
PostGIS-Based Heterogeneous Sensor
Database Framework

for the Sensor Observation Service
Ikechukwu Maduako

Institute of Geoinformatics, University of Münster, Germany
Director of Studies, Center for Advanced Spatial Technologies & Mapping (CAST-MP)

Abuja, Nigeria
iykemadu84@gmail.com

Abstract

Environmental monitoring and management systems in most cases deal with mod-
els and spatial analytics that involve the integration of in-situ and remote sensor
observations. In-situ sensor observations and those gathered by remote sensors
are usually provided by different databases and services in real-time dynamic ser-
vices such as the Geo-Web Services. Thus, data have to be pulled from different
databases and transferred over the network before they are fused and processed on
the service middleware. This process is very massive and unnecessary communi-
cation and work load on the service. Massive work load in large raster downloads
from flat-file raster data sources each time a request is made and huge integration
and geo-processing work load on the service middleware which could actually be
better leveraged at the database level. In this paper, we propose and present a
heterogeneous sensor database framework or model for integration, geo-processing
and spatial analysis of remote and in-situ sensor observations at the database level.
And how this can be integrated in the Sensor Observation Service, SOS to reduce
communication and massive workload on the Geospatial Web Services and as well
make query request from the user end a lot more flexible.

Keywords: Heterogeneous Sensor Database, PostGIS 2.0, Sensor Observation Service.

1. Introduction

Geo-sensors gathering data to the geospatial sensor web can be classified into remote sensors
and in-situ sensors. Remote sensors include satellite sensors, UAV, LIDAR, Aerial Digital
Sensors (ADS) and so on, measuring environmental phenomena remotely. These sensors
acquire data in raster format at larger scales and extent. In-situ sensors are spatially dis-
tributed sensors over a region used to monitor and observe environmental conditions such as
temperature, sound intensity, pressure, pollution, vibration, motion etc. These sensors are
measuring phenomena in their direct environment and could be said to acquire data in vector
data format.

Most environmental monitoring and management systems combine these diverse datasets from
heterogeneous sensors for environmental modeling and analysis. For example in monitoring
of crop Actual Evapotranspiration at some locations in most cases involves aggregation of
remote and in-situ sensor observations [1]. Remote and in-situ sensor data aggregation for
real-time calculation of daily crop Gross Primary Productivity GPP such as implemented in

Geoinformatics FCE CTU 8, 2012 55

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/268472105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

a dynamic web mapping service for vegetation productivity [2] and in the marine information
system [3] are good examples too.

Meanwhile the process of fusing and processing of these sensor data on the web service
currently involves massive data retrieval from different sensor databases, most especially from
the raster databases, geo-processing and spatial analytics on service middleware. For web
services, this is massive work and communication load over the network and on the service.
A sensor database management framework combining remote and in-situ observations would
be of great impact to environmental monitoring and management systems. Having these
disparate sensor data on one database schema can be leveraged in the geospatial web services
to reduce excessive work load and data transfer through the network. Most of the data fusion,
aggregations and processing done by web services can be carried out at the database backend
and the results delivered to the client through the appropriate web services.

Figure 1 is a diagrammatical illustration of our proposed approach, whereby in-situ and remote
sensor data are passed to the proposed heterogeneous sensor database. Data integration and
processing are carried out at the database level within the SOS and geo-scientific query or
request results are delivered to the clients through the service.

Figure 1: The Conceptual Diagram

Geoinformatics FCE CTU 8, 2012 56

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

2. Requirement Analysis

Firstly we had to analyse the fundamental conceptual and practical requirements for the
proposed heterogeneous sensor database framework for a seamless integration of remote and
in-situ sensor observations at the database level of the SOS. The analysis is done taking
into consideration the varying properties and the underlying structure or format of these
two different sensor datasets (raster and vector). The database model for this purpose can
be design as a spatial database model based on the Open Geospatial Consortium, OGC
standards. Adopting the coverage concept, sensor observations can be approached in coverage
perspective. That is to say we can treat in-situ sensor observations as time series vector
coverage and remote sensor observations as also time dependent raster coverage.

