
1 Introduction
A variety of computational techniques exist to describe

the fracture behaviour of quasi-brittle materials. These mod-
els can be classified into two main groups: continuous and
discontinuous models. In a continuous model, the displace-
ment and strain fields remain continuous, even after a strong
localization of the deformations. Localization of deformation
can be triggered by strain softening. A major problem with
classical continuum models is that the governing equations
lose ellipticity for quasi-static problems and hyperbolicity
for dynamic problems if strain softening is introduced. When
using finite elements, this results in a strong sensitivity to the
mesh. Upon mesh refinement, deformations localize into a
band of zero thickness and complete structural failure can
occur without dissipation of energy. To regularize the govern-
ing differential equations, non-locality or rate dependency
can be introduced in the constitutive model. This controls the
zone in which the deformations tend to localize. Examples of
regularized continuum models are non-local damage models
[1], gradient damage models [2], Cosserat continuum models
[3] or viscous models [4, 5].

Discontinuous models represent cracks as displacement
discontinuities. A discontinuous term can be incorporated
into the strain field (weak discontinuity) [6–8] or into the dis-
placement field (strong discontinuity) [9–18].

In this paper, a displacement discontinuity is introduced
using a specific property of finite element shape functions.
These form a partition of unity, which allows enhancing
nodes with additional degrees of freedom. The first section
covers the kinematics of a body crossed by a discontinu-
ity. Then, the governing equations are derived. In the third
section, implementation aspects are discussed and finally an
example is treated.

2 Cohesive zone model based on
partitions of unity

2.1 Kinematics of a displacement jump
Consider a body � crossed by 2 non-intersecting disconti-

nuities, �1 and �2, as shown in Fig. 1. The displacement field
is given by:
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where u is the displacement field of the body �, �u and ~u i are
continuous fields and H�i

is the Heaviside step function
defined as:
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where � i
� and � i


 are subvolumes of � such that
W i i� �� 
� � and the discontinuity �i is the border between
the two subvolumes. The normal ni to the discontinuity is
pointed towards � i

�.

Taking the symmetric gradient of the displacement field
(1) results in the infinitesimal strain field:
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where ��i
is the Dirac delta distribution centred on the dis-

continuity.

2.2 Partition of unity concept
A partition of unity is a set of functions Ni, such that:
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In this paper, the partition of the unity property of finite element shape functions is used to introduce displacement discontinuities into finite
elements. The discontinuous character of the displacement field is captured with the Heaviside step function. Using the partition of unity
concept, the governing equation of the continuum and the discontinuity are separated and are consequently described by different
constitutive laws. Inside the discontinuity, a plasticity based constitutive law is used to describe the decrease of tractions in function of the
crack opening while the continuum is assumed to remain elastic. The methodology will be described and validated with a comparison
between numerical simulations and experimental results.
This paper is dedicated to J. Sejnoha, TU Prague, with respect and admiration for his scientific achievement.
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Fig. 1: Body crossed by 2 discontinuities
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where n is the number of discrete points. Since finite element
shape functions must be able to describe rigid body modes,
they must fulfil Eq. (4) and consequently they form a partition
of unity. Duarte and Oden [19] showed that a field such as the
displacement field can be interpolated making use of these
partitions of unity,
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where ai are the regular degrees of freedom, bij are the en-
hanced degrees of freedom and �j is an enhanced basis with k
basis terms. As can be seen, the classical degrees of freedom
are enriched with additional degrees of freedom, when neces-
sary. This enhancement can be done locally. Belytschko and
Black [20] and Moës et al. [21] used the partition of unity
concept to enrich standard approximations with near-tip
asymptotic fields and a discontinuous function for elastic
crack growth. Wells and Sluys [17] introduced the partition of
unity technique for describing cohesive cracks in a material.

When the Heaviside function is chosen as an enhanced ba-
sis, the displacement field can be interpolated according to
equation (5):
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where N is a matrix containing the finite element shape func-
tions, a are the regular degrees of freedom and bi are the
enhanced degrees of freedom related to discontinuity i. For
each crack, a basis term and an additional set of degrees of
freedom is added.

