
1 Introduction

During the service life of military aircraft, advances in
avionics technology render certain systems onboard either
obsolete or of limited capability, compared to a state-of-
-the-art system. Mid-life upgrade of military aircraft that
includes insertion of advanced avionics systems in the “avion-
ics architecture” is a cost-effective option to new design [1].
The major challenge in an avionics upgrade design process
is the integration of an advanced system with the systems
already onboard. The integration process is governed by the
avionics architecture of the aircraft [2].

The architecture for military aircraft is based on a func-
tional format. Flight control, navigation, identification of
friend or foe, and communication are the common functional
format [3]. The design rigidity of such an architecture format
limits the degree to which integration can be achieved. The
development of ‘multi-functional avionics systems’, coupled
with architecture rigidity, has made the avionics upgrade
process an engineering challenge. A new design approach,
named Integrated Modular Avionics (IMA), is an attempt to
deal with the current design drawbacks of avionics architec-
ture and to address the problem of technology insertion [4],
[5]. The principles on which these concepts are formulated
are still premature, and there is no major literature on the
subject in the public domain.

A design methodology needs to be developed for an avi-
onics architecture with upgrade potential, from a system
perspective – one that will holistically address all design
parameters and constraints, including technological insertion
[6]. The architecture needs to be in an ‘open format’, to pro-
vide in-built growth potential, and to facilitate insertion of
state-of-the-art systems into the architecture on a continuous
basis during the service life of the aircraft.

This paper presents a framework for the development of
a system methodology to design avionics architecture with
upgrade potential.

2 System Methodology

A system methodology to study the operational needs and
operational environment for deriving the mission require-
ments of military aircraft was developed by Sinha et al [7].
Based on the derived mission requirements, a Mid Life Up-
grade System (MLUS) was structured by Sinha et al [6] to
identify the system elements (components, attributes and
relationships) and develop the system hierarchy [8]. The
MLUS hierarchy has aided the identification of state-of-the
art mission systems for mid-life upgrade of in-service military
aircraft [9]. The mission systems identified include advanced
avionics systems as replacements for obsolete systems on
board, or as additional systems to enhance mission capability.
The insertion of these state-of-the-art avionics systems on
board as part of the upgrade process depends on the “Avion-
ics System Architecture” (ASA) – the platform on which all
avionics systems rest.

The design structure of the ASA is based on state-of-the-
-art technology during the design phase of ASA. As the ASA
remains an integral part of the aircraft during its service
life, the technological parameters on which the design was
based remain static. On the other hand, advances in avionics
systems technology continue, resulting in new or modified
design parameters. Hence, to facilitate the insertion of ad-
vanced systems there is a need for an ASA with Upgrade
Potential (ASA-UP) – one that focuses on the design parame-
ters of future avionics systems.

The IMA concept and the methodology for mid-life up-
-grade analysis of military aircraft provides the foundation
to formulate a research program on ASA-UP design method-
ology. The system methodology developed by Sinha et al [6],
[7], [9] can be explored to identify advanced avionics systems.
The methodology could then be further explored to identify
the ASA-UP design parameters.

In order to develop a methodology that holistically [10]
addresses an ASA-UP design, a system structure [6] for avion-
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ics upgrade first needs to be initially formulated. The system
structure should facilitate the identification of system ele-
ments based on the slated functions of the Avionics Upgrade
and System (AUS). Keeping the provisions of technological
insertion as the focus, the functions of the AUS to be struc-
tured are as follows:
� Identify state-of-the art avionics systems;
� Formulate technological growth parameters;
� Identify the avionics architecture parameters of the aircraft

system; and
� Integrate growth and architecture parameters to identify

the design parameters of ASA-UP.

The structure of the AUS formulated considering the
above functions is presented in Fig. 1.

System framework
After conceptualising the avionics upgrade process from

a system perspective the framework for the design of an

ASA-UP can be developed. The AUS structure identifies the
need for four components – two analysers, an integrator,
and a tester and validator – to aid the design of an ASA-UP.
The components and their stated functions are as follows:

� Analysers: To provide an analysis of the current archi-
tecture and advanced systems, and the identify the
architecture and technological growth parameters;

� Integrator: To integrate the architecture and technological
growth parameters, and to update the design parameters
for an ASA-UP; and

� Tester & Validator: To test and validate the ASA-UP
design parameters for functionality, compatibility and
performance.

When the above modules (components) and their func-
tions have been identified, the system framework for the
design of an avionics architecture with upgrade potential
can be developed. The system framework with the various
modules and the functional flow is presented in Fig. 2.
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Fig. 1: System structure of an avionics upgrade system
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Fig. 2: System framework for the design of an avionic architecture with upgrade potential

Legends:
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Results and discussion
The application of generic system methodology for the

identification of advanced mission systems resulted in the
following:
� Development of a “System Structure of an Avionics Up-

grade System”; and
� Development of a “System Framework for the Design of an

Avionics Architecture with Upgrade Potential”.

System structure
The system structure that has been developed provides

a system perspective of an Avionics Upgrade problem. It
identifies the components of the problem and the functional
requirements that need to be addressed for a holistic solution.
An interrelationship analysis of the components and their
attributes (functional requirements) provides the methodol-
ogy to integrate the design parameters of the architecture
and advanced avionics systems.

System framework
The system framework identifies four analysis modules –

Architecture analysis, Avionics upgrade analysis, Architecture
design and Decision support. Each of these modules com-
prises various sub-modules that aid analysis and decision
support. The sub-module frameworks need to be further
developed in detail for functionality of the modules. The
system framework caters for feedback loops to optimise the
design.

Conclusion
The system approach adopted for developing the frame-

work for the design of an Avionics Architecture with Upgrade
Potential provides an avenue for a holistic analysis of the
problem. The methodology developed addresses all design
parameters that need to be considered in the design process.
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