
Implementation of SQLite database
support in program gama-local

Vaclav Petras
Department of Mapping and Cartography

Faculty of Civil Engineering, Czech Technical University in Prague

Keywords: GNUGama, adjustment of geodetic networks, programming, C, C++, databases,
SQLite, callback functions

Abstract

The program gama-local is a part of GNU Gama project and allows adjustment of local geodetic
networks. Before realization of this project the program gama-local supported only XML as
an input. I designed and implemented support for the SQLite database and thanks to this
extension gama-local can read input data from the SQLite database. This article is focused
on the specifics of the use of callback functions in C++ using the native SQLite C/C++
Application Programming Interface. The article provides solution to safe calling of callback
functions written in C++. Callback functions are called from C library and C library itself
is used by C++ program. Provided solution combines several programing techniques which
are described in detail, so this article can serve as a cookbook even for beginner programmers.
This project was accomplished within my bachelor thesis.

Introduction

GNU Gama is a library and set of programs for adjustment of geodetic networks. Project
is licensed under the GNU GPL and is written in C++ programming language. Its main
author and developer is professor Aleš Čepek [1] but it has many other contributors. For
numerical solutions of least squares adjustment several numerical algorithms (e.g. Singular
Value Decomposition and Gram-Schmidt orthogonalization) can be used in GNU Gama [2].

Program gama-local allows adjustment of local-geodetic networks. My work was to implement
the support of reading input data from SQLite 3 database [3].

This paper deals with the specifics of using C library (SQLite) in C++ program (gama-
local). These specifics result mainly from different function linkage conventions and different
approaches to exception handling in C and C++.

All work described here was done within my bachelor thesis [4] which was also used as the
main source for writing this paper.

SQLite and gama-local

Program gama-local is able to process classic geodetic measurements (distances, angles, ...)
and also measurements such as vectors and coordinates. Input data can be stored in a Gama
specific XML file or in a SQLite 3 database file. The same data are stored in both formats.
Only identifiers used to connect data in SQLite database are not in XML file because in XML
file the most of relations between objects are represented by aggregation.

Geoinformatics FCE CTU 2011 73

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/268472075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Petras V.: Implementation of SQLite database support in program
gama-local

Formerly gama-local supported only XML input. During development of QGama (gama-local
Graphical User Interface) [5] it was realized that SQLite database can be useful for this GUI
application. Its next version will be based on using SQLite. To keep the full compatibility
between GUI based QGama and command-line based gama-local it was necessary to support
SQLite. The support of SQLite database file as an input is sufficient now because only SQLite
input is supported in QGama.

Furthermore, SQLite database provides several advantages for gama-local users. For example,
more than one (input) network can be stored in one file which is not possible with current
gama-local XML format. Database schema used by gama-local can be also used as a part
of larger database since other data (tables and columns) are simply and naturally ignored
during processing database file by gama-local. This is not true for Gama (expat based) XML
parser which does not ignore additional relations and values (represented by XML attributes
or elements).

Generally, both XML and SQLite has advantages and disadvantages. For example XML file
is in contrast to SQLite database file human readable and editable. Hence SQLite in GNU
Gama is not a replacement for XML input but it is intended to be an alternative for whom
XML is not the right option (e.g. they don’t have a good library support).

The SQLite support is available in GNU Gama version 1.11 [6]. All code related to SQLite
is in class SqliteReader and its implementation, so I will often refer to this class or its
implementation (e.g. ReaderData class).

Database schema used by gama-local was developed separately and can be obtained with
GNU Gama distribution. Its description can be found in the latest GNU Gama manual
(available with latest GNU Gama version from Git repository [7]).

SQLite C/C++ API

SQLite database has native interface for C and C++ which I will refer as SQLite C/C++
API.

SQLite C/C++ API provides several interfaces. I will focus on the two most important
interfaces. The first one, which can be called classic, contains functions for executing SQL
statement and for retrieving attribute values from result (in case of SELECT statement). The
second one relies on callback functions.

Working with classic interface consists of calling prepare functions, execute functions, func-
tions for retrieving attribute values and for finalizing statements. All functions return a return
code which has to be checked and in case of an error, an error message should be checked.
Resulting code can be very long and the using of classic interface can be tedious and error
prone. However, classic interface is flexible enough to enable wrapping interface functions by
something more convenient. There are several possibilities. In C++ language RAII (Resource
Acquisition Is Initialization) technique can be used. This means that C functions and point-
ers to structs could be wrapped by C++ class with constructor and destructor. Reporting
errors by error codes would be probably replaced by exceptions. In C language some wrapper
function or functions can be written.