Coverages have some fundamental properties, exploring some of these properties and how
vector and raster coverages inherit these properties, we can conceptually map out an inter-
section that will underline the seamless integration of vector and raster (in-situ and remote
sensors) coverages in a heterogeneous sensor database schema, see figure 2.

According to ISO 19123: 2005 “a coverage domain consists of a collection of direct positions
in a coordinate space that may be defined in terms of up to three spatial dimensions as well
as a temporal dimension” [4].

A coverage is created as soon as a way to query for a certain value given a location is created.

Coverages can be categorised into two, continuous and discrete coverages. Continuous cover-
age returns a different value of a phenomenon at every possible location within the domain.
Discrete coverages can be derived from the discretisation of a continuous surface. A discrete
coverage consists of different domain and range sets. The domain set consists of either spa-
tial or temporal geometry objects, finite in number. The range set is comprised of a finite
number of attribute values each of which is associated to every direct position within any
single spatio-temporal object in the domain. That is to say, the range values are constant on
each spatio-temporal object in the domain. “Coverages are like mathematical functions, they
can calculate, lookup, intersect, interpolate, and return one or more values given a location
and/or time. They can be defined everywhere for all values or only in certain places ” [5].

Raster and vector coverages are both types of discrete coverage. They differ only in how they
store and manage their collection of data. As coverages, they allow for basic query functions
such as select, find, list etc. to be carried out on them.

Vector coverages handled as tables are the most common type of coverage implemented in
most of the spatial database management systems. Individual data item are stored on each
row in the table. The columns of the table ensure that collection is self-consistent. Texts are
placed in text columns, numbers in numeric columns, and geometries in geometry columns
and so on. The basic requirement a table must have for potential supply of information to a
coverage is to have at least one geometry column and one additional column for a value or
an attribute.

Raster coverages are handled as an array of multidimensional discrete data as discussed in [6].
In PostgreSQL/PostGIS 2.0 [7] precisely they are stored as regularly gridded data with the
geometry of the domain as points and the range could be one or more numeric values (for
example number of bands). Text values and timestamps may not be possible.

Geoinformatics FCE CTU 8, 2012 57

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

Hence, in-situ observations (vector data) can be stored in tables with rows and columns
in a relational manner, having one-to-one or one-to-many relationship. On the other hand
remote sensor observations (raster) cannot reasonably be stored in tables but as gridded
multidimensional array of data (array of points). That is to say we only have to leverage the
concept of coverage to integrate the two tables in the database. The possible common column
for the two datasets (tables) is the geometry column.

Therefore the fundamental requirement from this analysis that could enable us to integrate
remote and in-situ sensor observations in a common database could be outlined as:

• storage of in-situ observations as vector point coverage and

• storage remote sensor observations as raster point (pixel) coverage.

Figure 2 is the UML (Unified Modeling Language) model of the concept and management of
coverages describing features, relationships, functions and how they present in the database.
The insight to this UML model was extracted from the coverage concept model discussed in
PostGIS Wiki [5].

Figure 2: UML Conceptual Model of the concept and Management of Coverages

Leveraging these functions and operations that can be carried out on coverages, the database
can offer fundamental operations and functions such as intersection, buffering, overlay, in-
terpolation etc for geo-scientific analysis and processing involving in-situ and remote sensor

Geoinformatics FCE CTU 8, 2012 58

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

observations (vector and raster coverages).

With these operations, we can easily run queries for example that can lift a point on the
vector coverage, intersect it with the geometrically corresponding point or cell on the raster
coverage on the database and return a value. The goal is for us to be able to do relation
and overlay operations on the different coverages irrespective of how the coverages are stored.
Therefore we need a database management system that can provide these supports for this
purpose.

