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Abstract 
The paper presents development of a series of solutions for beams at elevated temperatures 
which are supposed to serve as benchmark problems for applications of computational models 
in fire structural engineering. Three cases of loading i.e. pure bending, central force, and 
uniformly distributed loading, are considered for a simply supported, and fixed on both ends 
beams at uniformly distributed elevated temperature varying in time. The results are provided 
in terms of the midspan deflection for specified loading levels and temperatures. The results 
mainly obtained using finite element (FE) models and two commercial codes, are verified 
through comparison with analytical solutions for simplified cases and through parametric 
study aimed to examine the effect of modelling parameters. The numerical results are 
subjected to mesh density study using the grid convergence index (GCI) concept.  
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INTRODUCTION 
Nowadays verification and validation (V&V) is recognized as the primary method for 
evaluating the confidence of computer simulations (Oberkampf et al, 2004). V&V is 
especially important in the research areas where complex, highly nonlinear structural 
behaviour is considered. One of those is the structural fire engineering where interaction of 
additional effects due to elevated temperatures has to be considered such as reduction of 
material properties and generation of additional forces due to constrained thermal elongation. 
Validation in the structural fire engineering through comparison between numerical results 
and experimental data obtained using furnace tests is difficult and has many limitations due to 
inevitable uncertainties characterising the specimen behaviour (Gillie, 2009). This fact 
enhances the importance of verification which is sought as a comparison of computational 
solutions with highly accurate (analytical or numerical) benchmark solutions and among 
themselves, for example using mesh density study (Santiago et al, 2009).  
The benchmark solutions can serve for both code developers, to check the corrections of new 
features introduced in the code, and for code users who can check if their models are 
developed correctly. They should represent a good balance between simplicity and 
applicability. Simpler the problem considered, more reliable solution can be obtained, but too 
simplified problem can miss some important features which need to be taken into account in 
the study. On the other hand, more complex problem, less reliable solution can be provided. 
This fact is reflected often when different codes are used for the same problem (Santiago et al, 
2009) or different modelling parameters such as finite element formulation, solving 
procedures, material models are used within the same code. To solve this dilemma a 
hierarchical approach is proposed in which a series of solutions is developed starting from the 
simplest cases towards more complex.  
The paper presents application of such strategy to the problem of beams at elevated 
temperatures. The objective of the presented study is to provide not only solutions but also 
accumulate the evidence that they are correct. 
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1 PROBLEM DESCRIPTION 
To define a family of cases characterizing the behaviour of beams at elevated temperatures, 
several parameters need to be identified as listed below. Some of them are taken from the 
existing studies (Gillie, 2009) and present a good balance between simplicity and 
correspondence with the real world. The stress is put on description of the numerical models 
to allow other users to follow calculations and check their simulations. For better comparison 
of results and for understanding the factors affecting differences between them and analytical 
solution, two commercial FE codes are used: ABAQUS, very commonly used in such cases 
(Santiago et al, 2009) and LS-DYNA, less often used in similar problems. 

1.1 Geometry 
Geometry means here a set of data defining all dimensions and shape of the beam. For all the 
solutions presented in this study a 1000x50x30 mm beam was considered. The ratio of length 
to depth is 20, so it is assumed that the shear force effect on deflection is negligible. 

1.2 Material 
Similar as in (Gillie, 2009), elastic-perfectly plastic material is considered, with the difference 
that here both elastic modulus and yield stress are temperature dependent, comparable to (Lin 
et al, 2010). Stress-strain relationship and temperature dependence are shown schematically in 
Fig. 1. Elastic modulus at 0C is 0E =200 GPa and the corresponding yield stress 0y =200 
MPa. Material model is simple enough to allow easy FE modelling but also reflects material 
properties of structural steel at elevated temperature. In all cases  =0.3 and t =1.2·10-5 K-1, 
which corresponds well with steel properties. 
 

  
Fig. 1  Material model 

 

Fig. 2  Plastic regions, loading and boundary 
conditions – simplified drawings 

1.3 Mechanical Loading 
Three loading cases are considered: pure bending, central force, and uniformly distributed 
load, see Fig. 2. Pure bending is applied by four point bending test where two equal forces are 
applied at the top of cantilevers with bigger stiffness than the main beam. The central force is 
applied at the neutral axis of the beam, and uniformly distributed loading is applied as 
increased gravity. The first case is considered mainly to verify FE results with analytical 
solutions for elastic-plastic bending. This solution is also used for the mesh density study. The 
last case is more realistic and more related to experiments.  The magnitude of the loads was 
chosen to produce bending moment of magnitude 700 Nm in the most stressed cross-section 
of simply supported beam. This lies between moments in which outer fibres yields (500 Nm) 
and whole section reaches plasticity (750 Nm) at 800°C, giving good elastic-plastic response 
of the beam. This gives force of 7000 N at the ends of 100 mm cantilevers in pure bending, 
2800 N in point force load and equivalent of 5.6 N/mm distributed loading. 



