
Deriving Hydrological Response Units
(HRUs) using a Web Processing Service
implementation based on GRASS GIS

Christian Schwartze
Department of Geography – Chair of Geoinformatics, Geohydrology and Modelling

University Jena
christian.schwartze@uni-jena.de

Keywords: QGIS, GRASS, WPS, PyWPS, Web Processing Service, Python, HRU, Hydro-
logical Response Units

Abstract

QGIS releases equal to or newer than 0.7 can easily connected to GRASS GIS by means of a
toolbox that provides a wide range of standard GRASS modules you can launch – albeit only
on data coming from GRASS. This QGIS plugin is expandable through XML configurations
describing the assignment of options and inputs for a certain module. But how about embed-
ding a precise workflow where the several processes don’t consist of a single GRASS module by
force? Especially for a sequence of dependent tasks it makes sense to merge relevant GRASS
functionality into an own and encapsulated QGIS extension. Its architecture and development
is tested and combined with the Web Processing Service (WPS) for remote execution using
the concept of hydrological response units (HRUs) as an example. The results of this assay
may be suitable for discussing and planning other wizard-like geoprocessing plugins in QGIS
that also should make use of an additional GRASS server.

Brief background

Hydrological Response Units may be considered as spatial entities with the objective of ap-
plying them to the process of water modelling. The designation of such regions as assumed
for the present work operates on physiographical characteristics of the catchment area [2]
and aims at its partitioning into zones similar to each other – both topography and dynamic
related. For further information such as various additions you may refer to e.g. [1] and [5].
Details and sub-steps of the derivation used by the planned tool are discussed in section 4.

Geinformatics FCE CTU 2008 67

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/268472108?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

Architecture

Due to the abundance of tasks a complete HRU derivation consists of, it was decided to split
it into modules developed as processes for PyWPS 2.0.1 [8]. To meet the requirements of a
client/server system, albeit in this case running all components on just one single machine
(including WPS), a user-friendly client enabling the several tasks sequentially would be more
than appropriate and has to be developed. In this context QGIS gets the vote. Not only
on account of the python scripting support in QGIS, but also because of its very well GIS
visualization capabilities equipped with basic, spatial tools. As PyWPS comes with native
GRASS support, consequently all HRU relevant computation is done by GRASS, here version
6.2.2. By the way, the written plugin profits i.e. from the temporary GRASS sessions in
PyWPS since only important main data are swapped out when a HRU task ends – no extra
management of GRASS mapsets is needed. So in that case PyWPS serves as a kind of
middleware between two GIS, or in other words, it separates processing from visualization in
the HRU tool.

Figure 0: Architecture

Extending QGIS

In order to write a new extension for QGIS [6] you start work in an empty subfolder in
/python/plugins/ of your installation directory. The Plugin Manager gets its information
about available python plugins from the primarily created init .py file – the starting point
for all upcoming implementation code. More precisely, the first activation of the plugin by
the installation routine results in a call of the classFactory() function that returns a plugin
instance initiating the toolbar icon, menu entries and other plugin related control items.

The sample HRU plugin

Geinformatics FCE CTU 2008 68

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

Adaptability concerning the plugin options and functionality is mainly focused during the
development. Later changes and improvements in the HRU derivation process should be easy
to integrate. Hence, a module concept was designed and the phases of the current HRU
work flow were mapped on ready-to-use components instantiated through Python classes. If
you are willing to write some extension for the HRU derivation plugin you have to become
acquainted with the abstract python class HRUModule. Therefore, an own module designed
for the process chain has to be a subclass of HRUModule and has to implement four common
functions:

� SetInput() specifies the layout of a tabbed widget and arranges the necessary input
forms.

� Validate() addresses relevant module input parameters, checks and formats them to a
valid PyWPS parameter string.

� UpdateWizard() manages the modules impact on any other tabbed widget within the
plugin, e.g. enabling subsequent wizard tabs, filling out forms or predefining options in
upcoming tasks.

� UpdateMapView() handles modifications that concern visualisation of map layers and
linked legend entries in QGIS.

The individual processes were implemented according to the guidelines in [4]. Thus, the HRU
derivation was divided into logical units which resulted in seven module classes. Once coded,
you can integrate such modules using the statement

self.wizard.addTab(WaterFlowModule(), WaterFlowModule.MODULE_ICON, WaterFlowModule.MODULE_TAB_DEF)

that embeds a tab in the wizard whose initial state is enabled as long as an other module
releases it. That is why the correct schedule of derivation is guaranteed, however a return
to already performed steps is possible at any time. Especially for testing influence of various
input parameters the backspaces are considered meaningful. In PyWPS [8] each process stores
its assigned and calculated data in GRASS mapsets that do not outlive the end of the process.
That means, a series of n PyWPS tasks is instantiated along with n temporary mapsets whose
names follow the pattern tmpmapset<x>.

