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Abstract 
This paper discusses the concepts of verification and validation in computational mechanics 
with special attention to structural fire engineering, by referring to recently published papers 
and guides on V&V that define some best practices and show directions for future 
development. The perspective of an analyst, who develops computational models, makes runs, 
and analyses numerical results mostly using software based on the finite element method, is 
presented. The considerations emphasize practical problems encountered in the V&V process, 
potential sources of errors and uncertainties, the importance of sensitivity study, new ideas 
regarding the relationship between validation and verification, differences between calibration 
and validation, new aspects of the validation metrics, and guides for designing validation 
experiments. The discussion is illustrated by computational problem examples.  
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INTRODUCTION 

Wide application of numerical models in structural engineering raises the question about their 
predictive capability. This question is especially legitimate in the research areas where 
complex, highly nonlinear structural behaviour is of interest. One of such research areas is the 
structural fire engineering where interaction of additional effects due to elevated temperatures 
has to be considered. Among such effects there are: thermal reduction of material properties, 
generation of additional forces due to constrained thermal deformation, complex thermo, 
chemical and mechanical effects such as dehydration and vapour pressure leading to 
premature concrete failure and spalling.  
The high, steady interest in computational research for structural fire engineering can be 
observed based on the simplified statistics presented in Fig. 1 which shows number of related 
papers recorded in the Google Scholar database (with FIRE in the title and FIRE + “FINITE 
ELEMENT” anywhere in the article). There can be an expectation for more precise evaluation 
procedures, specifically dedicated to the considered research area such as structural fire 
engineering however, in the topic literature definitely dominates opinion that a general 
procedure applicable to what is called Computational Science and Engineering (CS&E) or 
Computational Engineering and Physics (CE&P) should be developed, (Oberkampf et al, 
2004). The mentioned broad areas encompass many fields of engineering and physics, 
characterized usually by adjective “computational” such as (computational) fluid dynamics, 
solid mechanics, and structural dynamics. Even though, it is clear that the expected predictive 
capability for linear FE static analysis is different than for structural fire engineering, as it is 
shown schematically in Fig. 2, the same principles of V&V are applicable to all these research 
fields.   
Report (Oden et al, 2006) describes the importance of computer simulation for the 
development of technical ideas today and predicts a sharp increase in the near future. We are 
witnessing the continuation of the computer revolution, which, according to Moore's law 
recognizes (Moore, 1998) a two-fold increase in computing power over the 18 months. In the 
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80’s and 90’s it was represented by doubling of the processor clock speed and now 
represented by an increase of number of transistors that can be packed in a standard chip size. 
The hardware development is followed by the rapid advancement of numerical programs. For 
example, based on the finite element method (FEM) commercial program LS-DYNA®, 
whose source code had 50,000 lines in its early days, in the 70s, now has more than 2.5 
million lines in little more than a decade (Kwasniewski, 2009). The improvements in 
computational capabilities are well illustrated by an example presented in (Belytschko et al, 
2000): in the 1970s, a 20 ms crash test simulation using a 300-element vehicle model took 
about 30 hours of computer time at a cost equivalent to the three-year salary of a university 
professor. Today’s multiprocessor machines allow using a much higher number of finite 
elements - tens of millions in some FE models. Rapidly increasing number of users or of such 
programs, with the increasing access to multiprocessor computers with high-performance 
computing, degrades the computational resource limitations as an excuse for simplified 
computer simulations. The only limitation left for the use of multiple processors to solve a 
given problem is scalability of the software for a given problem.    
 

 

Fig. 1 Number of articles according to 
Google Scholar 

Fig. 2 Predictive capabilities of computer 
simulations 

Despite the rapid hardware and software development there are many contradictory opinions 
about the reliability of computer predictions (Babuska  & Oden, 2004), best expressed by a 
famous  statement: “Essentially, all models are wrong, but some are useful” (Box & Draper, 
1987). It is almost impossible to model all the aspects of a complex event, yet valuable 
conclusions from a series of simulations can be concluded if proper tools and statistical 
measures are used through the V&V procedures. Early in the development of the finite 
element method, the Journal of Applied Mechanics rejected FE papers for being insufficiently 
scientific (Belytschko et al, 2000). Today’s general attitude is definitely evolving towards 
more acceptance of computer predictions, and the numerical results obtained using the 
dominant FE method are present in numerous technical and scientific papers from many 
different research areas. 