 

  

1.4 Boundary Conditions 
Only two idealized boundary conditions are taken into account: a simply supported beam, 
where constraints are applied at the neutral axis, and a beam fully fixed on both ends. In the 
presented study only planar bending is considered with symmetry constraints (transverse y- 
displacement constrained) applied to all nodes in the vertical symmetry plane. 

1.5 Temperature variation 
Uniformly distributed temperature within the beam (the main span) is assumed. For FE mesh 
studies with constant temperature, the temperature effect is modelled directly through 
variation of the material properties and thermal expansion is not taken into account. At the 
beginning of the simulations the loading is applied gradually and then it is kept constant. For 
temperature varying in time, the simulations are divided into three steps. In the first step 
temperature 0C is constant while the mechanical loading grows from zero to the full 
magnitude. In next two phases the loading is kept constant and the temperature grows linearly 
to 800C and back to 0C,(Gillie, 2009). All calculations are static, without inertia effects, 
and with time serving as nonphysical loading parameter. 

1.6 FE Meshes 
Only 3D meshes, as most general, are considered. It is supposed that FE models built of solid 
elements are able to capture more comprehensively local effects, and eventual deviation of 
plane cross sections (deplanation) due to shear deformation. Dimensions of FEs for three 
subsequent meshes used for the mesh density study are 16.67x12.5x7.5, 8.33x6.25x3.75 and 
4.17x3.125x1.185 mm. Each of three meshes is built of the same elements with denser 
meshes generated through dividing each edge in two (one solid is divided into eight).  

2 ANALYTICAL SOLUTIONS 
For validation of FE models, analytical solutions for simply supported beams under pure 
bending, point force and uniformly distributed loading were obtained below. 

2.1 Pure bending 
Analytical solutions are obtained based on the assumptions that cross sections stay planar and 
the effect of shear is neglected. It is also assumed that the approximate formula (second 
derivative) for the curvature can be applied to find beam deflection.  For elastic-ideal plastic 
material with yield stress y the bending moment can be given by 
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where   is the radius of curvature which can be approximated by  
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To obtain displacement function  xw it is necessary to solve differential Eq. (2) for 
constM  . The maximum deflection f in the midspan is  

 

212

6
1

4
1

38
1 







  


Eh

l
f y and 

6

2bh
M

y
   (3)

 



 

  

2.2 Concentrated force 

For point load Eqs. (1 )and (2) are still valid. Maximum bending moment  xM  and the 
maximum elastic moment sM  (at the cross-section 0xx  ) are given as 
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Beam deflection shape  xw  is divided into  xw1  for 0xx   (elastic behaviour of the cross-
section) and  xw2  for 20 lxx   (elastic-perfectly plastic behaviour of the cross-section). 
Parameter 0x  results from Eqs.(4.2) and (4.3).Displacement function  xw  is obtained after 
solving Eq. (5). 
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Maximum deflection of the beam can be written as Eq. (6). 
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3 MESH DENSITY STUDY 
For the mesh density study, the maximum deflection for cases with pure bending at 0°C and 
800°C was used. The procedure called Grid Convergence Index GCI (Slater, 2008), 
(Kwasniewski, 2013) was applied. Using concept of Richardson extrapolation, the order of 
convergence and asymptotic solution is found based on results obtained from three 
subsequent meshes. The meshes are constructed with a constant grid refinement ratio 2r  
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where 321 ,, hhh  are measures of mesh size (e.g. the largest element egde) and 321 hhh  . In 
this paper the convergence rate, given as (Slater, 2008) 
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where 321 ,, fff  are the results from three subsequent meshes. Next, the asymptotic solution is 
obtained as 
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The GCI is defined as (Slater, 2008): 
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where 1sF  is a safety factor, and  defines relative difference between subsequent solutions 
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As can be seen (Tab. 1) a good convergence and correlation with analytical solutions are 
obtained for constant 0°C, 800°C (no thermal expansion) and for temperature  varying from 0 
to 800°C and deflection recorded at 800°C. For all next cases, the finest mesh is applied. 