Database Management System (DBMS) Support Analysis

Effective storage and retrieval of vector data has been well developed and implemented in
most of the spatial databases such as Postgresql/PostGIS, Oracle Spatial, MySQL, Microsoft
SQL Server 2008, SpatiaLite, Informix, etc. On the other hand, Oracle Spatial and Post-
gresql/PostGIS DBMS are currently the only DBMS that have substantial support for raster
data management. Meanwhile Oracle Spatial supports raster data storage with less support
for raster data analysis in the database. However PostgreSQL/PostGIS 2.0 has relatively good
raster support, functions and operations that we can leverage for the feasibility of our research
goal. In addition PostgreSQL/PostGIS 2.0 can be configured with python GDAL-bonded to
leverage more functionality.

PostgreSQL/PostGIS 2.0 capability to carry out seamless vector and raster data integration
makes it favourable in this type of our work than Oracle Spatial. PostgreSQL/PostGIS 2.0
can handle pixel-level raster analysis unlike Oracle Spatial whose content search is based
on Minimum Bounding Rectangle (MBR). PostgreSQL/PostGIS 2.0 uses Geospatial Data
Abstraction Libraries (GDAL) to handle multi-format image input and output and when
working with out-db-raster, this is a powerful functionality.

PostgreSQL/PostGIS 2.0 supportsGiST spatial indexing, GiST stands for "Generalized Search
Tree" and is a generic form of indexing. GiST is used to speed up searches on all kinds of
irregular data structures (integer arrays, spectral data, etc) which are not amenable to normal
B-Tree indexing [8].

In PostgreSQL/PostGIS 2.0, raster coverage can be created by having a geometry column
called raster and attribute columns containing the attributes to the raster (e.g. band num-
ber, timestamp and so on). The fundamental database or storage support needed on the
raster coverage for efficient seamless integration and analysis with vector coverages such as
tiled raster storage, georeferencing, multiband/multi-resolution support and so on are pro-
vided by PostgreSQL/PostGIS 2.0 [9]. Structured Query Language (SQL) raster functions
and operators for raster manipulations and analysis are substantially supported in Post-
greSQL/PostGIS 2.0, more functions are being developed.

3. Conceptual Design and Modelling of a Heterogeneous Database Schema

Based on those fundamental requirement analysis, we went on to develop a conceptual model
of a heterogenous sensor datbase schema, integrating remote and in-situ sensor observations.
The UML model in figure 3 shows the high level abstraction model of the fundamental classes
(tables) that are needed in a sensor database, their attributes and important operations that
can be carried out on them. It shows the relationships and the logic between the classes which

Geoinformatics FCE CTU 8, 2012 59

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

enable integration between the classes. The Entity Relationship (ER) diagram in figure 4
describes the logical design for physical implementation of the entities, the fields in each class
and the relationships between entities. Also in this section we developed the conceptual model
of how the database model can be integrated with other web services seamlessly, introducing
the concept of the Web Query Service, WQS.

3.1. The Heterogeneous Database Schema Entity Description

This section describes the functions and relationships of the entities or tables in the hetero-
geneous sensor database schema as modeled in the UML diagram shown in figure 3. The
detailed description of their attributes and values are not necessary within the context of this
paper. Figure 3 is the high level conceptual model while figure 4 is the logical model of the
database.

The List_of _Table class contains the list of all the table names in the database. Operations
like GetList_of_Tables and UpdateList_of_Table can be perform on it from the user end
through our proposed SQL Web Query Service WQS. The efficacy of this table is to present to
the user the names and descriptions of all the tables contained in the database. A “select *
from list_of_table” SQL instruction from the client end would present a table describing
all the tables contained in the database. This is a kind of DescibeTables operation by the
user from the client end.

Coverage class holds the information about each of the coverages contained in the database
such as the id, description etc. The in-situ and remote sensor observations are stored
as coverages, vector and raster respectively in the database. Therefore it is necessary
to have a table that presents the collections and a short description of the coverages
contained in the database.