1 MODELLING, VERIFICATION AND VALIDATION 

Today verification and validation (V&V) is recognized as the primary method for evaluating 
the confidence of computer simulations (Oberkampf et al, 2004). The relationships between 
activities involved in the development of mathematical and computational models and in their 
verification and validation, are often schematically presented using diagrams such as the one 
shown in Fig. 3 (Kwasniewski, 2009). In Fig. 3, the boxes represent four main concepts: 
reality of interest, mathematical model, computer models, and validation experiments. Reality 
of interest relates itself to two aspects: to the physical system containing objects as well as to 



 

  

the processes intended for analysis.  Reality of interest can apply to existing objects or to new 
solutions (prototyping) but always refers to somehow defined physical objects, for example to 
a structural element subjected to furnace test or to a whole structure subjected to full scale fire 
test.   
The mathematical (or conceptual) model comprises all assumptions and definitions 
characterizing the mathematical representation of the reality of interest formulated generally 
as a system of partial differential equations (PDEs) complemented by boundary and initial 
conditions (Oberkampf et al, 2004). The transition from reality of interest to mathematical 
model depends on the objective of the analyses, understanding of physics, the analyst’s 
experience, and resources. Formulation of the mathematical model is the first step in the 
model development and the first source of errors.  
Usually, physical problems of a practical nature, represented by such mathematical models, 
cannot be solved analytically due to the complexity of, for example, their geometry. To find 
the solution, a mathematical model is replaced by an approximate computer (computational) 
model using the process of numerical discretization, which replaces PDEs with sets of 
algebraic (matrix) equations more suitable for computers. The discretization of space and time 
can be done using procedures such as the finite element, finite difference, finite volume, and 
boundary element methods. In solid mechanics and structural dynamics, space discretization 
is dominantly done with the finite element (FE) method. Time domain of transient events is 
discretized with finite difference method. In practice FE model development, especially when 
a commercial code is used, requires many decisions on selection among numerous options.  
The last box in Fig. 3 contains a set of validation experiments designed using the validation 
hierarchy (Oberkampf et al, 2004). The objective of these tests is to increase the accuracy and 
predictive capability of computer models. Specially designed additional experiments are 
supposed to provide answers for the questions raised during model development and to 
quantify the model’s uncertainties.  
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Fig. 3 Relations between modelling, 
verification and validation 

(Kwasniewski, 2009) 

Fig. 4 Example parametric study of furnace test 
on rotationally restrained steel columns in fire 

The solid lines indicate the activities of general model development, including conceptual 
modelling, computer (FE) model development (i.e., software implementation), and design of 
validation experiments. Some of these activities are marked with arrows on both sides to show 
their interactive character, and especially good cooperation between analysts and 
experimentalists is recommended (Kwasniewski, 2009). The assessment activities, marked 
with dashed lines, involve verification and validation.  Verification and validation should be 
performed with respect to assumed objectives defining the quantities of interest. The 
difference between verification and validation is probably most accurately expressed by 



 

  

Roache’s informal statement: “Verification deals with mathematics; validation deals with 
physics” (Roache, 1998). Verification uses comparison of computational solutions with 
highly accurate (analytical or numerical) benchmark solutions and among themselves, 
whereas validation compares the numerical solution with the experimental data. Verification 
comprises of model and code verification stages. The analyst is usually provided with a 
software and the code verification stage is usually performed by for software developer. The 
objective of  V&V practices, which is generally to corroborate (mathematical and 
computational) model for its intended use, can be practically split into three tasks: to detect 
and separate the model’s significant discrepancies, to remove and reduce removable and 
unavoidable errors, and to evaluate uncertainties in the results. A very important aspect of the 
V&V process is the proper determination of sources for all significant errors. The dashed line 
representing validation connects experiments with both the computer and mathematical 
models. Although validation involves direct comparison of computational results and 
experimental data, the differences encountered have their sources in both models. It has been 
pointed out (ASME, 2006) that verification should precede validation, but even the most 
extensive verification cannot remove all errors (e.g., due to discretization) so validation 
evaluates the whole modelling process, and some of the errors that originated in different 
modelling phases cannot be completely separated, compare (Schwer, 2006).    