Actually if you decide to use some wrapper, it is not necessary to write wrapper function on

Geoinformatics FCE CTU 2011 74

Petras V.: Implementation of SQLite database support in program
gama-local

your own because it already exists. It is function sqlite3_exec from interface using callback
functions. Function sqlite3_exec is the only one function in this interface (except functions
for opening and closing database and for freeing error message).

Project GNU Gama uses interface using callback functions. It was chosen for implementation
because this interface is considered to be the most stable one in terms of changes between
versions of SQLite C/C++ API. There were no changes in this interface between the last [8]
and the current version of SQLite [9].

Simplified example of using a callback function with library function sqlite3_exec is shown
bellow.
// library function
int sqlite3_exec(int(*pf)(void*, int, char**), void* data) {

// ...
int rc = pf(data, /*...*/);
// ...

}

Library function gets pointer to callback function as a parameter pf. The callback function is
called through pointer pf. Object data given to function sqlite3_exec by pointer to void
is without any change passed to the callback function. The callback function is invoked for
each result row and parameters are attribute values of one row of a SQL query result. A user
of SQLite C/C++ API writes the callback function and puts the appropriate code in it.
// callback function (user code)
int callback(void* data, int argc, char** argv) {

// ... get values from argv
}

All work is done in the callback function, so once a user of SQLite C/C++ API has it, he
can simply call function sqlite3_exec and pass the pointer to the callback function and the
object represented by pointer data.
// main program (main user code)
int fun() {

ReaderData* data = /*...*/
int rc = sqlite3_exec(callback, data);

}

Object represented by pointer data can be used in the callback function for storing data from
parameters. But first, pointer data has to be cast from void* to particular type (ReaderData*
in this case). Generally, any type (class) can be chosen depending on the user needs. Later I
will show how it is used to store information about an exception.

Using C and C++ together

Several issues has to be considered when C and C++ are used together. The main issues are
dealing with function linkage and exception handling. Function linkage is partially solved by
(SQLite) library authors. But linkage of callback functions has to be handled by library users.
We have to deal with exception handling only when we really use and need exceptions. GNU
Gama uses C++ exceptions extensively. Almost all error states are reported by throwing an
exception. Callback functions use GNU Gama objects and functions. Therefore, exception
can be thrown in callback function. There is no other option but to deal with exception since

Geoinformatics FCE CTU 2011 75

Petras V.: Implementation of SQLite database support in program
gama-local

design decision about using exceptions in GNU Gama project was already done. Decision was
mainly influenced by recommendations from [10].

Functions

Functions in C and C++ have different linkage conventions. Functions written in C and
compiled by C compiler can be called from C++ but the function declaration has to specify
that function has C linkage. The C++ standard specifies that each C++ implementation
shall provide C linkage [11]. The C linkage can be specified by extern "C" declaration or by
enclosing function declaration with extern "C" block:
extern "C" int f(int);
extern "C" {

int g(int);
}

Common practice used by libraries (C or C++) is to share header files between C and C++.
It is achieved using preprocessor:
// lib.h:
#ifdef __cplusplus
extern "C" {
#endif

void f();
void g(int);

#ifdef __cplusplus
}
#endif

C compiler ignores extern "C" block but C++ compiler knows that functions have C linkage
and compiler uses this information while linking to library or object file.

Function pointers

The similar rules which apply to functions apply also to function pointers. The standard
[11] says: Two function types with different language linkages are distinct types even if they
are otherwise identical. This means that you have to declare C function pointer type inside
extern "C" block and handle C function and C++ function pointers separately. This is an
example of declaration taken from SqliteReader implementation:
extern "C" {

typedef int (*SqliteCallback)(void*, int, char**, char**);
}

However, GCC [12] provides implicit conversion between C and C++ function pointers. It is
allowed as an implementation extension, however doing conversion without any warning and
not allowing overloading on language linkage is considered as a bug [13].

Function visibility

Functions in C and C++ have definitions (function body, function code) and declarations
(function signature). Function definitions are globally visible by default but function decla-
rations have local visibility. Declaration is visible from the point of declaration to the end of
translation unit (source file with included header files).

