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Abstract: The application of terrestrial laser scanning for the documentation of cultural heritage assets is becoming 
increasingly common. While the point cloud by itself is sufficient for satisfying many documentation needs, it is often 
desirable to use this data for applications other than documentation. For these purposes a triangulated model is usually 
required. The generation of topologically correct triangulated models from terrestrial laser scans, however, still 
requires much interactive editing. This is especially true when reconstructing models from medium range panoramic 
scanners and many scan positions. Because of residual errors in the instrument calibration and the limited spatial 
resolution due to the laser footprint, the point clouds from different scan positions never match perfectly. Under these 
circumstances many of the software packages commonly used for generating triangulated models produce models 
which have topological errors such as surface intersecting triangles, holes or triangles which violate the manifold 
property. We present an algorithm which significantly reduces the number of topological errors in the models from 
such data. The algorithm is a modification of the Poisson surface reconstruction algorithm. Poisson surfaces are 
resilient to noise in the data and the algorithm always produces a closed manifold surface. Our modified algorithm 
partitions the data into tiles and can thus be easily parallelized. Furthermore, it avoids introducing topological errors 
in occluded areas, albeit at the cost of producing models which are no longer guaranteed to be closed. The algorithm is 
applied to scan data of sculptures of the UNESCO World Heritage Site Schönbrunn Palace and data of a petrified 
oyster reef in Stetten, Austria. The results of the method’s application are discussed and compared with those of 
alternative methods. 

 
1. INTRODUCTION 
 
There are many different instruments on the market for performing Terrestrial Laser Scannning (TLS). These 
instruments vary considerably with respect to their measuring principle, accuracy, speed, range and purpose. Therefore 
also the strategy for processing the data needs to be adapted to the advantages and disadvantages of the respective 
instrument. The choice of instrument is mainly driven by the scale of the objects to be scanned. Small objects measuring 
from a few centimeters up to a few meters can be scanned using close range scanners. These scanners have a high 
accuracy, but also a limited range (several meters) and a limited field of view. It is therefore necessary to build the final 
point cloud by merging scans from many different scan positions. This can become very expensive if it is not 
automated. Larger objects measuring from a few meters up to hundreds of meters can only be scanned efficiently using 
medium to long range scanners which have a wide field of view, typically panoramic, and a theoretical maximum range 
of up to hundred meters, sometimes even more. The accuracy, on the other hand, of these scanners is lower when 
compared to close range scanners, despite some improvements in recent years. The challenge when working with data 
from these instruments, compared to close range scanners, thus shifts from registering a multitude of individual scans to 
dealing with measurement errors, both random noise and systematic errors. In this paper we will exclusively focus on 
this latter class of instruments. While the point cloud by itself is sufficient for satisfying many documentation needs, it 
is often desirable to use this data for applications other than documentation. For these purpose a triangulated model is 
usually required. Surface reconstruction from point clouds is a well studied problem and a great number of different 
algorithms solving it have been developed. It is also available in commercially available software packages such as 
Rapidform, Geomagic Studio, or Polyworks. Most of them, however, work best when applied to data acquired using 
close range scanners, or when the data acquired using medium range scanners is of a relatively low resolution. 
However, when exploiting the full potential of medium range terrestrial laser scanners, i.e. using them at high 
resolutions, generating topologically correct triangulated models is still a challenging task, which typically involves 
much interactive editing. The main reason is that because of residual errors in the instrument calibration and the limited 
spatial resolution due to the laser footprint, the point clouds from different scan positions never match perfectly. Under 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/268472521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