2 DIFFICULTIES WITH EXPERIMENTAL VALIDATION IN STRUCTURAL 
FIRE ENGINEERING 

Experimental validation in the structural fire engineering through comparison between 
numerical results and experimental data obtained using furnace tests is difficult and has many 
limitations which are not only economical but also are due to inevitable uncertainties 
characterising the specimen behaviour (Gillie, 2009). Practically, always limited number of 
measurements during such tests cannot provide entire information about the space and time 
distribution of temperatures, evolution of boundary conditions, or generation of additional 
forces due to constrained thermal and mechanical deformation. The limitations of 
experimental validation increase the importance of verification which is supposed to deliver 
evidence that mathematical models are properly implemented and that the numerical solution 
is correct with respect to the mathematical model.  
The problems with experimental validation of computer simulations of structures subjected to 
fires can be illustrated using the following parametric study (Kwasniewski et al, 2013) where  
a furnace test  (Ali F & O’Connor, 2001) on restrained steel columns was replicated using a 
coupled structural-thermal numerical calculations, see Fig. 4. The objective of the study was 
to identify and quantify all possible modelling parameters which can affect the numerical 
results. The study was focused on improving prediction capabilities for the purpose of virtual 
testing.  
Common model calibration was replaced by experimental validation and extensive parametric 
study. The calibration is understood here as a posteriori procedure where through repeated 
calculations with modified input parameters we try to find an “optimal” set of input data 
which can provide the model’s response closest to the actual experimental data. It can happen 
that due to superimposing of errors we can get good correlation between experimental and 
numerical results for a wrong model, defined by incorrect input parameters. Often, such a 
situation can be detected when the model is used for a different case with changed input 
conditions. Also, a complex model with only some of the input parameters “correctly” 
calibrated should give a response different from the experimental data due to the 
indeterminacy of other parameters. This is why validation based on more than one experiment 
is considered as more reliable (Oberkampf et al, 2004).   
In the considered parametric study the comparison of the numerical results and the 
experimental data was presented for the relationships between column’s average temperature 
and axial force, axial displacement, and lateral displacement in the middle section. Three 



 

  

critical modelling characteristics were determined: material behaviour, geometrical 
imperfections, and longitudinal variation of the column temperature. It was found that the 
postponed buckling occurring at higher furnace temperatures is due to a non-uniform 
temperature distribution along the column, caused by heat transfer at the partially insulated 
furnace openings. The study shows how the modelling factors, initially ignored, may affect 
the numerical results without calibrating the FE model. In the authors’ opinion it is not 
possible to correlate better numerical results with the existing experimental data without 
reducing model uncertainties (e.g. imperfection magnitudes and loading variation) through 
additional experiments and measurements. It seems that due to many uncertainties 
characterizing the fire experiments, with often their wide variation, it is not justifiable to show 
the comparison between numerical and experimental results in a traditional deterministic way, 
where only two numbers or curves (i.e. experimental and numerical) are presented.  

3 BENCHMARK PROBLEMS AND VERIFICATION 

Verification is supposed to deliver evidence that mathematical models are properly 
implemented and that the numerical solution is correct with respect to the mathematical 
model. Due to the high complexity of mostly nonlinear problems that are practically 
important, such verification can be conducted only empirically using “a posteriori” approach 
where the reasoning is based on the experience coming from repeated calculations. A standard 
example is the posteriori error estimation based on numerical results for different mesh 
resolutions. According to (AIAA, 1998) verification can be conducted through tests of 
agreement between a computational solution and four types of benchmark solutions: 
analytical, highly accurate numerical solutions of an ODE or PDE problem, and manufactured 
solutions. In contrast to numerical solutions used in the validation stage, the numerical 
solutions applied for verification can represent mathematical models with little physical 
importance.  
The importance and usefulness of benchmark studies for specific areas of CS&E such as 
structural fire engineering is postulated in many papers and conference proceedings. A 
benchmark example should satisfy the following requirements. The problem considered 
should be relatively simple, easy to understand. The considered case can show little of 
practical meaning. It is supposed to be used for verification of computational models not to 
solve an engineering problem. The complete input data must be provided in an easy to follow 
way. All assumptions regarding material properties, boundary conditions, temperature 
distribution, loading conditions, large/small deformations and displacements should be 
identified. If a numerical solution is considered as a benchmark problem the mesh density 
study should also be considered and it should be shown that provided results are within the 
range of asymptotic convergence. One should also consider as a part of verification to use  
alternative numerical models e.g. different codes or solid vs. shell finite elements (if possible). 
Publishing a benchmark study we claim that this is a reliable solution. Hopefully, this 
assumption will be verified by other users. Benchmark problems can serve for code 
developers but are probably the most helpful for code users who can verify their modelling 
assumptions, as most of the errors are due to the analyst’s mistakes.  