In spite of the alternative to handle all processes in only one but persistent and already
existent GRASS location/mapset, the temporary version has been used. So each process
implementation will end with lines containing some g.copy calls. The advantage is that any
interim solution never belongs to user’s location and is removed at the end of the WPS process.
When it is triggered twice (or several times) the GRASS data would just be overwritten by
the WPS process while copying it to the persistent mapset.

The workflow more detailed

All the processes explained in the following subsections have something in common: their
results are relocated from a process-owned temporary mapset to a persistent mapset inside a
predefined GRASS location. In process code stored (estimated) computing time information
proves to be helpful for the user while he tracks the execution in the wizard (see the progress
bar).

Geinformatics FCE CTU 2008 69

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

Preparation

The QGIS/GRASS based HRU derivation starts with an option dialogue where you have
to specify essential data, including the digital elevation model (DEM), region characteristics
(land use, soils and geology) as well as the locations of gauges. As the first noted are all raster
maps, the latter one should be usually imported as a shapefile. To minimize every kind of
computational effort in pending tasks users have to drag a bounding box keeping the rough
catchment area in mind. The underlying WPS process produces a subimage of each stated
data layer using GDAL/OGR and imports them to a GRASS location locally installed.

Yet another preprocessing task which is integrated into the wizard sequence as a separate
module deals with the DEM to obtain a depressionless elevation model (see the actual but
still disabled Preparation tab next to Setup, not explicitly focused in screenshot of figure 1).
Means, another WPS process is triggered that not only runs r.fill.dir multiple times but also
provides slope and aspect of the area.

Figure 1: Setup module

Reclassification

As long as real-life surface values (gathered from whatever measuring method) represent slope,
aspect and sinkless elevation data, an intersection between them is hard to handle. On that
account the reclassification module expects rules defining classes of categories entered in three
respective tables (figure 2). Recommended ranges may be accepted or changed. Internally,
typical GRASS rule files are written and will serve as input for r.reclass.

Generation of waterflow related maps

Geinformatics FCE CTU 2008 70

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

Figure 2: Reclassification module

Within the next step you have to make a set of water flow oriented maps available (figure 3).
This includes the drainage direction, the accumulation and the location of watershed basins.
An additional raster map has to point out the segmented stream network (so called ”reaches”).
There is one GRASS analysis tool that covers the computation of all desired maps in a single
command – r.watershed. Unlike in many another WPS processes this almost elementary case
leads to a quite concise task description in Python language.

Speaking about watershed basins means to distinguish between such type of basin derivation
defined by r.watershed and such given through r.water.outlet. The latter GRASS module
determines a basin as you pass a geographic coordinate, e.g. a gauge position. Using for
instance r.water.outlet in a further WPS process and a well placed overlay statement inside
the gauges iteration loop constitutes a solution for a gauge oriented basin map. In terms of
accurate results you will probably have to move gauges onto reaches manually. But this can
be done quickly since QGIS offers a vector data editing mode (figure 3, right).

Overlay strategy

The fifth step by the wizard (figure 5) serves as a special intersection operation between actual
eight preset or calculated raster maps. Latter includes the reclassified DEM, slope and aspect
data as well as soils, landuse and geology information. In addition, the watershed basin map
and the basins relative to gauges in the catchment are required. The idea is shown in figure
4a and consists of following steps:

1. Load the gauge basin map from subsection 4.3 as a reference map for spatial extent of
resulting HRU dataset and construct a map that masks out the relevant area

2. Join the mask and above-mentioned data layers separately using r.patch and apply r.null

Geinformatics FCE CTU 2008 71

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

Figure 3: Water flow module

to redefine the null value in the new masked datasets

3. Merge the non zero data in the eight maps of (2) via r.cross to a single map

4. Make use of r.clump to relabel occurrences of non adjacent regions which still have the
same category

Figure 4a: Overlay method

This procedure does not yet result in final HRUs since so much spurious, midget areas may
occur. Eliminating almost pixelsized intersection snippets and their reallocation is an essential
part in the postprocessing. In the range of vector data v.clean with correct parameters hits

Geinformatics FCE CTU 2008 72

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

the spot. The same is true for r.reclass.area on raster maps but with the limitation that
respective areas are filled with GRASS nodata cell value. Filling them taking nearby areas
into account is one solution discussed in [3]. The next script operates in a similar way:

