
1 Introduction
Testing is becoming an increasingly important phase in

the development process. The sooner a fault is found in the
source code, the fewer resources it takes to correct it. Automat-
ing test cases significantly improves the efficiency and reduces
the duration of testing. Many tools have been applied for
testing purposes, for example TTCN-3 for automating whole
test cases [1].

Refactorisation is a commonly used technique for chang-
ing the syntax of program codes without making any changes
to their behavior [2], [3]. We have concentrated on refactoring
TTCN-3 source codes.

1.1 Related work
Many tools have already been developed for refactoring

sources written in different languages, such as C++ and
Java [4, 5], and even for TTCN-3 [6]. These tools are all
semi-automatic, which means that the developer has to inter-
act during the refactorisation process. These semi-automatic
tools aim easier readability of the source. We have concen-
trated on achieving easier maintainability, scalability, and a
compact source. This kind of refactorisation can be carried
out automatically, without human interaction.

There have not yet been any automatic tools for refac-
toring TTCN-3 sources, so our goal was to develop data
structures and automatic algorithms for refactoring TTCN-3
sources.

1.2 Introduction to TTCN-3
TTCN-3 is a test description language that was standard-

ized by ETSI in 2000 [1].
The test written in TTCN-3 runs on a test executor. The

executor is connected to the SUT (System Under Test). From
the viewpoint of TTCN-3, the SUT is a black box, that is,
TTCN-3 determines whether the SUT works as it should by
examining the responses given by the SUT for certain inputs.

A TTCN-3 source consists of modules on the topmost
level. Each module has two parts, namely, the module defini-
tion part and the module control part [1].

The module definitions part includes declarations of
data types, module-level variables, ports and definitions of
templates. Most of the generally used simple data types (inte-
ger, char, charstring) can be found in TTCN-3, but it has

structured data types as well (record, set) [1]. Templates are
used for defining the structure of messages to be sent or
received.

The module control part coordinates the test execution.
It contains function calls, message sending and receiving
instructions, and value notations [1].

2 Refactoring the static part
In this section we introduce a data model and an algo-

rithm for refactoring the module definitions part. The data
model consists of graphs that the data declarations and de-
finitions of the source can easily be transformed to. The
algorithm seeks for redundancy in this model and reduces it
using inheritance (modified templates in TTCN-3) and refer-
ences. We will concentrate on refactoring the definitions of
record-typed templates.

2.1 Data model for the static part
First of all, the original TTCN-3 source has to be trans-

formed into a data model by which the refactoring steps can
be carried out efficiently. This model consists of two layers
(Fig. 1). The lower layer is a directed graph called the type
graph, while the upper one consists of directed trees called
value trees.

The type graph consists of two kinds of nodes: T-nodes
and F-nodes (Fig. 1). Each T-node represents a data type in
the source. It stores the name of the data type that it repre-
sents, as well as pointers to its parent node and child nodes.
As the structured data types in the source, each T-node has
its fields in the data model, which are represented by the
F-nodes, the child nodes of the T-node. An F-node stores the
name of the field it represents as well as pointers to its parent
node and child node, which is a T-node that represents the
data type of the field. The value trees are built from the tem-
plate definitions of the source code. They consist of V-nodes
that store the values defined in the templates of the source. A
V-node also contains pointers to its parent node and child
nodes which are all V-nodes, and a pointer, the modifies-
-pointer, which is only set if the template represented by the
tree inherits the values of some of its fields from another
template.

Once the type graph and the value trees have been cre-
ated, the value trees have to be connected to the type graph in
the following way: Each V-node is connected to the T-node

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 33

Acta Polytechnica Vol. 47 No. 4–5/2007

Refactorisation methods for TTCN-3
L. Eros, F. Bozoki

In this paper we introduce automatic methods for restructuring source codes written in test description languages. We modify the structure of
these sources without making any changes to their behavior. This technique is called refactorisation. There are many approaches to
refactorisation. The goal of our refactorisation methods is to increase the maintainability of source codes. We focus on TTCN-3 (Testing and
Test Control Notation), which is a rapidly spreading test description language nowadays. A TTCN-3 source consists of a data description
(static) part and a test execution (dynamic) part. We have developed models and refactorisation methods based on these models, separately
for the two parts. The static part is mapped into a layered graph structure, while the dynamic part is mapped to a CEFSM (Communicating
Extended Finite State Machine) – based model.