4 COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS 

The soundness of an experiment as a source of data for validation depends also on the 
relationship between the application and the validation domains (Oberkampf et al, 2004). The 
application domain defines the intended boundaries for the use and predictive capability of the 
computational model. The validation domain characterizes the representation capabilities of 
the experiment. When a complex system is modelled, there is a need for many validation 
experiments capturing different physical aspects of the system (e.g., different loading 
scenarios, boundary and initial conditions) on different level of complexity of the model. 
Unfortunately, due to high cost of furnace tests, the experiments are rarely repeated and the 



 

  

probability distribution of the test results is undefined. This distribution can be dramatically 
different, depending on the selection of the so called system response quantity (SRQ). Some 
of the researchers acknowledge large discrepancies between the experiment and the 
computation especially for concrete structural elements subject to elevated temperatures when 
the important role of moisture transport on the spalling mechanism is not sufficiently captured 
in the computational model (Heijden & Bijnen, 2007). The need for multiple experiments and 
computational probabilistic analysis can be best described by Fig. 5 presenting the difference 
that can be measured between a single experiment and a single simulation and the actual 
means of a given measure. Sensitivity of this measure to a given parameter is represented by 
the shape (width) of the distribution function. When comparing simulated results to just one 
experimental result the analyst has no confidence about representativeness of the experiment 
result. In the process of calibrating the computational model to just one experiment actually 
more errors can be introduced in the model and its predictive capability can be negatively 
affected for a different set of initial parameters 
 

 

Fig. 5 Difference between simulated and experimental values for a single and item and a 
population of results 

4.1 Validation domains 

The ideal situation, possible only for simple systems, is when the validation domain 
completely overlaps the application domain. This means that the available set of the 
validation experiments covers all possible parameters defining the computational model 
within its intended application. When complex systems are analysed, it is sometimes 
infeasible or even impossible to conduct all necessary experiments to verify all features of the 
computational model. An example of such a situation is the global analysis of structures in the 
fire (Foster, 2007). There have been only a few full-scale experimental fire tests (i.e., the 
Cardington tests) conducted so far, but there are numerical capabilities for such complex 
analysis. The extreme, theoretical situation is when all possible or available experiments are 
too far from the application of interest and there is no overlap between the validation domain 
and the application domain. The credibility of such a computational model, validated only 
through extrapolation, is obviously much smaller. To improve the predictive capability of 
computation in such cases, hierarchical validation is introduced where closer correlation of 
the domains is possible for lower-level experiments and then the gained confidence is 
extrapolated to the global model. 



 

  

 

Fig. 6 Possible relations between validation and application domains (Thacker et al, 2004) 

4.2 Validation metrics 

Another important issue affecting the outcome of the comparison between the experimental 
and numerical results is which parameter (SRQ) we select for the comparison and how it is 
represented, deterministically or in a probabilistic manner.  In (Oberkampf et al, 2004), the 
authors distinguish six levels of validation comparisons, see Fig. 6. In the first level approach, 
the simplest and the most common in today’s practice, a strictly qualitative comparison is 
done using plots over the domain, for example, showing the deformation of a structure. The 
second level represents a more quantitative but still fully deterministic comparison of the 
numerical and corresponding experimental, single value input-response pairs, using tables or 
plots. The second and third levels are most common in papers and reports dealing with 
computational analyses. In the next, higher levels of comparison, the nondeterministic nature 
of experimental data with both errors and uncertainties is taken into account. Instead of single 
values for the input and the corresponding result, there are value bars with the centre point 
representing the mean value and the length equal to two standard deviations (Oberkampf et al, 
2004). The value bars provide information on the probability distribution estimated based on 
the multiple experiments and can be applied to both uncertainties in the input and in the 
results.  
 

 

Fig. 7  Quality levels of validation metrics (Oberkampf et al, 2004) 



 

  

The highest levels are represented by comparison methods where additionally the 
computational results are treated as nondeterministic, with their own input and output 
uncertainties. The necessary information is provided by repeated computations for the input 
variation determined by the experimentally estimated probability distributions (Szabó, 2008). 
The ideal approach according to (Oberkampf et al, 2004) would show the difference between 
the computational and experimental probability distributions over the whole possible range of 
the input quantity, but that would require an enormous effort for any real life application. It 
should be remembered that for a nonlinear system the relationship between the input and the 
output can be very complex, and for example, the mean values of the response do not have to 
be equal to the response for the mean values of the input parameters, compare Fig. 5. 