Observed_Phenomenon class is the table that contains the names, descriptions, coverage
type etc. of the various geographic phenomena that are contained in the observations.
This is different from the features of interest table which contains the different features
or formats of these observed phenomena that are of special interest.

Feature_of_Interest class is the table that has the records of different features of the
observed geographic phenomenon in the database.

SensorPlatform class is the table with the record of the sensor platforms on which the
sensors are mounted or housed.

Sensor class is the table that contains the basic attributes about the observing sensor. At-
tributes such as the sensor platform, sensor type, sensor model etc. are contained in
this table.

SensorInfo table contains information related to the sensor mearsurement and method.
Attributes such as spatial coverage, temporal coverage, collection frequency, unit of
measurement etc. can be found in this table.

Observation class is the table that connects the Sensor, Observed_Phenomenon, Quality,
In-situObservations and RemoteObservations tables. Observation table does not contain
the values and time stamps of each observed value, they are contained in the in-situ
and remote observations tables.

Geoinformatics FCE CTU 8, 2012 60

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

Figure 3: UML Conceptual Schema Model of the Proposed Heterogeneous Sensor Database

Geoinformatics FCE CTU 8, 2012 61

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

In-situObservation class is the table that contains the compelete data of each observation
that is contained in the Observation table where observationType is in-situ. It has one-
to-one relationship with Observations table. The relationship between this table and
the remote_observation table are handled on the fly leveraging the PostGIS intersection
operation because the two coverages are handled differently in the database. Basic
operations as well as complex operations such as intersection with raster, interoplation
or rasterisastion can be carried out on this class. The attribute called the_geom contains
the geometry of each observed data.

RemoteObservation table contains the raster data of each observation that is contained
in the Observation table, where observationType is remote. It has many-to-one rela-
tionship with the Observation table. Its relationship with the In-situObservation are
executed on the fly through the geometry columns . Its attribute called rast contains
the geometry or coordinate information as well as the the data values (geomval). The
intersection between the in-situ and remote observations tables is made possible through
the intersection of the ‘the_geom’ and the ‘rast’ which is done on the fly. Also more
complex operations such as calculate, vectorise, intersect with vector can be performed
on this class.

Metadata tables houses some important header data about any raster data contained in the
RemoteObservations table. It has many-to-one relationship with the RemoteObserva-
tion table. It can be updated, selected from, listed etc. from the user end through an
SQL- language based request. This table is created implicitly and encapsulated in the
remote_observation table and is used to describe the coverages.

3.2. The ER-diagram and logical design of the database model

Figure 4 is the Entity Relationship diagram and logical design of the proposed heterogenous
sensor database. The diagram shows the relationship logics between the tables for an effective
physical implementation in PostGIS, leveraging the primary and foreign keys for seamless
integration between the class. The relationship and integration of the In-situObservation and
RemoteObservation tables are executed on the fly, leveraging their geometry columns and the
coverage concept.

4. Integrating the Heterogeneous Sensor Database with the OGC Web Ser-
vices

We propose an SQL-based Web Query Service, WQS that delivers SQL queries from the user
end to the database in the web service . This service can be intergated and accessed from
within the user’s web or desktop application. This service provides the cleint the flexibility
and ability to construct queries of extensive complexity which is delivered to the database
for processing. In this case, aggregations, processing and analysis of remote and in-situ
observations are carried out at the database backend. The result of the query can be delivered
in different formats such as ASCII, GML, KML, TIFF, JPEG etc. in compliance with the
OGC web mapping services, the WFS, WMS and WCS. The user specifies the formats of
delivery on the query by using the PostGIS “ST_As*” function. ASCII or text results are
delivered to the client directly from the database through the WQS. If the request result is
to be delivered as a raster coverage, then the query result is a raster or a rasterised vector

Geoinformatics FCE CTU 8, 2012 62

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

Figure 4: ER-Diagram and Logical Design of the Heterogeneous Database

and will be delivered to the client through the Web Coverage Service, WCS protocol. Similar
process goes for a vector or vectorised query result which is delivered through the Web Feature
service WFS protocol. The request result can be delivered as a JPEG or PNG image format
to the user through the Web Map Service WMS protocol as described in figure 6.