___________________________________________________________________________________________________________ 

Geoinformatics CTU FCE                       234 

 

these circumstances many of the commonly used algorithms for generating triangulated models produce models which 
have topological errors such as surface intersecting triangles, holes or triangles which violate the manifold property [1]. 
In this paper we present an algorithm which significantly reduces the number of topological errors in the models from 
such data, when compared with the results of commercial software packages. The algorithm is a modification of the 
Poisson surface reconstruction algorithm. Poisson surfaces are resilient to noise in the data and the algorithm always 
produces a closed manifold surface. The surface will be closed even when the sampling of the surface is incomplete, 
e.g. because of occlusions. While this is a desirable property in many applications, for documentation purposes this 
arbitrary closing of surfaces can be problematic, especially since this closing might not even be topologically correct. 
Our modified algorithm restricts the surface to sampled areas and thus these errors can be avoided, albeit at the cost of 
producing models which are no longer guaranteed to be closed. Our modified algorithm is tested on a dataset consisting 
of a number of small point clouds, along with the original Poisson surface algorithm and the algorithm available in the 
commercial software package Geomagic Studio 11. Using these datasets we demonstrate, that our algorithm does 
indeed perform as designed, both in simple as well as in challenging situations. To demonstrate the applicability to large 
real world datasets it is applied to scan data of sculptures of the UNESCO World Heritage Site Schönbrunn Palace as 
well as data of a petrified oyster reef.  

2. RELATED WORK 
 
The data from terrestrial laser scanners consists of a set of point samples of all the surfaces within the line of sight of the 
scanner. Because of occlusions the data from many scan position need to be merged into one point cloud. The resulting 
point cloud is unstructured, i.e. it does not contain any information about the topologically correct relations between the 
points. Furthermore the point cloud usually contains both noise and systematic errors. Therefore the accurate and 
correct reconstruction of the originally sampled surface from TLS data is a challenging problem. There are two basic 
approaches to surface reconstruction. One approach is to utilize geometric properties of the point cloud. Examples of 
this approach include algorithms such as alpha shapes [2], power crust [3], or VRIP [4]. Algorithms which try to 
construct highly generalized models by fitting geometric primitives also fall into this category. The common property is 
that an explicit description of the surface itself is constructed. The alternative is so-called implicit surfaces. Here the 
goal is to find a function defined on the entire volume around the object. The surface itself is then defined as an iso-
contour of this scalar field. Examples of this approach include the implicit surface framework described in [5], and 
Poisson surfaces [6],[7], which are the basis of this work.  
 
2.1 Poisson Surfaces 
The idea behind Poisson surfaces is to look at an indicator function, which is zero outside the object and one inside. 
Since this function is not continuous, it is smoothed by convoluting it with a Gaussian function, or an approximation 
thereof. It can then be shown, that the true surface normal vectors are samples of the gradient field of the convoluted 
indicator function. Since in reality the true surface normal vectors are unknown, the surface normals are estimated from 
the scanned point samples. The point samples contain measurement errors, thus the function that is sought is the one 
whose gradient field is closest to the gradient field estimated from the point cloud. The solution of this variational 
optimization problem is a Poisson equation, thus the name Poisson surfaces. The solution of the Poisson equation is the 
convoluted indicator function, which is a scalar field defined in the entire volume enclosing the object. To compute the 
solution this volume is discretizised into voxels. The final surface can be located with sub-voxel precision; nevertheless 
a fine discretization is needed for good results. Because of the enormous amount of memory that would otherwise be 
necessary this needs to be done using an octree, a data structure enabling that the full resolution is only used close to the 
surface. This does not impact the accuracy of the solution, since away from the surface the indicator function is 
constant. The achievable spatial resolution is determined by the maximal depth of the octree, and thus depends on the 
point density and the smoothing function used.  