4.3 System response quantity 

As already mentioned, the validation procedure is based on the comparison between 
computational results and experimental data. Generally, an experiment can provide much less 
information than the calculation. The measurements for a quasi-static experiment on an 
engineering structure usually give us loadings, displacements, and strains. A dynamic 
experiment provides time histories of loads, strains, displacements, and accelerations. In 
thermal analysis, the spatial distribution of temperatures is measured. The measurements are 
done for a limited number of selected locations. Not all the experimental output data is 
equally representative and has the same importance for comparison with the computation. For 
example, strain in a uniform beam subject to bending is a local quantity related to internal 
forces in the considered cross-section. However, the maximum deflection of the same beam is 
a more representative quantity as it is the result of all deformations along the beam and 
depends on the whole distribution of internal forces and on boundary conditions. The 
correlation between the experimental and computational displacements for such a case is 
more important for the purpose of validation than comparison of local strains. The 
comparison of stresses instead of strains is more common in engineering practice but requires 
recalculation of experimentally directly measured strains using material properties affected by 
their uncertainties. In structural dynamics, we get a better correlation between smoother time 
histories of displacements than between their second time derivatives—time histories of 
accelerations that are rougher. The selection of the system response quantity (SRQ) is often 
limited by the experiment output, e.g., for the earthquake or crash analyses time histories of 
accelerations are the basic output information.  

 

Fig. 8 Different sensitivity of a response on a 
parameter variation 

Fig. 9 Model of a hollow glass ball subject 
to gravity acceleration 

Also the range in which we test given response has a great impact on accuracy of the results. 
If in a given range the response is not sensitive to variation of the input parameter the 



 

  

accuracy of prediction can be high (See Fig. 8). In some other range the response may be 
highly sensitive to the variation of the input parameter and the accuracy of the prediction may 
be significantly lower. 
Let’s introduce the general idea of predictive capabilities of numerical calculations (i.e. 
computer simulations) through a simplified example problem of structural mechanics. In this 
problem we consider a test where a hollow glass ball with external radius of 25mm and the 
wall 1mm thick is falling under gravity from a prescribed height (2.0 m) and hits a rigid 
surface. The schematic of the test is shown in Fig. 9. The question is how precisely we can 
predict the considered process using available nowadays software. From an experimental 
point of view this test can be performed multiple times and probabilistic values for input 
parameters characterizing glass as well as response can be measured. Geometrical 
imperfections on macroscopic level can be also measured for the ball. Although experiments 
are controlled by many parameters we don’t have to measure all of them to be able to perform 
the tests. For example, not knowing failure parameters in the glass we can drop a hundred 
balls and measure a radius occupied by all the shattered pieces of the ball. To perform an 
equivalent simulation many more parameters has to be measured or provided to the analyst. 
Performed here simulation in LS-DYNA software required detailed material properties of the 
glass including failure and erosion criteria to allow for material separation. Such process, 
although non-physical, is often used in simulations that pertain to material separation. If any 
of the SRQ is related to the failure it may be predicted with large error or uncertainty. Mesh 
size and mesh pattern are directly influencing the patterns of cracks that can develop only 
through the eroded elements. On the other hand for example the maximum force that is 
exerted by the ball on the ground is less affected by the mesh pattern and primarily depends 
on the mass and the drop height of the ball. 
 

  

   

Fig 10. Evolution of glass ball failure upon impact on rigid surface 

5 SUMMARY  

Recently in the literature, some guidelines for improving validation procedures have been 
formulated. Validation hierarchy, placed in opposition to the model calibration common 
today, and new validation metrics are examples of such improvement concepts. The examples 
presented in this paper show how much the result of validation can be affected by the 
selection of the system response quantity and that there is no universal metrics. The 
importance of the comparisons using view graphs, often considered in the literature as lower-

0.0 msec 0.6 msec 0.8 msec 

1.0 msec 2.0 msec 5.0 msec 



 

  

level practice, is also emphasized as an efficient method for checking the physical validity of 
mathematical models. What should be recommended, especially for complex problems with 
practical meaning, is the design of simple experimental tests placed on different levels of 
hierarchical validation. Such simple and less expensive tests can provide more valuable 
material for comparison than costly experiments on entire structure. 
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