4.1. The concept of the Web Query Service WQS

The Web Query Service, WQS is the proposed SQL query service that serves query from the
client’s web or desktop application to the heterogeneous sensor database. The Web Query
Service delivers SQL queries from the client application through the network to the sensor
database. It makes it easier to build and execute queries on a remote sensor database from
any client application.

Geoinformatics FCE CTU 8, 2012 63

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

Figure 5: Conceptual Model of the proposed Web Query Service WQS

In Figure 5 the SQL query is delivered from the frontend dispatcher of client web or desktop
application to the query processing and optimization module for optimization and parsing to
the backend for query execution. From a web application, the SQL query request is dispatched
via the HTTP. From within a desktop application, a connection to the database would have
to be established manually before queries are sent to the database for execution.

Proposed Conceptual Architecture of Integrating the Heterogenous Sensor
Database and OGC Web Services.

Figure 6 describes the conceptual achitecture of our proposed integration of the heterogenous
sensor database as part of the Sensor Observation Service with the proposed Web Query
Service WQS and other Web Services to deliver effective results to the end user.

The user on the client end, web or desktop application delivers SQL queries of any complexity
through theWQS to the database. The result of the query is delivered back to the user through
the relevant services depending on the format the result is requested. The ST_As * PostGIS
function is used in the query to specify the format of delivery. When the user specifies for
example ST_As GeoTIFF, the raster coverage query result is wrapped in XML and delivered
to the client through the WCS protocol. The same process goes for query results specified
in ST_As JPEG, PNG and KML or GML which are dilivered through the WMS and WFS
respectively to the client. If no delivery format is specified in the query, the result is returned
back to the client via the WQS by defualt in ASCII format. OGC web service operations such
as GetCapabilities, DescribeSensor, DescribePlatform, GetObservation, DescribeCoverage or
GetRaterMetadata, GetCoverage, ProcessCoverage etc. are carried out through this Web
Query Service WQS by SQL queries.

Geoinformatics FCE CTU 8, 2012 64

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

Figure 6: Proposed Conceptual Architecture of Integrating the Heterogeneous Database and
the Web Services

5. Prototypical Implementation and Scenario Evaluation

In this section we did a prototypical implementation of the heterogeneous database model in
PostGIS 2.0 as shown in figure 7. We loaded the tables with in-situ and remote sensor data
as described in the logical model. In-situ sensor observations stored as vector coverages and
remote sensor observations as raster coverages. In the heterogeneous database we had in-situ
and remote sensor Land Surface Temperature LST coverage, Sea Surface Temperature SST
coverage, Reference Evapotranspiration in-situ coverage, Normalised Difference Vegetation
Index NDVI coverage and so on. Afterwards some few scenarios or use cases out of the nu-
merous use cases where the proposed heterogeneous sensor database model can be leveraged
to accomplish geo-scientific queries and processing involving remote and in-situ observations
were carried out. The query scenarios were executed from a client desktop application (the
OpenJUMP Desktop GIS application) after establishing a connection to the heterogeneous
sensor database at the server. Scenarios ranging from a simple case where a geo-scientist
would want to obtain the temperature difference between in-situ and remote temperature ob-
servations to a more complex case of estimating daily plant Evapotranspiration of a particular
location.

Geoinformatics FCE CTU 8, 2012 65

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

Figure 7: A screen shot excerpt of the heterogeneous sensor database model with the tables

Figure 7 is a screen shot excerpt showing the physical implementation of the database model in
PostgreSQL/PostGIS 2.0 database management system. Both the remote and in-situ sensor
observations efficiently stored for seamless integration.

