with almost 

constant magnitude. The baseline was calculated by 

applying a median filter with length of 300 seconds 

onto the signal from Fig. 2Figure 2. The high frequent 

residual signal was computed by subtracting the 

baseline from the original signal. 

The observation was made that the baseline correlates 

with the administration of analgesics and the number of 

painful events, while the residual signal was mostly 

independent to pain-related influences. Moreover, this 

signal was similar regarding to mean frequency and 

magnitude variation among all recorded subjects but 

had different expected magnitudes. Hence, a normal-

ization of Aeff, onto the expected magnitude of the 

residual signal Aeff,res, can increase the compatibility 
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between patients. This leads to the formulation of the 

pain index as: 

 

1

, |}{|6 



reseff

eff

AE

ASAI




 (6) 

 

 
(a) Baseline 

 

 
(b) Fast changing component 

 

Fig. 3: Splitted components of Aeff. 

 
For an approximation of the expected value of Aeff,res 

a training phase of 5 min is used in case of real-time 

analysis. The factor in the above equation has been 

empirically chosen to yield a good transformation into 

the range [0,100]. 

Results  

Figure 4 and Figure 5 show the comparisons of the 

ANI and SAI for two anesthetized patients undergoing 

a surgical procedure. A clear difference between both 

indices can be seen. While the SAI shows distinct 

reactions on the most painful events and applications of 

analgesics, the ANI responds slower and more 

indistinct. Especially the reactions of the SAI onto 

morphine analgesics are remarkable. After every 

application an increase in the index value can be 

observed. Painful events mostly cause a decrease in the 

index value. The dead time between an event and its 

response is a few minutes faster than that of the ANI. 

Unfortunately, both algorithms only work when the 

RSA is clearly detectable. Evaluating the spectrograms 

of all study participants shows that an interpretable 

RSA is often not given. In many cases the RSA below 

the SNR threshold or fully disappears in the signal 

noise. The situation gets worse in awake patients. 

A study conducted in a recovery room yields that the 

HRV from awake patients shows now clearly 

identifiable frequency containing a maximum, which 

could be interpreted as RSA. Figure 6 and Figure 7 

show two different classes of spectra that don’t yield 

enough information for both algorithms: spectra with 

a highly irregular pattern (Figure 6) and spectra with 

almost no frequency components in the area of interest 

(Figure 7). 
 

 
Fig. 4: SAI baseline (blue) compared with ANI baseline 

(black) with particular, painful events (tA10). 

Discussion 

The results show that the proposed SAI index is 

superior compared to the ANI during general 

anesthesia. The additional use of the breath rate, the 

fusion of multiple signal sources and signal processing 

in the frequency domain increase the SAI’s 

performance over that of its predecessor. 

The improved response time of the SAI can be 

explained with the reduction of averaging operations. 

Compared to the ANI, which applies 64 s sliding 

windows, the SAI algorithm only uses a 30 s sliding 

hamming window for its frequency analysis. This 

yields a more instantaneous behavior. 

Also, the SAI is better in using the whole range of the 

index scale. Larger swings in the index value allow the 

user to better interpret the results. Furthermore, the SAI 

clearly indicates a non-detectable RSA through the 

index value zero. This enables the physician to decide 
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whether the patient suffers from extreme pain or 

simply doesn’t have any usable RSA. The ANI on the 

other doesn’t clearly indicate this situation and might 

fool the user into believing that the system is running 

as expected while the validity of the signal isn’t given. 

 

 
Fig. 5: SAI baseline (blue) compared with ANI 

baseline (black) with particular painful events (tA13). 

 

The RSA of awake patient is not as easily to detect as 

in artificially ventilated patients. The reason is that the 

normal respiratory drive yields no constant respiratory 

frequency, especially in pain- and stressful situations. 

Without a strictly period stimulation, there is no chance 

to detect a strictly periodic response phenomenon. 

Because of that the classical ANI is may be advanta-

geous in this situation, since it averages over all 

possible respiratory frequencies. 

From a physiological standpoint, the validity of 

HRV-based pain measurement approaches in awake 

humans remains questionable. Too many psychological 

factors also influence the stress level of a patient and 

are thus falsely interpreted as pain. Even if the 

treatment of stress with strong analgesics works in the 

short term, there are more sustainable approaches for 

a stress therapy. Thus, a clear decision between both 

states would be desirable. 

The question why different patients show no usable 

RSA during surgery is mostly unsolved. The study 

shows that mostly young, male subjects show a strong 

RSA, but we lack a clear explenation. There is also 

a good chance that the type of performed anesthesia or 

the ventilator settings alter the quality of the RSA. We 

found that the most interventions with a good detect-

able RSA were in short chronologically distance to 

another, which could imply that they were performed  

 

by the same anesthetist. To make statistically signify-

cant statements, these phenomena must be investigated 

on a larger scale. 

 

 
Fig. 6: Spectral signal representation of the heart rate 

variability through the short time Fourier transform 

(pat02): no RSA detectable. 
 

 

 
Fig. 7: Spectral signal representation of the heart rate 

variability trough short time Fourier transform 

(pat03): noisy spectrum. 

Conclusion  

We conclude that the SAI is promising for measuring 

pain during general anesthesia. A larger control study, 

possibly with a defined application of analgesics and 

painful events is needed to prove the validity of the 

index. Before that, the general occurrence of the RSA 

should be studied more in detail to evaluate, if the 

principle is suitable for a large range of patients. If the 

RSA is detectable with good signal to noise ratio, we 

believe that its observation yields a way towards an 

automated stress and pain analysis. We believe that our 

proposed algorithm works well under those conditions 

during general anesthesia. If the principle works for 

awake patients is still questionable, since many other 

factors also affect the HRV in this case. 
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