2.3 Governing finite element equations
The weak form of the virtual work equation without body

forces reads:
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where � is taken from the set of admissible displacement vari-
ations and Se is the outer surface where external tractions t
are applied. Using a Galerkin approach, the admissible dis-
placement variations can be decomposed in the same manner
as the actual displacement field. Inserting the kinematical
expressions for multiple (in this case m) non-intersecting dis-
continuities, the virtual work equation can be rewritten as:
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Taking first variations of ��(~�i �0) followed by variations of
~�i (�� �0), a set of m � 1 equations is obtained.
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where Ti are the traction forces working at the discontinuity
�i. To obtain equation (9), the enhanced displacement field,
~u, is assumed to be zero where essential boundary conditions
are imposed. From equations (9, 10), the set of discretized
equations is obtained by introducing the discretized form of
the displacement and the strain field.
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In these equations, the continuum response and the dis-
continuity response are completely split. The continuum is
assumed to remain elastic during the complete computation.
The stress rate in the continuum can be easily obtained from
the expression of the strain field in the bulk, given by Eq. (3):
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where Ce is the elastic material tensor. The behaviour at the
discontinuity is stated in terms of tractions and separations.
The separation of the discontinuity can be computed as:

� � 
 � � 
 � �� 
u u u u u u Nb� ~ � ~ . (13)

Eq. (13) shows that the separation of the discontinuity is
expressed as a function of the enhanced degrees of freedom.
The traction rate is defined as:

� �T DNbi i� , (14)

where D is the material tangent for the discontinuity.
This material tangent will be further elaborated in the next
paragraph.

Eq. (11) is further linearized by inserting Eq. (12) and Eq.
(14). After some mathematical manipulations, the linearized
set of equations is given by
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where
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It can be seen from previous equations that the global sys-
tem of equations (Eq. (15)) remains symmetric when Ce and D
are symmetric. It should be noted that equations (16) are valid
when only discontinuity j crosses the element, but the element
is also influenced by discontinuity i. Note that all stiffness
contributions in equations (16) are very similar. The crucial
difference between the terms in equations (16) is the presence
of the Heaviside function. This makes the finite element
implementation relatively simple.

2.4 Numerical implementation aspects
2.4.1 Integration of the crossed elements

From Eq. (16) it can be seen that the Heaviside step func-
tions should be taken into account for the integration of the
stiffness matrix. This means that the integration must only be
performed on the side of the element where the Heaviside
function equals one, i.e. � i

�.

Obviously, enough integration points must be present on
that side so that an adequate integration is performed. Since a
discontinuity can cross the element arbitrarily, the safest
solution is to redefine the integration scheme. When only
one discontinuity crosses the considered element, the integra-
tion rule is adapted following Wells and Sluys [17]. For the
triangular quadratic element as the underlying finite ele-
ment, 23 integration points – 21 in the continuum and 2 for
the discontinuity – are inserted as shown in Fig. 2a. When
2 non-intersection discontinuities cross the same element, the
integration rule is re-adapted again as shown in Fig. 2b. In
this case, 15 integration points for the continuum and 4 inte-
gration points for the discontinuity are used. Of course,
depending on the position of the discontinuities, the integra-
tion rule might change.

2.4.2 Enhanced nodes
Another implementation issue is the enhancement of

the nodes. Only nodes whose support is crossed by a disconti-
nuity should be enhanced. Furthermore, the enhanced
degrees of freedom of the nodes on the support of the crack
tip remain constrained. Consequently, the separation of the
crack tip is zero. An overview of which nodes should be
enhanced is given in Fig. 3. The enhanced nodes are repre-
sented by squares, while circles represent the nodes at the
support of the crack tip.

Since the crack can freely run through the finite elements,
it is possible that a discontinuity runs close to a node. As a
result, a small proportion of the support of the node lies in
either � i

� or � i

. In this case, the global stiffness matrix is

not necessarily well conditioned. For this reason, an extra con-
dition is introduced:

min( , )� �

�

s s

s
tol

� 

� (17)

where � s is the volume of the support of a node. The toler-
ance is dependent on the precision of the solver. When condi-
tion (17) is not met, the considered node is constrained. The
influence will be spread out over the other nodes.
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Fig. 3: Definition for enhancement of nodes (squares represent
enhanced nodes)

(a) (b)

Fig. 2: Location of integration points for an element crossed by
(a) 1 discontinuity and (b) 2 discontinuities