Keywords: TTCN-3, formal methods, refactorisation, automatic.

that represents the type of value stored in the V-node and to
the previously mentioned T-node’s parent node (if one ex-
ists), which is an F-node (Fig. 1).

2.2 Ways of refactorisation
We have concentrated on two types of redundancy. In the

following we will write about these two kinds of redundancy,
and the ways in which our algorithm reduces them.

The first type of redundancy is caused by equal templates,
in other words, templates of the same type with all the corre-
sponding fields having equal values. In this case, the algo-
rithm uses references to reduce the redundancy. There are
two cases of this type of redundancy.

In the one case, a separately defined template appears as
a part of another template. Handling this case is simple: the
repetitive sub-template has to be replaced by a reference to
the separately defined template.

In the other case, a template that was not defined sepa-
rately appears several times as a sub-template of other tem-
plates. When handling this kind of repetition, the repetitive
sub-template has first to be defined separately, then all of its
occurrences have to be replaced with a reference to this newly
defined template. An example of this kind of refactorisation
in the source and in the model can be seen in Fig. 2 (the origi-
nal structures are on the left, while the refactorised ones are
on the right).

The second type of redundancy is caused by similar tem-
plates of the same type, in other words, templates that have
relatively many identical fields. This kind of redundancy is
handled by modified templates (inheritance) in the following
way: one of the similar templates has to be left just as it was
before, and the other has to be turned into a modified tem-
plate that only redefines the non-equal fields and inherits the
rest from the other template (in the data model the modi-
fies-pointer has to be used). Fig. 3. shows how this kind of
refactorisation works in the source and in the data model.

34 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 4–5/2007

Fig. 1: Transforming the source into the data model (F-nodes: light grey, T-nodes: dark grey, V-nodes: white)

Fig. 2: Refactorisation by reference Fig. 3: Refactorisation by inheritance

To be able to manage the level of similarity between two
value trees of the same type, we defined the RoS (Rate of
Similarity):

RoS �

number of equal leaves
number of leaves of the value tree having more leaves . (1)

If the RoS of two value trees exceeds a limiting value, these
two value trees should be refactorised.

2.3 Refactoring algorithm of the static part
In this section, we introduce the refactorisation algorithm

of the static part. The algorithm has four steps as follows.
In the first step of the algorithm, the N-matrices are

created for each T-node. These matrices are used for deter-
mining if two value (sub-) trees of the same type are equal. An
element of the matrix is 1 if the corresponding two value trees
are equal, if not, it is 0.

In the second step, the equal value (sub-) trees of the same
type are handled by traversing the N-matrix of the T-node.
The N-matrix is traversed twice. During the first traverse, the
algorithm only handles the repetitions where one of the value
trees is a standalone tree, and during the second traverse it
handles all the remaining repetitions (the repetitions where
both of the value trees are sub-trees of other value trees). This
ensures that as many repetitions as possible are handled by
references to originally defined value trees.

In the third step, the D-matrices are created for each
T-node. These matrices store the RoS for each pair of value
trees. After creating the matrices, the values below the limit-
ing value of the T-node are cleared.

In the fourth step, the D-matrices are used to create maxi-
mal weight spanning trees with the value trees as their nodes,
for each T-node, using Prim’s algorithm [2]. Then two value
trees are refactored by inheritance if they are connected by an
edge in the spanning tree. The reason for building a maximal
spanning tree is that in this way a maximal number of fields
can be defined by inheritance, so a minimal number of fields
have to be redefined.

3 Refactoring the dynamic part
In this section we introduce a data model and an algo-

rithm for refactoring the module control part. The main
point of this algorithm is to find repetitive sequences of
instructions and turn them into bodies of functions or altsteps
(special functions in TTCN-3), depending on their structure

[1]. The original occurrences of the repetitions are replaced
by calls of the corresponding functions.