1. Detect areas which are smaller than a specific threshold, e.g. 28125m2 (= 45 pixels,
25m resolution assumed)

2. While such areas exist do:

(a) Get the one-pixel-wide boundary of each area and fill the interior with NULL

(b) For every pixel onto the boundary do:

i. Reassign the category value with largest occurrence in the 3x3 neighbourhood
(corresponds to mode value)

ii. Mark the left NULL values as removable, minimal areas (pink colored in 2 and
3, figure 4b)

As indicated in the output map (4, figure 4b) snippets are just not reallocated to one neighbour
region but rather melt into adjacent areas proportionally. When the superior WPS process has
done that kind of cleaning the HRUS obtain their final form. However, it raises the question as
to whether the underlying data associated with each HRU is still significant. Due to the fact
that the cleaning algorithm manipulates the original overlay map (see above) depending on
the number of eliminating areas and their location to each other, any dominant characteristic
(e.g. soil type) could be changed. For this reason a further script takes the regenerated and
cleaned HRU map as a type of template. Based on it all data layers are checked to determine
a potentially new raster category that accounts for a major portion within each HRU. This
is done by calling r.statistics plus mode method as aggregation option.

At the end of the overlay section it appears to be appropriate to store these gained and
probably new categories as labels to the HRU raster map. A piped combination of r.stats,
some awk commands and r.reclass on the cleaned HRU data helps writing a vertical bar
separated label entry that represents values for the linked data layers:

[...]

#var inputs: list of data layers (with new determined raster values)

inputs = inp_list.rstrip(",")

awk_cmd = "’{print $1,\" = \",$1,"

for i in range(1, len(inputs.split(","))+1):

awk_cmd += "$"+str(i*2)+"\"|\""

awk_cmd += "}’"

g_cmd = "r.stats -l input=%s | " % inputs

g_cmd += "awk %s | " % awk_cmd

g_cmd += "r.reclass --o input=%s output=%s_result" % \

(os.getenv("GIS_OPT_INPUT"), os.getenv("GIS_OPT_INPUT"))

os.system(g_cmd)

[...]

Topological network

While the last preceding paragraph has created the prerequisites to feed physiographic prop-
erties into some model the next section focuses on how to include relations between HRUs.
It aims at pointing out drainages from one HRU into others, furthermore into streams in-

Geinformatics FCE CTU 2008 73

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

Figure 5: Overlay module

side catchment (routing). Therefore, the topological sequence acquisition is bipartite and
exemplified by figure 6 where pink lines demonstrate HRU borders:

”HRU to HRU“

1. Respectively do a r.mapcalc to get

(a) borderlines of the HRU map

(b) drainage direction only on borderlines from (1) – see step 1, figure 6

(c) drainage destination (ID of HRU) only on borderlines – see step 2, figure 6

(d) accumulation data only on borderlines – see step 3. figure 6

2. Do a non null overlay only (r.cross -z) between HRU source map and (1.3) to hold the

”HRU to HRU“ relation as raster labels

3. Use (2) as base map in r.statistics to sum up accumulation data with regards to one
and the same destination HRU – see step 4, figure 6

4. Finally overlay again (r.cross) to append the accumulation sums (3) to the ”HRU to
HRU“ relation map (1.3)

As is evident, the operations take advantage of r.cross twice. Consequently, all required
information about relations within the topological sequences is summarized in HRU raster
labels up to sample "category <from hru>; category <to hru>; <amount>". That proves
true when you have a look into the GRASS category file (/cats subdirectory) of the result
layer:

[...]

2:category 10; category 19; 53

3:category 10; category 20; 14

4:category 17; category 39; 141

[...]

Geinformatics FCE CTU 2008 74

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

Figure 6: Relation HRU to HRU

According to the first two lines, HRU 10 drains into HRUs 19 and 20 to the value of respec-
tively 53 and 14. Using this GRASS category file as an input for a small awk script topology
information could be easily transformed to a more general format that joins one-to-many
HRU relations into one output row:

[...]

10 19,53 20,14

17 39,141

[...]