Geoinformatics FCE CTU 2011 76

Petras V.: Implementation of SQLite database support in program
gama-local

It is necessary to provide declaration to use function defined in another translation unit. This
is always done by including a particular header file. Note that function declarations can be
written by hand since including a header file is textual operation only (but this makes sense
only in examples).

To avoid name clashes C++ introduced namespaces. Although there is no such thing as
namespace in C language namespaces can be used with declaration extern "C" together. So
the example above can be rewritten using namespace:
// lib.h:
#ifdef __cplusplus
namespace lib {

extern "C" {
#endif

void f();
void g(int);

#ifdef __cplusplus
}

}
#endif

Now if you are using lib.h header file with C++ compiler, you have to specify lib namespace
to access functions f and g. How this can be used with existing C header files (e.g. with C
standard library) is described in [10]. Nevertheless, function f and g are still C functions.
This implies that you can provide another declaration without namespace (but with extern
"C") and use functions without specifying namespace. This can lead to errors or at least
name clashes.

In many cases it is suitable to hide function definition (which is global by default), so it is not
visible from outside a translation unit. This is, for example, the case of callback functions
which are mostly part of an implementation and therefore they shouldn’t be globally visible.
The function hiding is done in C++ by unnamed namespace (sometimes incorrectly referred
as anonymous namespace) [11]. An unnamed namespace behaves as common namespace but
with unique and unknown name (this is done by C++ compiler).

However, unnamed namespace and extern "C" cannot be used together. Function previously
defined and declared as extern "C" in unnamed namespace can be misused or can break
compilation, because unnamed namespace behaves as common namespace and extern "C"
function declaration without namespace can be provided (e.g. accidentally). Example follows.
// file_a.cpp:
// unnamed namespace
namespace {

// bar_i intended to be defined local in file_a.cpp
extern "C" int bar_i(int) { return 1; }

}

// file_b.cpp:
// bar_i declared (e.g. accidentally)
extern "C" int bar_i(int);

void test() {
// bar_i used (without any error or warning)
bar_i(1);

}

The function hiding can be also done by declaring function static. This is how the hiding
is done in C language so it looks appropriately for extern "C" functions. Next paragraph

Geoinformatics FCE CTU 2011 77

Petras V.: Implementation of SQLite database support in program
gama-local

discuss it.

Declaring functions in extern "C" block as static works in GCC as expected. I haven’t
succeeded in verifying that combination of extern "C" and static works generally on all
compilers. As a result, this solution wasn’t used in SqliteReader implementation. Instead
all callback functions was prefixed. Function definitions are visible but prefix should prevent
from misusing by accident.

Exception handling

Handling error (or exception) states is done in C++ by exception handling mechanism. Ex-
ceptions have several advantages. Better separation of error handling code from ordinary
code is one of them. Another advantage is that exceptions unlike other techniques force pro-
grammer to handle error states. For example, return code can be ignored and if there was
an error program stays in undefined state. On the other hand, thrown exception can not be
ignored since unhandled exception causes program to crash immediately.

C language has no standard exception handling mechanism therefore callback functions called
from C library must not throw exception. So a callback function passed to sqlite3_exec
function have to catch all exceptions thrown inside its body (or by other functions inside
its body). From another point of view, function declared extern "C" has to behave as a C
function and naturally C function does not throw any exception. We should be aware of the
fact mentioned above that the code in function body is C++ code and C++ code can use
exceptions without any restriction.

Consequently, the callback function has to catch all exceptions. The whole part of function
body where exception can be thrown has to by enclosed in try block and the last catch block
has to be catch with ellipsis.
int callback() {

// cannot throw exception
try {

// can throw exception
}
catch (std::exception& e) {

// handle exception(s) derived from std::exception
}
catch (...) {

// handle unknown exception(s)
}

}

Catching all possible exceptions is not enough, it is necessary to report error to callback
function caller (it is library function sqlite3_exec in our case). An error can be reported in
several ways, in case of SQLite C/C++ API it is returning non-zero return code. Error state
reporting is solved easily but the problem is how to provide information about the caught ex-
ception (its type and additional information contained in exception object). There are some
solutions like assigning return code values to particular exception types. The robust solu-
tion which keeps information about exception requires to implement polymorphic exception
handling and will be discussed later.

There is also completely different solution of handling exception when interfacing with C
language — to use no exceptions at all. However, we would lose all advantages of using

Geoinformatics FCE CTU 2011 78

Petras V.: Implementation of SQLite database support in program
gama-local

exceptions. The second shortcoming of this solution is that exceptions can be already used in
code or library we are using. This is the case of the standard library or GNU Gama project.