5.1. Scenario 1: In-situ and satellite surface temperature analysis

This scenario calculates the temperature difference between the in-situ sensor land surface
temperature observation and remote sensor land surface temperature observation of a partic-
ular location. Listing 8 was used to obtain the required result from within the OpenJump
desktop application.

Listing 1: Scenario 1 implementation SQL code

SELECT val1 , (gv). val AS val2 ,val1 -(gv). val AS diffval ,geom
FROM (SELECT ST_intersection (rast , the_geom) AS gv ,
temp_value AS val1 , ST_AsBinary (the_geom) AS geom
FROM in_situ_lst , lst_day

Geoinformatics FCE CTU 8, 2012 66

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

Figure 8: Screen short of Scenario 1 implementation in OpenJump

WHERE the_geom & rast
AND ST_intersects (rast , the_geom)
AND temp_lst_id = 1
) foo;

Here, this query picks up a particular temperature observation from the in-situ land surface
temperature ‘val1’, in-situ_lst table of a location where id = 1, compares the temperature
value with the corresponding remotely observed temperature, ‘val2’ of that same location on
the raster temperature coverage, Lst_day and returns the difference, ‘diffval’.

Figure 8 below is the implementation screen short excerpt from the OpenJump desktop ap-
plication showing the connection to the heterogeneous sensor database and the result of the
query from within the OpenJUMP client desktop application.

In figure 8 below, connection to the heterogeneous sensor database and the SQL query are
depicted on the upper right hand side of the image while the query result on the lower left
corner.

5.2. Scenario2: Estimation of Actual Crop Evapotranspiration ET at the
Database Backend

We have the in-situ Reference Evapotranspiration RET coverage from weather automatic sta-
tions and NDVI raster coverage of the spatio-temporal attribute in the heterogeneous sensor
database. Therefore we can calculate the Actual Evapotranspiration AET, from an aggrega-
tion of RET and Fraction of Vegetation cover FVC, where FVC is derived from NDVI [1].

AET = FVC * RE, [1]
FVC = N^2
N = (NDVIp-NDVImin)/(NDVImax-NDVImin)

Where

Geoinformatics FCE CTU 8, 2012 67

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

AET = Actual Evapotranspiration
FVC = Fraction Vegetation Cover
RET = Reference Evapotranspiration obtained from in-situ observation
NDVIp = the NDVI Value at a point p
NDVImax = the maximum NDVI value within the entire area of observation
NDVImin = the minimum NDVI value within the entire area of observation

In the query below, a geo-scientist can leverage the simple formula above to obtain the AET
of a particular location, having the RET of that particular point on the in-situ observation
table and the NDVI coverage of the area as well in the heterogeneous sensor database.

To implement this scenario, we could use 1 and 0 as the approximate maximum and minimum
NDVI values respectively within the area, this would give us an approximate estimation not
very precise. But to obtain the actual NDVImax and NDVImin of the coverage area, we used
the SQL query below in listings 2 and 3, which can then be factorized in the comprehensive
AET query statement in listings 4 to obtain the precise AET.

Listing 2: SQL Query to obtain the NDVImax

SELECT (stats). max}
FROM (SELECT ST_SummaryStats (rast) AS stats
FROM ndvi

ORDER BY stats DESC
LIMIT 1) AS foo;

Listing 3: SQL Query to obtain the NDVImin

SELECT (stats). min
FROM (SELECT ST_SummaryStats (rast) As stats
FROM ndvi

ORDER BY stats ASC
LIMIT 1) AS foo;

In this our example case, we calculated the AET of a point in the RET, in_situ_ret table
where id =1 by implementing the SQL statement in listing 14 below. From the query in listing
21 and 22, we obtained the NDVImax and NDVImin as 0.86 and 0 respectively and factorized
them in as shown in the listing 4 below and got the results from within the OpenJUMP client
desktop application shown in figure 9.