Initiation and propagation rules
An important issue is the initiation of the discontinuity. A
criterion is needed to decide when a discontinuity should be
initiated and should propagate. A typical example of an
initiation criterion is a plasticity yield surface: whenever the
stress state in one integration point of the considered element
is situated outside the elastic domain bounded by the yield
surface, a discontinuity is initiated, as will be explained in
section 7.
Another important item is the direction of the discontinuity.
Oliver [16] stated that the direction of the discontinuity could
be found from the stress state at the moment of initiation.
When using a plasticity yield surface as the initiation criterion,
the direction can be obtained by means of a bifurcation
analysis.
Furthermore, a discontinuity can only grow from a previous
crack tip to introduce path continuity, and discontinuities can
only grow at the end of a time step. In this case, no
discontinuities are introduced in non-equilibrium states and
the quadratic convergence of the Newton-Raphson process is
ensured [17]. A discontinuity crosses each time through the
whole element.
When allowing multiple discontinuities to grow without
intersection, specific interaction rules should be defined.
Different cases can be considered, namely
a) only one crack tip touches the considered element,
b) two crack tips touch the considered element,
c) three crack tips touch the considered element,
d) one crack tip touches an element that is already crossed.
The first case is the most common case. The stress state in the
considered element is checked and the initiation criterion
decides whether the discontinuity should propagate along the
computed direction or not.

The second case implies several possibilities:
� the two crack tips link and form one crack,
� one crack propagates while the other stops,
� both cracks grow, without intersecting.

To decide which case occurs, the normal ncomp is computed
according to the present stress state in the considered element.
Then the normal ncon to the connecting line, i.e. the line that
connects the crack tips, is computed. From this normal, a



3 Cohesive zone model
The behaviour within the discontinuity is described by a

plasticity based cohesive zone model. The adopted plasticity
model was proposed by Carol et al. [22] for use in interface
elements. Consequently, the plastic yield function is given in
the traction space instead of the stress space. A hyperbolic
yield surface is introduced,

f T c T c ft n t� 
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2 2 2( tan ) ( tan )� � (18)

where  !T � T Tn t, are the normal and tangential component
of the traction vector, c is the cohesion, ft the tensile strength
and � the internal friction angle of the material. For tension,
an associative flow rule is adopted. The evolution of the yield
surface is governed by the decrease of tensile strength and
cohesion throughout the computation:
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where ft0 and c0 are the initial values for the tensile strength
and the cohesion, GfI is the mode-I fracture energy, GfII is the
mode-II fracture energy and Wcr is the energy dissipated
during fracture processes. The energy is defined as:
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where  !� � � �n
pl

t
pl, are the normal and tangential com-

ponent of the plastic separation vector. The decrease of
tensile strength and cohesion is coupled to the energy dis-
sipated during the fracture processes. Moreover, the choice of
Eq. (19a)/(19b) ensures that the total mode-I fracture
energy/mode-II fracture energy is dissipated when the tensile
strength/cohesion vanishes. Furthermore, the decrease of
tensile strength and cohesion is coupled: when a material is

damaged due to tensile loading, the tensile strength but also
the cohesion decreases.

The tangential stiffness and the stress update are obtained
with classical elasto-plastic equations. The tractions are
defined through:

T D� 
e pl( )� � . (21)

The plastic deformation rate is defined as:
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where �	 is the plastic multiplier rate. For tension, an associa-
tive flow rule is adopted. The plastic deformation rate can be
introduced in Eq. (22):
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The plastic multiplier rate can be obtained through the
consistency equation:
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where h is the hardening/softening modulus. Inserting the
result for the plastic multiplier into equation (23) yields the
tangential stiffness:
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The tangential stiffness can be inserted in the finite ele-
ment equations (see Eq. 14).

The elastic stiffness is chosen very high, in theory infinite,
in order to suppress the artificial elastic part of the solution.
Since a discontinuity is only inserted when the yield surface is
violated, the jump is completely inelastic.

4 Numerical example
Nooru-Mohamed [23] examined double edge notched

specimens of different sizes (200×200×50, 100×100×50,
50×50×50 mm), subjected to different loading paths. All
specimens were placed in a special loading frame, allowing a
combination of shear and tensile loading. For the numerical
simulations presented in this section, only one loading path is
considered (path 4 in the experiments).