Polymorphic exception handling

Polymorphic exception handling requires to implement cloning and also similar technique for
rethrowing exceptions. Both will be described in this section and additional information can
be found in [10].

Cloning

Standard copying by copy constructor cannot by used in cases when object is held by pointer
or reference to a base class because actual type of object is unknown. Using copy constructor
would cause slicing [14].

While handling exceptions, references to base exception class are used and proper copy of
exception has to be stored (in SqliteReader implementation). Proper copy means that new
object has the same set of attribute values as the old one and also new object has the same
type as the old one. This is the case when cloning must be used instead of copying by copy
constructor. Cloning is made by virtual function clone which calls copy constructor. In
virtual function actual type of object is known and so the right copy constructor is called.
Function clone creates new object by calling operator new and returns pointer to a new object
(the user of function is responsible for freeing allocated memory).

Next example shows implementation and simple usage of cloning.
class Base {
public:

virtual ~Base() { }
virtual Base* clone() { return new Base(*this); }
virtual std::string name() { return "Base"; }

};

class Derived : public Base {
public:

virtual Derived* clone() { return new Derived(*this); }
virtual std::string name() { return "Derived"; }

};

void print(Base* b) {
std::cout << "name is " << b->name() << std::endl;

}

void test() {
Base* d = new Derived();
Base* b = d->clone(); // creates new object
print(b); // prints: name is Derived
delete b;
delete d;

}

There is still danger that we accidentally copy (by copy constructor) the object we have
by pointer to base class. This can be avoided by declaring copy constructor in base class
protected. The second thing we should avoid is forgetting to implement clone function in
derived classes. This would lead to creating objects of base class instead of derived one. It
is helpful to declare clone function in base class pure virtual. Unfortunately, this can be

Geoinformatics FCE CTU 2011 79

Petras V.: Implementation of SQLite database support in program
gama-local

applied only for abstract base class and it ensures implementing of clone function only for
direct subclasses [14].

The same technique which was used to implement cloning can be used more generally to create
new objects with various parameters and not only the copy of current and actual object. This
technique can be used even for completely different things such as rethrowing exceptions.

Storing and rethrowing exceptions

Classes Base and Derived from previous section will be used here as exception classes. Both
contain functions for cloning and for getting a type name. Both classes also have public copy
constructor automatically created by compiler. Public copy constructor is necessary to allow
throwing exceptions (by throw statement).

An example of standard exception handling is in the following listing.
try {

throw Derived();
}
catch (Derived& e) {

std::cout << "Derived exception" << std::endl;
}
catch (Base& e) {

std::cout << "Base exception" << std::endl;
}

An exception is thrown somewhere in try block. The thrown exception can by caught by
one of the caught exceptions. Commonly accepted rule is to throw exceptions by value and
to catch them by reference. The order of catch blocks is important (first derived classes then
base classes).

Now consider the case we have to catch all exceptions, keep information about exception type
and later use this exception. This is the case of callback functions used with SqliteReader
class. We can create copy of caught exception and store a copy (e.g. in SqliteReader class
attribute) and later (when we can control program flow) we can pick stored exception up.
However, the copy cannot be created by copy constructor because actual type of object is not
known. According to previous section, obvious solution is cloning.

Cloning will ensure correct storing of exception by pointer to base class. Pointer to base class
allows to use functions from base class interface, for example read error message or get class
name in our Base-Derived example. However, sometimes final handling of exception and
reporting error to program user is not the right thing to do. If it is not clear how to handle
an exception, the exception should be thrown again or better say rethrown.

If you try to throw exception directly by throw statement using pointer to base class, you will
fail because throw statement uses copy constructor and known type of object is determined
by a pointer type. The pointer type is pointer to base class. Therefore throw statement will
call base class copy constructor and it will slice the object. Related code snippets can look
like this:
Base* b = 0;
// ...
b = caughtException.clone() // cloning of exception somewhere
// ...

Geoinformatics FCE CTU 2011 80

Petras V.: Implementation of SQLite database support in program
gama-local

throw *b; // rethrowing of exception

Direct use of throw statement discards useful information.