Tab. 1  GCI results for simply supported beam with pure bending 

Solver Temperature 
[C] 

Result [mm] 
p  0hf

[mm] 12GCI  23GCI  
12

23

GCIr
GCI
p  

3f  2f  1f  

ABAQUS 
0constant 1.367 1.391 1.398 1.778 1.401 0.206 0.710 1.005 

800constant 9.256 10.490 10.970 1.362 11.276 2.786 7.489 1.046 
800 varying 8.478 9.636 9.963 1.824 10.092 1.292 4.729 1.034 

LS-
DYNA 

0constant 1.369 1.393 1.400 1.778 1.403 0.206 0.709 1.005 
800constant 9.640 11.023 11.818 0.799 12.893 9.095 16.963 1.072 
800 varying 8.384 9.228 9.814 0.526 11.145 13.562 20.774 1.064 

4 NUMERICAL RESULTS FOR BEAMS UNDER FIRE 
Tab. 2  Deflection of simply supported beam with pure bending under fire [mm] 

 0°C 200°C 500°C 600°C 700°C 800°C 700°C 600°C 500°C 200°C 0°C 
Analytical 1.400 1.750 2.800 3.500 4.667 11.180 - - - - - 
ABAQUS 1.398 1.747 2.796 3.495 4.569 9.963 7.635 6.469 5.770 4.727 4.372 
LS-DYNA 1.400 1.743 2.773 3.461 4.609 9.814 7.512 6.358 5.667 4.626 4.275 

Tab. 3  Deflection of simply supported beam with concentrated force under fire [mm] 

 0°C 200°C 500°C 600°C 700°C 800°C 700°C 600°C 500°C 200°C 0°C 
Analytical 0.933 1.167 1.866 2.333 3.111 4.667 - - - - - 
ABAQUS 0.940 1.174 1.882 2.352 3.136 5.074 3.507 2.723 2.253 1.548 1.312 
LS-DYNA 0.940 1.172 1.869 2.333 3.108 5.008 3.462 2.688 2.223 1.526 1.293 

Tab. 4  Deflection of fixed beam with concentrated force under fire [mm] 
 0°C 200°C 500°C 600°C 700°C 800°C 700°C 600°C 500°C 200°C 0°C 

ABAQUS 0.239 9.693 29.964 36.008 41.846 47.716 44.456 40.732 36.669 24.472 16.235 
LS-DYNA 0.239 9.667 29.877 35.915 41.752 47.627 44.372 40.656 36.608 24.491 16.359 

Tab. 5  Deflection of simply supported beam with distributed loading under fire [mm] 

 0°C 200°C 500°C 600°C 700°C 800°C 700°C 600°C 500°C 200°C 0°C 

Analytical 1.167 1.458 2.333 2.917 3.889 5.833 - - - - - 

ABAQUS 1.172 1.466 2.347 2.934 3.912 7.019 5.065 4.088 3.501 2.621 2.328 

LS-DYNA 1.173 1.462 2.331 2.911 3.877 6.920 4.991 4.024 3.444 2.571 2.279 

 
Fig. 3-7 present numerical and analytical results for five selected cases: simply supported 
beam subjected to four point bending, simply supported and fixed beams subjected to 
concentrated force and uniformly distributed loading. For all cases the time variation of 
temperature defined in Section 1.5 is considered. Deflection f is shown in the relation to the 



 

  

displacement 0f  at 0°C, which makes variation of material properties under temperature more 
visible. 

 

 
Fig. 3  Deflection of simply supported beam under 

pure bending and elevated temperature 

Tab. 6  Deflection of fixed beam with distributed loading under fire [mm] 

 0°C 200°C 500°C 600°C 700°C 800°C 700°C 600°C 500°C 200°C 0°C 
ABAQUS 0.239 9.649 29.946 35.996 41.839 47.714 44.449 40.734 36.669 24.386 16.060 
LS-DYNA 0.239 9.607 29.810 35.840 41.664 47.514 44.261 40.555 36.503 24.311 16.110 

 

 
Fig. 4  Deflection of simply supported beam 

under concentrated force and elevated 
Fig. 5  Deflection of fixed beam under 

concentrated force and elevated temperature 

 

 
Fig. 6  Deflection of simply supported beam 

with distributed load and elevated temperature 
Fig. 7  Deflection of fixed beam under 

distributed load and elevated temperature 

5 SUMMARY 
A series of solutions for beams at elevated temperatures are presented as benchmark problems 
for applications of computational models in fire structural engineering. Presented numerical 
solutions have been verified through comparison with analytical solutions for limited number 
of simple cases and through comparison of the numerical results obtained using two FE 
codes. The mesh density study based on the grid convergence index (GCI) concepts is also 



 

  

presented for beams subjected to pure bending. Comparison of the results shows very good 
correlation for elastic range however, when plastic deformation is present there is a clear 
difference between FE and analytical solutions.  
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