As mentioned earlier the topology delineation is separated into two parts: One part was just
discussed, the other one is still outstanding. Instead of draining into nearby HRUs it also
would be thinkable that water flows directly into any reaches before. The fact implicates
some changes in comparison to the prior approach (in figure 7 let’s assume that blue lines
illustrate the stream network):

”HRU to reach”

1. Do a r.mapcalc considering a stream buffer into account – with the objective to get the
reaches in which stream neighbour cells flow (see figure 7)

2. Perform nearly the same operations like in ”HRU to HRU” beginning with (1.4) but

Geinformatics FCE CTU 2008 75

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

ignore accumulation accurately located on streams

Figure 7: Relation HRU to reach

Since step 1 marks reaches as negative numbers to avoid confusions with HRU identifiers
the process can carry on with parsing the category file as already done for ”HRU to HRU”.
Concluding work concatenates both into a final and all-embracing topology report. To this
end, tools from UNIX command line are employed, for instance sort and join. Only on that
condition meaningful weights (with regard to total flow-out of every HRU) are feasible with
few awk instructions, i.e.:

AWK_calc_weights_in_topo = "’BEGIN {print \"#TOPOLOGY N:M * FORMAT: <Source-HRU> <Dest-HRU>| \

<Dest-Reach>;<Rate>[<Dest-HRU>|<Dest-Reach>;<Rate> ...]\"} \

{for (i = 2; i <= NF; ++i) \

{split($i,a,\",\"); \

sum = sum + a[2]; } \

line = $1; \

printf line\" \"; \

for (i = 2; i <= NF; ++i) \

{split($i,a,\",\"); \

printf a[1]\";\"\"%.3f\"\" \", a[2]/sum; } \

sum=0; \

print \"\"; \

line = \"\";} \

END {}’"

The ultimate result looks like:

[...]

1542 1543;0.640 1655;0.175 1934;0.010 -14;0.004 -12;0.171

1543 875;0.955 1655;0.001 -12;0.044

1547 1165;0.382 1377;0.176 1468;0.029 1629;0.412

1568 1482;1.000

[...]

Conclusion

The duration of the whole derivation process in QGIS depends on the size of the selected
subregion during initial wizard step (setup). The larger the chosen bounding box, the more
noticeable the increase of computing time (see table 1). This is mainly attributed to the
water flow oriented section of the wizard using r.watershed in the backend. At the expense of

Geinformatics FCE CTU 2008 76

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

Figure 8: Topology module

execution time the GRASS module yields more accurate maps than r.terraflow [7], for which
reason it was preferred. However, it remains to check whether [9] may considerably improves
the performance of the watershed basin analysis. Or should process implementation changed
by substitution with r.terraflow, provided that whose output raster maps are barely exact
enough for the HRU derivation work? There is also a need for optimization regarding to
that part of the overlay algorithm where resulting HRUs are relabeled after removing midget
areas. Actually, a simple r.reclass statement does the job but not very fast which may affect
the total computation time, too.

watercourse, gauge catchment size number of HRUs duration
Erlbach, Thieschitz (Thuringia,
GER)

105 km2 2116 12 min

Hasel, Ellingshausen (Thuringia,
GER)

340 km2 6832 45 min

Gera, Erfurt-Möbisburg
(Thuringia, GER)

850 km2 16696 2.5 h

Table 1 – Performance of the HRU derivation in GRASS using the QGIS extension

References

1. Flügel, W.A. (1995): Delineating Hydrological Response Units by Geographical Infor-
mation Systemanalyses for regional hydrological modelling using MMS/PRMS in the
drainage basin of the river Bröl, Germany. In: Kalma, J.D. & Sivapalan, M. (1995):
Scale Issues in Hydrological Modelling. 183-194

Geinformatics FCE CTU 2008 77

Deriving Hydrological Response Units (HRUs) using a Web Processing
Service implementation based on GRASS GIS

2. Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G. (1983): Precipitation-
Runoff Modeling System; Users Manual, Denver

3. Neteler, M. and Mitášová H. (2008): Open Source GIS: A GRASS GIS Approach, Third
Edition, Springer, ISBN 978-0-387-35767-6

4. Pfennig, B.; Fink M.; Krause P.; Müller Schmied H. (2006): Leitfaden für die Ableitung
prozeßorientierter Modelleinheiten (HRU’s) für die hydrologische Modellierung

5. Staudenrausch, H. (2001): Untersuchungen zur hydrologischen Topologie von Land-
schaftsobjekten für die distributive Flußeinzugsgebietsmodellierung. Dissertationss-
chrift. Jena

6. http://www.qgis.org/ – QuantumGIS

7. http://grass.itc.it/ – Geographic Resources Analysis Support System

8. http://pywps.wald.intevation.org/ – Python Web Processing Service

9. http://markus.metz.giswork.googlepages.com/r.watershed fast version.tar.gz – Metz, M.
(2008): r.watershed.fast

Geinformatics FCE CTU 2008 78

http://www.qgis.org/
http://grass.itc.it/
http://pywps.wald.intevation.org/
http://markus.metz.giswork.googlepages.com/r.watershed_fast_version.tar.gz