3.1 Data model for the dynamic part
The module control part is transformed into a

CEFSM-based model. A CEFSM is represented by a directed
graph. In our approach, a CEFSM state consists of a node
and a directed edge in this graph. The states have several
attributes:

The guard is a condition that enables the transition to the
state, the attribute event is the event that leads to the transi-
tion to the state, the action list is the sequence of instructions
to be executed during the transition between two states, while
the attribute called parameters contains the parameters of
the action list.

When mapping the source into the CEFSM-model, the re-
ceive and timeout instructions of the source will be the events
of the CEFSM graph and the instructions between two receive
instructions will be instructions of action lists. However, some
TTCN-3 structures need to be handled in different ways.

An if-else structure is mapped into a two-armed branch.
One of the arms gets the if-condition as its guard and the
instructions between the if- and the else-statement, while the
other arm gets the negative of the if-condition as its guard
and the instructions after the else-statement. Both of the
events are empty. An example of this kind of transformation
is shown in Fig. 4.

Alt structures describe alternative behavior [1]. These
statements are also mapped into branches. An alt-branch
has the same number of arms in the model as the alt state-
ment has in the source. The guards and events of the arms in
the source will be the guards and events of the arms in the

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 35

Acta Polytechnica Vol. 47 No. 4–5/2007

Fig. 4: Transforming an if-else structure into the CEFSM-model

Fig. 5: Transforming an alt structure into the CEFSM-model

CEFSM. The action lists will contain the instructions of the
corresponding arms in the source code (Fig. 5).

The states labeled “T” in the above figures are called ter-
minating states. They are used for collecting the arms of the
branches. All their attributes are empty.

Functions, for-cycles and while-cycles also have to be
handled in special ways, since – when turning a sequence of
instructions into the body of a function or an altstep – instruc-
tions from inside the body of a function or a cycle must not be
handled together with instructions from outside it. To avoid
these kinds of cases, we have introduced hyper states. A
hyper state looks like a simple state from the outside, but it
contains the CEFSM-model of the body of the function or
cycle inside. The event of a hyper state is also special. It can be
call_ for, call_while, or call_ function, depending on the kind of
structure that it represents. Thus, functions and cycles are
transformed into hyper states, and function calls are trans-
formed into states referencing the corresponding hyper state
(Fig. 6.).

3.2 Pre-arranging the action lists
After creating the CEFSM-model, the action lists have to

be pre-arranged into a uniform order in order to create
potentially longer repetitive sequences of instructions in the
action lists. This pre-arrangement is possible, because the
order of some instructions can be changed without changing
the behavior of the system, and it is useful, because handling
these longer repetitive sequences eliminates more redun-
dancy. The rules of this pre-arrangement are as follows:

Changing the order of message sending instructions is not
allowed. If referencing a variable, the last value notation of

the variable has to be kept before the referencing instruction.
The declaration of the variable has to come before the first
reference to the variable and before all the instructions that
change its value.

To achieve this uniform order, a dependency graph is gen-
erated from the instructions of the action list. Each instruction
is mapped to a node. If a directed edge points from node A to
node B, then the originating node (the instruction corre-
sponding to node A) must be kept before the terminating
node (the instruction corresponding to Node B). Fig. 7 shows
an original source code, its dependency graph, and the source
code after the pre-arrangement.

3.3 Handling sequential repetitions
This step of the algorithm searches for repetitive se-

quences of instructions within the action lists. Before starting
to seek for these repetitions, list AL has to be created with the
action lists as its elements, beginning with the longest one.
After creating AL, the search for repetitions works as follows:
The algorithm selects a sequence, called BS (base sequence)
that all the sequences with the same length are compared to.
At the beginning, the length of BS is equal to the length of
the longest action list, then it is decreased by one in each itera-
tion. Since the same sequence is not likely to be found in the
same action list, once the algorithm has found a sequence that
matches BS, it jumps to the next action list (the next element
of AL). When all the sequences that match BS are found, a
whole repetition is explored. If sequences of the newly found
repetition overlap with sequences from repetitions that were
found earlier, they are thrown away. If the size of the repeti-
tion (the product of the length of BS and the number of its
occurrences) are below a limiting value, the repetition is
thrown away. Finally, the repetition is stored in list RL, which
contains some information about the repetitions found, and a
new BS is selected. If the repetition contains equal action lists,
this is indicated in matrix RM, which is used in the next
step of the algorithm. When RL is complete, the repetitive
sequences are turned into functions.