 
2.2 Surface Normal Vectors 
To estimate the surface normal vectors it is necessary to estimate the tangential plane for each point of the surface. The 
most common and straightforward approach is to perform a least squares fitting of a plane to a compact neighborhood 
of sample points. For homogeneously sampled surfaces, as it is typically the case with close range data, this works well. 
For panoramic TLS instruments, however, the point density is usually very inhomogeneous due to the wide range of 
measured distances. To get consistent results w.r.t estimation error and smoothing properties it is necessary to locally 
adapt the size of the neighborhood [8]. In practice the data from TLS contains a quite significant number of outliers. For 
instruments utilizing the phase-shift measurement principles the main source of outliers is the fact that the laser beam 
can simultaneously illuminate more than one surface. In this case the measured distance is an average of the distances to 
the illuminated surfaces and thus does not correspond with any existing surface. This always happens at the silhouette 
of objects. Other sources of outliers are glossy surfaces, which under certain angles can either saturate the detector due 
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to their high reflectivity, or lead to multi-path effects by reflecting the laser beam like a mirror. Even in the absence of 
such effects, it is also not guaranteed that all the points within the neighborhood used for estimating the tangential plane 
lie indeed on the same surface. They might be beyond a sharp edge or on a parallel surface if the material is thin. These 
points can thus appear like outliers, when they are used to estimate the tangential plane for a surface they don't belong 
to. To deal with these situations robust estimation techniques can be used. Robust estimators take much more time to 
compute and are also not optimal with respect to their statistical efficiency. However, they are unaffected by outliers 
and thus allow to identify outliers more reliably [9], thus making them a worthwhile addition to the processing toolbox. 
Robust estimators that have successfully been used in this context include the fast minimum covariance determinante 
estimator [10],[11] and an estimator based on robustly adapted kernel density estimation [12]. 
 
3. METHOD AND IMPLEMENTATION 
 
The algorithm we present in this paper uses the Poisson Surface technique. However, we implemented it differently 
than described in [7]. The key difference between our implementation and the original implementation is that we do not 
solve the system globally, but rather split the system into small cubes and independently solve the systems locally and 
in a second step correct the errors that occur along the boundary of the cubes. The main advantage of our approach is 
that it is more easily parallelizable and can be implemented using data streaming. Thus it is more suitable for very large 
datasets and scales better when run on clusters of machines. We achieve this localization by restricting the domain Ω on 
which the indicator function χ is defined to areas close to the surface rather than the entire bounding box around the 
object. This is illustrated in Figur 1.  

 

Figure 1: Illustration of the Poisson Surface algorithm: a) sample points, surface normal vectors, domain Ω 
and domain boundary ∂Ω, b) smoothed indicator function χ and c) iso-contour for the original 

implementation and d) sample points, surface normal vectors, domain Ω and domain boundary ∂Ω, e) 
smoothed indicator function χ and f) iso-contour for the modified implementation.  

 

Restricting the domain in such a way has the disadvantage that the surface is no longer guaranteed to be closed and it 
raises numerical problems. There are two main reasons. The first is that the boundary can become quite complicated 
and secondly the Dirichlet boundary condition ∂Ω = 0 is only true on the outside and thus only applicable to the outer 
boundary. On the inner boundary the Neumann boundary condition grad(χ) ∙ n  = 0, where n denotes the normal vector 
of χ, must be used. Unfortunately, a system of partial differential equations containing a Neumann boundary condition 
along a complicated boundary is numerically challenging to solve, at least when using finite differences. To mitigate 
these difficulties we used the approach described in [13] and additionally used the dilate morphological operator on the 
voxel grid to smooth the boundary and move it away from the surface where these errors resulting from the 
discretization of the problem domain matter less. The dilate operator also enables the algorithm to close small holes 
which may exist in the sampling. The resulting system of partial differential equations is much too large to be solved 
directly. Therefore iterative approximation solvers must be used. In [7] the octree used for the organization of the data is 
used to construct a multigrid solver. This approach profits from the fact that the solution is constant almost everywhere 
except near the surface. In our approach, however, the solution is undefined almost everywhere, except near the surface. 
Therefore the multigrid approach cannot be used. Instead we use a domain decomposition solver based on the additive 
Schwarz method [14]. In his method the entire domain is divided into overlapping subdomains, and the results from 
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solving the problem on one subdomain are added the other overlapping subdomains to compensate the errors. This 
procedure is iterated until the errors are sufficiently small. Here the domain restriction is advantageous. Since solution 
components with a low frequency are not possible the solution converges quickly even without using a coarse grid.  

