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Abstract

Using the Post-Keplerian parameters to obtain, in the Minkowskian limit we obtain constraints on f(R)-theories of gravity

from the first time derivative of the orbital period of a sample of binary stars. In the approximation in which the theory

is Taylor expandable, we can estimate the parameters of an an analytic f(R)-theory, and fulfilling the gap between the

General Relativity prediction and the one cames from observation, we show that the theory is not ruled out.

Keywords: gravitation - binary pulsar systems - f(R)-theories - gravitational waves.

1 Introduction

Astrophysical systems like Neutron Stars (NS), coa-
lescing binary systems, Black Holes (BHs), and White
Dwarfs (WDs), are the most promising to study the
gravitational waves (GWs) emision. Indeed, study-
ing the binary system B1913+16, known as the Hulse-
Taylor binary pulsar, the first time derivative of the
orbital period was measured to be different from zero
[13, 18], as predicted by General Relativity (GR) when
gravitational radiation is emitted. This measurements
was confirmed by study in other relativistic binary sys-
tems. The agreement between GR and the observation
is at the order of ∼ 1%. However, using the Extended
Theories of Gravity (ETG) it should be possibile to
explain the observational results as shown in [10, 12]
where, starting from a class of analytic f(R)-theories
it is possible evaluate the first time derivative of the
orbital period and compare it with the data. This ap-
proach permit both to test the ETGs both to explain
the gap between observation and the theoretical pre-
diction. This paper was organized as follow: in Sec.
1 we calculate the quadrupole emission for an analytic
f(R)-Lagrangian using the weak-field limit; in Sec 2 we
compare the theoretical prediction with the observed
data. Finally in Sec 3 we give our conclusions and re-
marks.

2 The First Time Derivative of the
Orbital Period in the f(R)-Theories

The simplest extension to GR is the f(R)-gravity, in
which, the Lagrangian is an arbitrary function of Ricci
scalar [2]. Starting from the field equations in f(R)-
gravity (for details see [2, 16, 4, 5])

f ′(R)Rµν −
f(R)

2
gµν − f ′(R);µν +

+gµν�gf
′(R) =

X
2
Tµν , (1)

3�f ′(R) + f ′(R)R− 2f(R) =
X
2
T , (2)

where Tµν =
−2√
−g

δ(
√
−gLm)

δgµν
is the energy momentum

tensor of matter (T is the trace), X =
16πG

c4
is the cou-

pling, f ′(R) =
df(R)

dR
, �g = ;σ

;σ, and � = ,σ
,σ.

it is possibile, in the Minkowskian approximation of
an analytic f(R)-Lagrangian1,

f(R) =
∑
n

fn(R0)

n!
(R−R0)n '

' f0 + f ′0R+
f ′′0
2
R2 + ... (3)

to compute the quadrupole emission due to GWs
[10, 11]. Furthermore, it is possible calculate the energy

1For convenience we will use f instead of f(R). All considerations are developed here in metric formalism. From now on we
assume physical units G = c = 1.
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momentum tensor of gravitational field in f(R)-gravity
that assumes the following form

tλα = f ′0k
λkα

(
ḣρσḣρσ

)
︸ ︷︷ ︸

GR

− 1

2
f ′′0 δ

λ
α

(
kρkσḧ

ρσ
)2

︸ ︷︷ ︸
f(R)

. (4)

To be more precise, the first term, depending on the
choice of the constant f ′0, is the standard GR term, the
second is the f(R) contribution. It is worth noticing
that the order of derivative is increased of two degrees
consistently to the fact that f(R)-gravity is of fourth-
order in the metric approach [10].

In this contest, we can write the total average flux
of energy due to the GWs integrating over all possible
directions as

〈
dE

dt

〉
︸ ︷︷ ︸
(total)

=
G

60

〈
f ′0

(...
Q
ij ...
Qij

)
︸ ︷︷ ︸

GR

− f ′′0
(....
Q
ij ....
Q ij

)
︸ ︷︷ ︸

f(R)

〉
,

(5)

where we point out that for f ′′0 → 0 and f ′0 → 4
3 ,

the previous equation becomes

〈
dE

dt

〉
︸ ︷︷ ︸
(GR)

=
G

45

〈...
Q
ij ...
Qij

〉
, (6)

that is the prediction of GR [14, 17]. In order to
evaluate the above expressions for the flux it is nec-

essary to form explicit expressions for
〈...
Q
ij ...
Qij

〉
and〈....