Double-edge notched specimens, shown in Fig. 4, are first
loaded in shear until a certain value of the lateral force Ps is
reached. Afterwards, the lateral shear force is kept constant
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tolerance is computed. The obtained limit values for the
normal are ntol1 and ntol2. When the normal computed from
the stress field lies within the zone defined by ntol1 and ntol2, the
cracks are connected. In the other case, one crack propagates
along the normal computed from the stress field while the
other crack is stopped. The propagating crack can be chosen
arbitrarily. Another possibility is to allow the crack with the
highest energy dissipation (main crack) to propagate. Another
option is to let both cracks propagate. In this case, the cracks
may or may not intersect. The case of intersecting cracks is not
considered in this paper.
The third case can be solved in the same way, only more linking
possibilities should be considered here.
The last case is simply solved by arresting the crack tip. It would
also be possible to let the crack grow, but only if the
discontinuities inside the element do not intersect. This is
however not considered.
It is clear that the defined interaction rules are more or less
arbitrary. Nevertheless, the rules are straightforward and
relatively easy to implement. If necessary, the adopted rules
will be refined.

Ps

Pn

25 25150

65

100

100

A

A’
B’

B

3

0

C

Fig. 4: Geometry of the specimen (all dimensions in mm)



while a tensile load (Pn) is applied. The specimen is supported
at the bottom and along the right side below the notch.
Nooru-Mohamed [23] applied three different values for the
lateral shear force, i.e. (a) Ps � 5 kN, (b) Ps � 10 kN and (c)
Ps � max. For the last case, the specimen is loaded laterally
until it no longer sustains the lateral forces.
� c0 � 20 MPa,
� GfII � 0.1 N/mm,
� tan � � 0.5.

For the continuum, the material paramters are : Young’s
modulus E � 25000 MPa and Poisson’s ratio � � 0.2.

The obtained load-deformation curve is shown in Fig. 6a.
When compared with the experimental curve, a good agree-
ment is found. Especially the peak load is simulated remark-
ably well. The post peak response in the finite element simu-
lation is more brittle. The computed crack path is compared
with the experimentally obtained path. As can be seen in Fig.
6b, the computed crack path is in good agreement with the
experimentally observed crack path.

During the experiments, Nooru-Mohamed also con-
nected LVDTs to the specimen in order to study local defor-
mations. The position of these additional LVDTs is visualized
in Fig. 7. The recorded deformations are plotted versus the
shear deformation �s, and compared with the computed val-
ues in Fig. 8a–e. Examining Fig. 8a and Fig. 8e, the calculated
deformations for LVDT 1 and LVDT 5 show a good agree-
ment with the measured values. The deformation for LVDT 2,
Fig. 8b, is not captured with the calculations. The computed
crack path runs outside the measuring range of LVDT 2. As a
result, the experimentally observed increase in deformations
is not observed in the computations. For LVDT 3 and LVDT 4,
the measured and calculated deformations show the same
tendency. First a small increase is noticed. When the crack has
passed the location of the LVDT, the deformations start to de-
crease because the crack passes outside the measuring range
of the LVDT.

The overview in Fig. 8a–e shows that apart from the load
deformation curve and the final crack path, also local infor-
mation is captured in a reasonable way.

Finally, the same model and model parameters are used
to simulate load case (a). In this case, the lateral force is in-
creased until Ps � 5 kN. Then, the lateral force is kept constant
and a tensile load is applied. The comparison of the com-
puted load deformation curve with the experimental ob-
tained curve is shown in Fig. 9a while the experimental and
computed crack path are visualized in Fig. 9b.

Again, the peak load is captured remarkably well. The
computed post peak response is slightly more brittle. When
the crack path is studied, it can be observed that the crack
which grows from the left notch is in agreement with the ex-
perimentally observed crack. The crack growing from the
right notch is more curved than the experimentally observed
crack.
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Fig. 5: Mesh used for analysis
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Fig. 7: Location of additional LVDT
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Fig. 6: (a) Experimental versus computed tensile load deforma-
tion curve and (b) experimental versus computed crack
path
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Fig. 9: (a) Experimental versus computed load deformation curve and (b) experimental versus computed crack path