Listing 4: Scenario 4 implementation SQL code

SELECT RET , NDVIp ,(pow (((NDVIp -0.86)/(0.86 -0)) ,2)) AS FVC ,
(pow (((NDVIp -0.86)/(0.86 -0)) ,2))* RET as AET , the_geom

FROM (SELECT ST_Value (R.rast ,I. the_geom) as NDVIp , I.value as RET ,
ST_AsBinary (I. the_geom) as the_geom

FROM in_situ_ret I, ndvi R
WHERE ret_id = 1

AND ST_Value (R.rast ,I. the_geom) IS NOT NULL) foo;

Lots of other scenarios were also tested for example, calculation of Weighted Mean surface
temperature values from a vector buffer. A scenario where, one could select a particular

Geoinformatics FCE CTU 8, 2012 68

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

Figure 9: Screen short excerpt of a sample Scenario 4 implementation result in OpenJump
client end

observation in the in-situ temperature observation, create a buffer of a given radius around
that observation, then overlap this buffer geometry on the raster temperature coverage and
obtains a weighted mean surface temperature value within the buffered region from the raster
coverage. Also a scenario to describe a raster coverage metadata such as done in the OGC
Sensor Web “DescribeCoverage” to obtain the metadata of a particular coverage. . In this
case, we could leverage the PostGIS raster metadata description function to provide the client
side description of a raster coverage through an SQL query.

In general the results of the sample queries shown above for the mentioned scenarios are
alphanumeric or CSV formatted. They are returned to the client directly from the database.
Other results formats are also possible as described in section 4.1 above, depending on how
the client wants the results delivered.

6. Evaluation and Conclusion

In our final evaluation of the methods discussed we focus on three major topics, query flexi-
bility, reduction of communication load and work and massive data retrieval load.

6.1. Query Flexibility

The various geo-processing scenarios we implemented in the prototypical implementation
exercise from within the OpenJump client side desktop application show that, this approach of
delivering SQL based queries from the client end direct to the database backend makes it more
flexible for the user on the client end to deliver geo-processing queries of extensive complexity
involving in-situ and remote sensor observations. Language based query request such as
the (SQL) has been considered advantageous especially by the database community because
is very flexible, declarative, optimizable and more safe in evaluation [10]. This extensive
support for different kinds of geo-processing and analysis involving in-situ and remote sensor
observations through native SQL queries makes this approach advantageous to the current
approach of having different geo-processing modules on the web service for specific purposes.
In that case users are restricted only to the specific geo-processing capabilities the service
offers.

Geoinformatics FCE CTU 8, 2012 69

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

6.2. Reduced communication load

The prototypical implementation our proposed heterogeneous sensor database model and the
model of how it can be integrated seamlessly with the OGC geo-web services show that these
disparate sensor observations can be integrated and managed in a single spatial database
leveraging PostGIS 2.0 functionalities. Hence communication load to different databases
are invariably reduced. The communication time lag incurred in the downloading of raster
images from a flat file database via the ftp, obtaining in-situ observations from an in-situ
sensor observation service and integrating the two on the service middleware level is invariably
reduced greatly, adopting this heterogeneous database approach.

6.3. Work and Massive Data Retrieval Load

Also taking a look at the contents and the processes in dynamic systems such as in [11], [2],
[12], [13] and in the OGC Web Processing Services, they provide clients access and results
based on pre-programmed calculations and/or computation models that operate on the spatial
data. To enable geospatial processing and operations of diverse kinds, from simple subtraction
and addition of sensor observations (e.g. the difference between satellite observed temperature
and in-situ observation of a location) to complicated ones such as climate change models,
requires the development of a large variety of models on the service middleware. This is
massive in work load and huge amount of programming on the service. Also the data required
for these services are usually retrieved dynamically from different databases and services which
most times entails massive data retrieval especially from the satellite data (raster) storage.