Q
ij ....
Q ij

〉
for the system under consideration. For

our purposes we consider a binary pulsar system. If we
assume a Keplerian motion of the stars in the binary
system, wherewe mp is the pulsar mass, mc the com-

panion mass, and µ =
mcmp

mc +mp
is the reduced mass, it

is possible to compute the time average of the radiated
power computing the first time derivative of the orbital
period [11]

Ṗb = − 3

20

(
T

2π

)− 5
3 µG

5
3 (mc +mp)

2
3

c5(1− ε2)
7
2

×

×
[
f ′0
(
37ε4 + 292ε2 + 96

)
− f ′′0 π

2T−1

2(1 + ε2)3
×

×
(
891ε8 + 28016ε6 + 43520ε2 + 3072

)]
, (7)

where ε is the orbital eccentricity and T is the orbital
period of the binary.

3 Methodology and Data Analysis

Knowing exactly the Lagrangian that describes the sys-
tem, we can predict the orbital period decay, how-
ever,we want understand how well the relativistic bi-
nary systems can fix bounds on f(R) parameters using
eq. (7), and getting an estimation of the second deriva-
tive of the Lagrangian with respect to Ricci scalar, f ′′0 .
We use the following prescription, the difference be-
tween the first derivative of the binary observed period
variation (ṪbObs ± δ) and the theorethical one obtained
by GR, ∆Ṫb = ṪbObs − ṪGR, is fulfilled imposing that:

ṪbObs − ṪGR − f ′′0 Ṫbf(R)
= 0, (8)

ṪbObs ± δ − ṪGR − f ′′0±δ Ṫbf(R)
= 0, (9)

where δ is the experimental error, that we propagate
on the ṪbObs , into an uncertainty on f ′′0±δ . In this way,
the extra contribution to the loss of energy due to the
emission of GWs radiation in the ETGs regime can pro-
vide to fill the difference between theory and observa-
tions. We select a sample of Observed Relativistic Bi-
nary Pulsars (see their references reported in Tab. 1
of [11]) for which we compute the correction Ṫbf(R)

, the

difference ∆ṪGR between ṪbObs and ṪGR (equal to the
correction −f ′′0 Ṫbf(R)

), the corresponding f ′′0 solution of
(8), the interval centered on f ′′0 and finally, the inter-
val centered on f ′′0 and computed from the difference:
f ′′0+δ

−f ′′0−δ
2 , all results are reported in Tab. 1. In Fig. 1

we show, for sake of convenience, in logarithmic scale,
the absolute values of f ′′0 reported in Tab.1 versus the

ratio
ṪbObs
ṪGR

. There are six binaries in tables, for which

the ETGs are not ruled out 0.04 ≤ f ′′0 ≤ 38, getting

0.5 ≤ ṪbObs
ṪGR

≤ 1.5. For those systems the difference be-

tween ṪGR and ṪbObs can be explained adding an extra
contribution that comes out from the f(R)-thoery. In-
stead for most of binaries we have f ′′0 values that can
surely rule out the theory, since taking account of the
weak field assumption we obtain 38 ≤ f ′′0 ≤ 4 × 107.
From this last values to the first ones, there is a jump
of about four up to five order of magnitude on f ′′0 . The
origin of these strong discrepancies, perhaps, is due to
the extreme assumption we made, to justify the differ-
ence between the observed ṪbObs and the predicted ṪGR
using the ETGs.
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Table 1: Upper Limits of f ′′0 correction to ṪGR of binary relativistic pulsars assuming that all the loss of energy
is caused by Gravitational Wave emission. We reported the J-Name of the system,the difference ∆ṪGR between
ṪbObs and ṪGR equal to the correction −f ′′0 Ṫbf(R)

, the correction Ṫbf(R)
, the corresponding f ′′0 solution of (8), the

interval centered on f ′′0 and computed from the difference
f ′′0+δ

−f ′′0−δ
2 ,where f ′′0±δ ,are the corresponding solutions

of ( 8) taking account of the experimental errors ±δ on the observed orbital period variation ṪbObs .