Slicing while rethrowing can be avoided in the same way as slicing while copying. Polymorphic
rethrowing or simply polymorphic throwing has to be introduced. This will be provided by
function raise. This function is very similar to clone function but instead of creating new
object it throws an exception. The name raise is more appropriate than the name rethrow
because function can be used more generally than only for rethrowing (the name throw cannot
be used because it is C++ reserved keyword). The function implementation is the same for
all classes and is shown bellow.
virtual void raise() const { throw *this; }

An exception thrown by this function will has appropriate type because appropriate copy
constructor will be used. A usage of this function is obvious and is shown in following code
snippet.
b->raise();

Implementation in SqliteReader class

The exception hierarchy used in SqliteReader class is in the source code listing below.
Abstract class Exception::base provides interface for cloning and rethrowing exceptions
(functions clone and raise). Class is derived from std::exception in order to add function
what to interface and to allow handling standard exceptions and specific GNU Gama excep-
tions together when necessary. There are many other exceptions in GNU Gama but they are
defined and handled in the same way.
// inderr.h:
namespace Exception {

class base: public std::exception
{
public:

virtual base* clone() const = 0;
virtual void raise() const = 0;

};
}

// exception.h:
namespace Exception {

class string: public base {
public:

const std::string str;
string(const std::string& s) : str(s) { }
~string() throw() {}
string* clone() const { return new string(*this); }
void raise() const { throw *this; }
const char* what() const throw() { return str.c_str(); }

};
}

// sqlitereader.h:
namespace Exception {

class sqlitexc: public string
{
public:

sqlitexc(const std::string& message) : string(message) { }
sqlitexc* clone() const { return new sqlitexc(*this); }
void raise() const { throw *this; }

Geoinformatics FCE CTU 2011 81

Petras V.: Implementation of SQLite database support in program
gama-local

};
}

The next source code listing shows callback function code which is common for all callback
functions in SqliteReader implementation. All callback functions are declared extern "C"
and have name prefixed with sqlite_db_ (as explained in previous sections). The code spe-
cific for each callback function is placed in the try block. This code can throw any exception.
Exceptions derived from Exception::base will be caught by first catch block, then cloned
and stored. Exceptions derived only from std::exception will be caught by second catch
block. Class std::exception doesn’t allow cloning. Therefore this exception will be replaced
by Exception::string with same what message and then stored. Shortcoming is discarding
exception type. Some improvements can be done by introducing new exception to GNU Gama
exception hierarchy, e.g. Exception::std_exception but it is not such a big improvement
because it would save only the information that exception was derived from std::exception
and actual type of exception would be still unknown. This has the same effect as adding some
string to the what message. The last catch block (catch block with ellipsis) ensures that all
other exceptions are caught in callback function body. There is no other way than to store
exception which indicates unknown exception.
extern "C" int sqlite_db_readSomething(void* data, int argc, char** argv)
{

ReaderData* d = static_cast<ReaderData*>(data);
try {

// ... callback’s own code
return 0;

}
catch (Exception::base& e) {

d->exception = e.clone();
}
catch (std::exception& e) {

d->exception = new Exception::string(e.what());
}
catch (...) {

d->exception = new Exception::string("unknown");
}

return 1;
}

The last source code listing also shows how C++ objects are passed through C to C++
functions. This is common problem with simple solution. Pointer to void given to C function
(and than to callback function) is casted to appropriate type by static_cast. Then C++
object can be used as usual.

In SqliteReader implementation a wrapper function for sqlite3_exec function was intro-
duced. This wrapper ensures rethrowing of previously stored exception.
void exec(sqlite3* sqlite3Handle, const std::string& query,

SqliteReaderCallbackType callback,
ReaderData* readerData)

{
char* errorMsg = 0;
int rc = sqlite3_exec(sqlite3Handle, query.c_str(), callback,

readerData, &errorMsg);
if (rc != SQLITE_OK) {

if (readerData->exception != 0) {
readerData->exception->raise();

}
// ... handle other (non-callback) errors

}

Geoinformatics FCE CTU 2011 82

Petras V.: Implementation of SQLite database support in program
gama-local

}

A clone function creates new instances by calling new operator as well as it is done in catch
blocks in callback function. Therefore allocated memory has to be freed. Deallocation can be
done easily in SqliteReader destructor.
SqliteReader::~SqliteReader()
{

// ...
if (readerData->exception) {

delete readerData->exception;
readerData->exception = 0;

}
// ...

}

Conclusion

Using C and C++ together

Information provided in this paper was used for implementing SQLite support in gama-local.
However, this paper presents something like reusable design pattern because this information
can be used generally when interfacing C++ code with C code or library.