 
4. RESULTS  
 
We tested our implementation of the Poisson surface algorithm on three datasets. The first is synthetic and consists of 
sample points on a plane and on a sphere with various levels of noise. The advantage of the synthetic data is that the 
ground truth is known and the performance of the algorithm can be assessed accurately. The other two datasets are from 
actual scan campaigns.   
 
4.1 Synthetic Datasets 
This dataset consists of five small point clouds. They were constructed to evaluate the characteristics of the algorithm in 
situations which are commonly encountered in laser scanning data. The point cloud consists of 3600 points on a plane, 
i.e. the data is error free. In reality data is never error free, but data from close range scanners and data from a single 
low-resolution panoramic scan is usually quite close to this ideal. The second and third point cloud is the same points, 
but a gaussian range error was added, having a standard deviation of one and three millimeters, respectively. The 
spacing of the points is one millimeter in each direction. This might seem like an unrealistically large error, especially 
with respect to the point spacing. However, while this is true for a single scan, it is not unrealistic when multiple scans 
are combined. With modern panoramic scanners a point spacing of one to five millimeters and a noise level of 0.3 to 0.5 
mm can be achieved even when keeping scan times down to a few minutes, assuming that a maximum scanning 
distance of 10 meters is not exceeded. The scan data from multiple scan positions will usually not match perfectly, since 
residual errors in the instrument calibration cannot be corrected using the rigid body transformation used in registering 
the scans. These are systematic errors which can be up to several millimeters in magnitude. When combining data from 
two or three scan positions a combined standard deviation of one millimeter and a point spacing of one millimeter is not 
uncommon. When using older instruments, e.g. when dealing with data acquired a few years ago, or when using current 
instruments under very unfavorable conditions, e.g. when using an unstable platform or very dark surfaces, the errors 
are even higher. The point cloud with three millimeter standard deviation is designed to mimic this situation. Finally the 
fourth and fifth point cloud is 7200 points on a small sphere with a radius of 6 centimeters. Again, one of the point 
clouds is error free; the other has an added Gaussian error with a standard deviation of one millimeter in the direction of 
the surface normal. This dataset is designed to show the behavior of the algorithm on surfaces with a fairly high 
curvature. Table 1 shows the results of comparing the vertices of the final surface with the known ground truth for the 
three surface generation methods. There is a small, but nonetheless significant, deviation from the expected mean 
distance for both Poisson surface implementations, i.e. the surface estimator is biased. This is the case even for the error 
free dataset. The surface constructed with Geomagic Studio 11 does not show this bias. Since for Poisson surfaces the 
final surface is the iso-contour of a scalar field, it needs to be examined this bias can be reduced by calibrating the value 
of the iso-contour.  

 

 Poisson Surfaces Localized Poisson 
Surfaces 

Geomagic Studio 11 

 Mean  
Distance 

Standard 
Deviation 

Mean  
Distance  

Standard 
Deviation 

Mean  
Distance  

Standard 
Deviation 

Perfect Plane 0.016 0.019 0.014 0.019 0.000 0.000 

Noisy Plane (σ=1mm) 0.037 0.082 0.082 0.090 0.005 0.746 

Noisy Plane (σ=3mm) 0.246 0.136 0.147 0.265 0.004 2.245 

Perfect Sphere 0.014 0.053 0.018 0.097 0.000 0.000 

Noisy Sphere (σ=1mm) 0.028 0.190 0.126 0.343 0.023 0.799 

 