3.4 Handling structural repetitions
After handling the sequential repetitions, the algorithm

searches for repetitions having repetitive structures that cover
more states. Two states are equal if their events and action
lists are equal. The input of this part of the algorithm is RM.
In each iteration of this step, the algorithm chooses a pair of

36 © Czech Technical University Publishing House http://ctn.cvut.cz/ap/

Acta Polytechnica Vol. 47 No. 4–5/2007

Fig. 6: Hyper state representing a for-cycle in the CEFSM-model
(g=guard, e=event, al=action list, p=parameters)

Fig. 7: Original code, dependency graph and rearranged code

states having action lists that were equal according to RM. If
the events of these two states are equal (the states are equal),
then their sibling nodes in the CEFSM-graph are compared.
If all the corresponding siblings are equal, then their parent
nodes are examined in the same way, recursively, until the
whole repetition is revealed. Then the whole repetition is
turned into the TTCN-3 structure (function or altstep) that
best fits the structure of the repetition [1].

4 Case study
In this section we demonstrate our algorithm on a

TTCN-3 source code. The original and refactorised source
codes are shown in Fig. 8.

5 Comparison with other solutions
In this part we focus on a refactorisation tool for TTCN-3

named T-Rex [6]. The basic concept of this solution is to
search the source for typical patterns called smells, indicating
that the quality of the code can be increased (for example, a
smell can be an unused parameter). The list below shows
some of the smells that are implemented in T-Rex (in prac-
tice, many smells are not implemented):
� Constant Actual Parameter Value smells for templates,
� Duplicate Alt Branches,
� Fully-Parametrised Templates,

� Singular Component Variable/Constant/Timer Reference,
� Singular Template reference.

The method searches for these kinds of smells and indi-
cates them to the user, who can decide to ignore or correct
the indicated smells. Unlike our method, T-Rex is a semi-
-automatic approach as user interaction is needed for the
refactorisation. This solution rather focuses on the readability
of the code, while our goal is to decrease its redundancy and
increase its maintainability.

6 Summary
In our paper we have introduced data models and algo-

rithms for refactoring source codes written in TTCN-3. The
data model of the module definitions part is a layered model.
It consists of the type graph and the value trees. The algo-
rithm uses references and inheritance in order to reduce the
redundancy in the module definitions part. The module con-
trol part is transformed into a CEFSM-model. In this model
the algorithm seeks for sequential and structural repetitions
and turns them into functions or altsteps. In this way, the
source becomes more compact and more easily maintainable
and scalable.

Acknowledgments
First of all, we would like to thank our supervisors, Gyula

Csopaki, Ph.D. and Antal Wu-Hen-Chang for their direction
and for their advice during our research. We would also like
to thank our department for providing the necessary equip-
ment to us.

References
[1] ETSI ES 201 873-1 3 1.1 Methods for Testing and Specifica-

tion (MTS) The Testing and Test Control Notation Language,
version 3; Part 1: TTCN-3 Core Language, ETSI, 2005.

[2] Weiss, M. A.: Data Structures and Algorithm Analysis in
C++, Addison-Wesley, 2006, p. 373–376.

[3] Mens, T.. Tourwe, T.: Survey of Software Refactoring.
IEEE Transactions on Software Engineering, Vol. 30 (2004),
No. 2, p. 126–139.

[4] Ref++ for refactoring C++ sources,
http://www.refpp.com

[5] Transmogrify for refactoring Java sources
http://transmogrify.sourceforge.net

[6] Neukirchen, H., Bisanz, M.: Utilising Code Smells to
Detect Quality Problems in TTCN-3 Test Suites, TestCom
/Fates 2007 conference.

Levente Eros
e-mail: el492@hszk.bme.hu

Ferenc Bozoki
e-mail: bf490@hszk.bme.hu

Dept. of Telecommunications and Media Informatics

Budapest University of Technology and Economics
Magyar Tudosok korutja 2
1117 Budapest, Hungary

© Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 37

Acta Polytechnica Vol. 47 No. 4–5/2007

Fig. 8: Original and refactorised TTCN-3 source codes