The complete source code of SqliteReader class and its implementation can be found in
GNU Gama Git source code repository [15].

GNU Gama

SQLite database file is an alternative to input XML file. GNU Gama users can now choose
format which is appropriate for their project. Users will also be able to switch from GUI
application QGama to command-line tool gama-local and back as needed because both pro-
grams has the same native format. We will see in the future whether SQLite database file
become the main GNU Gama format.

Program gama-local from GNU Gama release 1.11 [6] is able to read adjustment data from
SQLite 3 database. User documentation and the latest GNU Gama version are available in
the source code repository [7].

References

1. ČEPEK, Aleš. GNU Gama manual [online]. 2011-08-16.
http://www.gnu.org/software/gama/manual/gama.pdf

2. ČEPEK, Aleš; PYTEL, Jan. A Note on Numerical Solutions of Least Squares Adjust-
ment in GNU Project Gama In: Interfacing Geostatistics and GIS. Berlin: Springer-
Verlag, 2009, p. 179. ISBN 978-3-540-33235-0.

3. SQLite [program]. Version 3. 2004-2011. http://www.sqlite.org/

4. PETRÁŠ, Václav. Podpora databáze SQLite pro program gama-local. Praha 2011. 75
s. Bakalářská práce. ČVUT v Praze, Fakulta stavební

Geoinformatics FCE CTU 2011 83

http://www.gnu.org/software/gama/manual/gama.pdf
http://www.sqlite.org/

Petras V.: Implementation of SQLite database support in program
gama-local

http://geo.fsv.cvut.cz/proj/bp/2011/vaclav-petras-bp-2011.pdf

5. NOVÁK, Jiří. Object – oriented GUI for GNU Gama. Prague, 2010. 63 p. Bachelor
thesis. CTU in Prague, Faculty of Civil Engineering.
http://geo.fsv.cvut.cz/proj/bp/2010/jiri-novak-bp-2010.pdf

6. GNU FTP server mirrors. GNU Gama release 1.11
http://ftp.sh.cvut.cz/MIRRORS/gnu/pub/gnu/gama/gama-1.11.tar.gz

7. GNU Gama Git source code repository http://git.savannah.gnu.org/cgit/gama.git/

8. The C language interface to SQLite Version 2 [online]. Modified 2011-09-21.
http://www.sqlite.org/c_interface.html.

9. C/C++ Interface For SQLite Version 3 [online]. Modified 2011-09-21.
http://www.sqlite.org/capi3ref.html.

10. STROUSTRUP, Bjarne. The C++ Programming Language. Special Edition. AT&T
Labs, Florham Park, New Jersey. United States of America: Addison-Wesley, 2000.
1020 p. ISBN 0-201-70073-5.

11. ISO/IEC 14882. INTERNATIONAL STANDARD: Programming languages — C++.
11 West 42nd Street, New York, New York 10036: American National Standards Insti-
tute, First edition, 1998-09-01. 748 p.

12. Free Software Foundation, Inc. GCC, the GNU Compiler Collection [program]. Version
4.4.3, Copyright 2009 Free Software Foundation, Inc. http://www.gnu.org/software/gcc/

13. GCC Bugzilla: Bug 2316 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=2316

14. SUTTER, Herb; ALEXANDRESCU, Andrei. C++ Coding Standards: 101 Rules,
Guidelines, and Best Practices. 1st edition. Addison-Wesley Professional, 2004. 240 p.
ISBN 0321113586.

15. GNU Gama Git source code repository: gama-local directory. Files: sqlitereader.h and
sqlitereader.cpp. http://git.savannah.gnu.org/cgit/gama.git/tree/lib/gnu_gama/local/

Geoinformatics FCE CTU 2011 84

http://geo.fsv.cvut.cz/proj/bp/2011/vaclav-petras-bp-2011.pdf
http://geo.fsv.cvut.cz/proj/bp/2010/jiri-novak-bp-2010.pdf
http://ftp.sh.cvut.cz/MIRRORS/gnu/pub/gnu/gama/gama-1.11.tar.gz
http://git.savannah.gnu.org/cgit/gama.git/
http://www.sqlite.org/c_interface.html
http://www.sqlite.org/capi3ref.html
http://www.gnu.org/software/gcc/
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=2316
http://git.savannah.gnu.org/cgit/gama.git/tree/lib/gnu_gama/local/