Name ∆ṪGR Ṫbf(R)
f ′′0 ±∆f ′′0

J2129+1210C -2.17E-14 6.01E-13 3.61E-02 8.32E-02

J1915+1606 -2.04E-14 2.10E-13 9.74E-02 4.77E-03

J0737-3039A -4.23E-15 1.86E-14 2.28E-01 9.15E-02

J1141-6545 -1.65E-14 3.88E-15 4.25E+00 6.44E+00

J1537+1155 5.39E-14 1.42E-15 -3.79E+01 7.03E-02

J1738+0333 -1.56E-15 1.06E-16 -1.47E+01 2.92E+01

J0751+1807 1.41E-13 8.98E-16 -15.7E+01 1.002E+01

J0024-7204J -5.22E-13 3.13E-16 1.67E+03 4.15E+02

J1701-3006B -5.03E-12 8.81E-16 5.71E+03 7.04E+01

J2051-0827 -1.55E-11 4.77E-16 3.24E+04 1.68E+03

J1909-3744 -5.47E-13 2.62E-18 2.09E+05 1.14E+04

J1518+4904 2.41E-13 3.42E-19 -7.05E+05 6.43E+03

J1959+2048 1.47E-11 1.07E-17 -1.38E+06 7.51E+04

J2145-0750 4.01E-13 1.00E-19 -4.00E+06 2.99E+06

J0437-4715 1.59E-13 1.04E-19 -1.57E+06 2.73E+06

J0045-7319 3.02E-07 1.11E-16 2.74E+9 8.13E+07

J2019+2425 -3.00E-11 1.11E-22 2.71E+11 5.41E+11

J1623-2631 4.00E-10 2.02E-23 -1.98E+13 2.97E+13

4 Discussion and Remarks

In this paper, we develop expressions for quadrupole
gravitational radiation in f(R)-gravity theory using the
weak field technique and apply these results, which are
applicable in general, to a sample of a binary pulsars,
though their orbits are eccentric. Here, we seen that,
where the GR theory is not enough to explain the gap
between the data and the theoretical estimation of the
orbital decay, there is the possibility to extend the GR
theory with a generic f(R)- theory to cover the gap.
According to eq. (7),we have selected a sample of rela-
tivistic binary systems for which the first derivative of
the orbital period is observed, we have computed the
theoretical quadrupole radiation rate, and finally we
have compared it to binary system observations. From
Tab. 1, it is seen that the first five systems have masses
determined in a manner quite reliable, while for the
remaining sample, masses are estimated by requiring
that the mass of the pulsar is 1.4M� and, assuming for
the orbital inclination one of the usual statistical val-
ues (i = 60◦ or i = 90◦ ), and from here comes then

the estimate of the mass of the companion star. So a
primary cause of major discrepancies, not only for the
ETGs, but also for the GR theory, between the variation
of the observed orbital period and the predicted effect
of emission of gravitational waves, could be a mistake
in the estimation of the masses of the system. In addi-
tion, other causes may be attributable to the evolution-
ary state of the system, which, for instance, if it does
not consist of two neutron stars may transfer mass from
companion to the neutron star. In our sample, there are
only five double NS that can be used to test GR and
ETGs. Taking into account of the strong hypothesis we
made, the ETG correction to ṪGR can also include the
galactic acceleration term correction ([7], [8]). Here, we
give a preliminary result about the energy loss from bi-
nary systems and we show that, when the nature of the
binary systems can exclude energy losses due to trade
or loss of matter, then, we can explain the gap between
the first time derivative of the observed orbital period
and the theoretical one predicted by GR, using an an-
alytical f(R)-theory of gravity.
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Figure 1: In figure there are shown, for sake of convenience, in logaritmic scale, the absolute values of f ′′0

reported in Tab. 1 versus the ratio
ṪbObs
ṪGR

. We must note that for five binaries the ETGs we are probing is

not ruled out 0.04 ≤ f ′′0 ≤≈ 38, for those systems the difference between ṪGR and ṪbObs is tiny, indeed we get

0.5 ≤ ṪbObs
ṪGR

≤ 1.5. Instead for most of binaries we have f ′′0 values that can surely rule out the theory, since taking

account of the weak field assumption we obtain 38 ≤ f ′′0 ≤ 4× 107. From this last values to the first ones, there
is a jump of about four up to five order of magnitude on f ′′0 .
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