Table 1: Comparison of absolute mean and standard deviation of the distances between surface vertices and 
the known ground truth for the three tested algorithms 
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On the other hand, the noise reduction properties of the Poisson surfaces are excellent. The residual noise in the surface 
is reduced by more than one order of magnitude when compared to the noise level of the original point cloud and there 
are no topological errors. Our localized version of the Poisson surfaces does not perform quite as well as the original 
implementation in this respect. This effect can also be seen in Table 2, where images of the resulting surfaces are 
shown. Table 2 also shows that for the localized version the errors are spread equally over the entire surface, whereas 
with the original implementation the errors are located mostly towards the edges of the surface, which bends away from 
the plane, whereas in the central part the errors are less. The reason is that for this point cloud the assumption that the 
points lie on a closed surface is not valid. It still needs to be examined why the localized version of the Poisson surfaces 
does not perform as well as the original implementation w.r.t. the noise suppression. The most likely reason, however, 
is that we used a smaller, simpler but also less accurate discretization of the problem space.  
 
 Poisson Surface Localized Poisson Surface Geomagic Studio 11 

Noisy Plane (σ=1mm) 

   

Noisy Plane (σ=3mm) 

   

Noisy Sphere 

   

 

Table 2: Visualization of the estimated surfaces for the synthetic datasets.  

 

It can also be seen in Table 2 that when the noise level is relatively high, the surface reconstruction built into Geomagic 
Studio 11 completely fails to produce a useful surface, despite efforts on our part to utilize the built in noise reduction 
facilities. We want to stress that this is not a problem of Geomagic Studio in particular. The results would not look 
much different with other commercial software packages. Dealing with this kind of data is very difficult and the only 
thing that helps is to reduce the point density, thus reducing the relative noise level. That, however, inevitably causes a 
loss of detail. This can also be seen with the oyster reef dataset.  

 
4.1 Schönbrunn Attic Sculptures Datasets 
The second dataset consists of 400 individual scans of 50 attic sculptures of the UNESCO World Heritage Site 
Schönbrunn Palace. The sculptures were removed for restoration and scanned after the restoration was complete. For 
each sculpture a total of 8 scans were acquired from two height levels. A Faro Photon 120  scanner was used at medium 
resolution (¼ scans), but from a distance of no more than 5 meters, resulting in an average point spacing of 2 mm per 
scan. Before the surface reconstruction the data was preprocessed and registered. The preprocessing stages consisted of 
outlier removal, random noise reduction, and surface normal estimation [1]. The outlier removal was performed 
primarily to eliminate the erroneous points that occur along the silhouettes of the arms and legs of the sculptures. After 
registration of the scans the surface reconstruction was performed using both the Poisson surface algorithm and 
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Geomagic Studio 11.  Figure 2 shows the result for one of the more elaborate sculptures. The model generated using the 
Poisson surface algorithm is clearly visually more appealing and would not need barely any interactive editing if it were 
to be used for visualization purposes. In the surface reconstructed using Geomagic Studio 11 the problems in the data 
are still clearly visible. The roughness of the surface is the result of residual registration errors, which is especially 
pronounced in the face and on the outside of the arm which are seen from multiple scans. Areas which are occluded in 
all but one scan, such as the part of the chest behind the arm, do not exhibit this roughness. The rims which are visible 
along the chest and neck are the result of outliers due to the silhouette effect, which were close enough to the surface 
points to pass the outlier filter. The Poisson surface algorithm is capable of concealing these deficiencies in the data.  

 

Figure 2: Schönbrunn Attic Sculpture. a) entire sculpture b) reconstructed surface using Poisson surface 
algorithm c) differences between Poisson surface and original points d) reconstructed surface using 

Geomagic Studio 11 and e) differences of Geomagic Studio surface and original point cloud.  

 

When looking at the accuracy of the models, the situation is quite different, however. The difference model comparing 
the reconstructed surface with the points used to reconstruct the surface shows predominantly shade of blue for the 
Poisson surface. This means that there is a systematic bias, a trait of the algorithm that was also present in the synthetic 
dataset and discussed there. If the geometric model is to be used for documentation purposes other than visualization, 
e.g. monitoring or change detection, such a bias is not desirable. The surface reconstructed with Geomagic Studio on 
the other hand almost exclusively shows cyan and yellow colors. This means that the surface never deviates more than 
0.5 mm from the original points.  