Contrarily, by the means of a heterogeneous sensor database model such as developed and
implemented in this research leveraging the functionalities of PostGIS 2.0 database extension,
geo-processing and analytics involving remote and in-situ sensor data are carried out at the
database backend by native SQL request statements. Therefore the variety of geo-processing
work load on the service middleware is reduced. The service middleware in our case is majorly
for service delivery from the client to database and vice versa. Massive data retrieval before
processing is completely avoided. Also massive programming involved in the development of
different kinds of geo-processing models on the web service is reduced.

7. Further Work

The practical usefulness of this proposed approach will be very more appreciated and leveraged
when we are done with the full implementation of the model, integrating the proposed sensor
heterogeneous database and other geo-web services in the SOS. This is our next milestone,
to fully integrate this heterogeneous sensor database framework and the WQS with other
geo-web services for query result delivery to the clients in different formats as described in
figure 6.

References

[1] Groundwater and Vegetation Effects on Actual Evapotranspiration Along the Riparian
Zone and of a Wetland in the Republican River Basin. Gregory Cutrell, M. Evren
Soylu. Nebraska-Lincoln : s.n., 2009.

Geoinformatics FCE CTU 8, 2012 70

Maduako, I: PostGIS-Based Heterogeneous Sensor Database Framework

[2] Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth
Observation and in situ Sensors in a Sensor Web Based Approach. Kooistra, L., et al.
4, 2009, Sensors , Vol. 9, pp. 2371-2388.

[3] Hamre, Torill. Integrating Remote Sensing, In Situ and Model Data in a Marine Infor-
mation System (MIS). Marine Information System (MIS), in Proc. Neste Generasjons
GIS. 1993, pp. 181-192.

[4] Geographic information -- Schema for coverage geometry and functions. ISO. 2009, TC
211 - Geographic information/Geomatics.

[5] PostGISWiki. PostGIS UsersWiki. [Online] [Cited: September 10, 2011.] http://
trac.osgeo.org/postgis/wiki/UsersWikiCoveragesAndPostgis.

[6] Management of multidimensional discrete data. Baumann, Peter. Issue 4, October
1994, The VLDB Journal, Vol. Volume 3, pp. 401-44.

[7] Store, manipulate and analyze raster data within the PostgreSQL/PostGIS spatial
database. Racine, Pierre. Denver : http://2011.foss4g.org, 2011. FOSS4G.

[8] postgis.refractions.net. PostGIS 1.5.3 Manual. postgis.refractions.net Web site. [On-
line] [Cited: August 20, 2011.] http://www.postgis.org/docs/

[9] Pierre, Racine. WKTRasterTutorial01. PostGIS. [Online] June 2010. [Cited: 11 12,
2011.] http://trac.osgeo.org/postgis/wiki/WKTRasterTutorial01

[10] Designing a Geo-scientific Request Language - A Database Approach. Baumann, Peter.
s.l. : Springer-Verlag Berlin, Heidelberg, 2009. SSDBM 2009 Proceedings of the 21st
International Conference on Scientific and Statistical Database Management. ISBN: 978-
3-642-02278-4.

[11] Rueda, Carlos and Gertz, Michael. Real-Time Integration of Geospatial Raster and
Point Data Streams. Statistical and Scientific Database Management. 2008, pp. 605--611.

[12] WARMER in-situ and remote data integration. AlastairAllen, et al. Southampton
(UK) : s.n., 30th March 2009. National Oceanography Center.

[13] An integrated Earth sensing sensorweb for improved crop and rangeland yield predictions.
Teillet, P M, et al. 2007, Canadian Journal of Remote Sensing, Vol. 33, pp. 88-98.

Geoinformatics FCE CTU 8, 2012 71

http://trac.osgeo.org/postgis/wiki/UsersWikiCoveragesAndPostgis.
http://trac.osgeo.org/postgis/wiki/UsersWikiCoveragesAndPostgis.
http://2011.foss4g.org
http://www.postgis.org/docs/
http://trac.osgeo.org/postgis/wiki/WKTRasterTutorial01

Geoinformatics FCE CTU 8, 2012 72