 
4.2 Petrified Oyster Reef Dataset 
The third dataset we used for our experiments consisted of 8 scans of the world's largest accessible petrified oyster reef 
located in Stetten, Austria. The exposed area is approximately 20 by 15 meters large, the scan positions are located 
along the boundary of the area. The challenge with this dataset is that the scans were acquired using the low resolution 
setting of the instrument (Leica HDS 6000) and from a very shallow angle, despite the size of the area to be scanned. 
The result is that there are large areas which have a point density which is significantly lower than one point per 
centimeter. Due to the very shallow angles there are numerous outliers due to the silhouette effect, which are very hard 
to detect due to the low point density and which are an impediment for an accurate registration. Furthermore, there is 
very little overlap between the individual scan positions due to their large distance and the shallow angles. The goal was 
to reconstruct a surface that accurately documents shapes of the petrified structures. The results are shown in Figure 3. 
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Two models were constructed, one interactively by a skilled operator using Geomagic Studio 11 (3c), the other using 
the Poisson surface algorithm (3b). For reference a model was constructed using only a single scan (3a). Comparing the 
models it can be seen that the Poisson surface model preserves more detail than the interactively edited model. 
However, when compared to the model determined from the single scan, it can be seen that the sharpness of the edges 
of the original is completely lost in both models. Thus neither model fulfills the goal of documenting the petrified 
shapes. A high point density is a necessary condition if sharp edges are to be represented accurately.  

 

 

Figure 3: The oyster reef data. a) triangulation of a single scan, b) Poisson surface reconstruction of all 8 
scans and c) interactively created surface using Geomagic Studio 11.   

 
5. CONCLUSIONS 
 
Panoramic terrestrial laser scanners are much more cost efficient as close range scanners when scanning objects which 
are larger than a few meters. However, when deriving surface models from this data for visualization purposes, 
currently much manual effort is needed to clean the surface of artifacts. In this paper we showed that by using the 
Poisson Surface algorithm it is indeed possible to significantly reduce this effort, provided that the point density of the 
combined point cloud is high enough. Low point density leads to strong smoothing over sharp edges. The benefits are 
that residual errors in the registration and a few outliers can be tolerated. The main advantage of the presented 
methodology is that it produces a geometric model which can typically be directly used for visualization purposes 
without requiring further interactive editing. Manual closing of holes is only necessary if the scan data has large 
uncovered areas. The field of smoothed surface normal vectors which is produced as part of the algorithm is ideally 
suited for the derivation of a high-resolution normal map for texture rendering. This is especially beneficial for real-
time rendering, since for this application the polygon count of the model needs to be dramatically reduced. The 
determined surface, however, always exhibited a systematic deviation from the mean position of the points. Future 
research is required to determine the cause of this behavior. As long as the reason is not known and this bias cannot be 
corrected, the use of this method for purposes other than visualization cannot be recommended. However, since for 
documentation purposes, the point cloud itself is usually sufficient, this does not prevent the method from being used 
for cultural heritage documentation, when the original point cloud is kept for reference. We used a modified 
implementation of the Poisson surface algorithm which solves many local systems instead of a large global system. The 
advantage is that the localized version scales very well using parallel computation and data streaming can be used to 
keep the memory footprint low. Another characteristic of the modified implementation is that the resolution can be 
chosen consistently and independently of the point spacing. The errors in the solution for the indicator function are 
slightly worse for the modified version, because of a less accurate discretization. This can be offset, however, by using a 
smaller discretization interval. The reduced memory footprint and improved parallelization of the modified 
implementation makes it possible to use the method for very large dataset consisting of many billions of points.  
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