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Abstract. Respiratory Sinus Arrhythmia, the variation in the heart rate synchronized with the
breathing cycle, forms an interconnection between cardiac-related and respiratory-related signals. It
can be used by itself for diagnostic purposes, or by exploiting the redundancies it creates, for example
by extracting respiratory rate from an electrocardiogram (ECG). To perform quantitative analysis and
patient specific modeling, however, simultaneous information about ventilation as well as cardiac activity
needs to be recorded and analyzed. The recent advent of medically approved Electrical Impedance
Tomography (EIT) devices capable of recording up to 50 frames per second facilitates the application of
this technology. This paper presents the automated selection of a cardiac-related signal from EIT data
and quantitative analysis of this signal. It is demonstrated that beat-to-beat intervals can be extracted
with a median absolute error below 20ms. A comparison between ECG and EIT data shows a variation
in peak delay time that requires further analysis. Finally, the known coupling of heart rate variability
and tidal volume can be shown and quantified using global impedance as a surrogate for tidal volume.

Keywords: Electrical impedance tomography, respiratory sinus arrhythmia, cardio-respiratory cou-
pling, heart-rate variability.

1. Introduction
Electrical Impedance Tomography (EIT) is a powerful
imaging tool. It seeks to reconstruct the impedance
distribution inside a patient from measurements on
the boundary. These measurements are non-invasive,
painless and have no known side effects. This makes
EIT an ideal tool for long-term monitoring of patients.
Since the electrical impedance of lung tissue varies
greatly with air content, the most common use for med-
ical EIT is in pulmonary monitoring. Here it serves
to visualize and analyze the regional distribution of
ventilation, which in turn can be used for example
to automatically optimize the respirator settings for
mechanically ventilated patients [1]. Although the
most prominent changes in conductivity in the thorax
originate from respiration, a signal that is roughly
an order of magnitude smaller can be attributed to
cardiac activity. A question still unanswered is the op-
timal electrode configuration to maximize the quality
of the cardiac related signal [2].

In mechanically ventilated patients, the distribution
of the ventilation is a very important parameter. If
water accumulates in the dorsal lung regions, these
regions may collapse and thus may not be ventilated
at all. At the same time, the ventral regions may
be over-ventilated, leading to potentially lethal lung
damage. However, distribution of ventilation is not
the only parameter of importance, perfusion is as
well. If the pressure is set very high to optimize the
ventilation, this may simultaneously hinder cardiac
activity, thus leading to a reduction in gas exchange.

Monitoring cardiac functionality is therefore a task of
equal importance.

In addition to heart rate (HR), heart rate variability
(HRV), i.e. the change in timespan between two con-
secutive heartbeats, has received increasing attention
recently. It has been examined as an indicator for
stress [3], for sleep stages [4] and even as a predictor
for septic shock [5]. Respiratory sinus arrhythmia
(RSA) is an oscillation of the heart rate in sync with
respiration. In the inspiration phase, an increase in
heart rate can be observed, whereas a decrease in
heart rate occurs in the expiration phase. This fact
can be exploited to extract the respiratory rate (RR)
from an electrocardiogram (ECG) [6]. At the same
time, if an individual model for the cardio-respiratory
coupling can be calculated or learned, the breathing
signal could be used to improve the estimation of the
cardiac related signal in a multi-sensor data fusion
setting.

EIT is widely used in medical research and its intro-
duction into standard clinical practice is now immi-
nent. The world’s first commercial medical EIT device
was released in 2011 by Dräger Medical GmbH, under
the name PulmoVista® 500 [7]. This device works
with a 16-electrode belt and is capable of recording up
to 50 frames per second (FPS). With such a high frame
rate, the noninvasive nature of the measurement, and
the possibility to measure lung- and cardiac-related
signals simultaneously, the device seems an ideal tool
for analyzing cardio-respiratory coupling.
This paper presents a proof-of-concept study con-
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Figure 1. Electrode position in the experiment: A
EIT electrode belt, B EIT reference electrode, C1−3
ECG electrodes.

sisting of simultaneous EIT and ECG recordings. In
Section 2, technical details are presented. Section 3
presents the results and a discussion, followed by the
conclusions in Section 4.

2. Materials and methods
2.1. Hardware
EIT measurements were obtained using the Pulmo-
Vista® 500 EIT device, operating at a rate of 50FPS.
Additionally, a single channel ECG was recorded us-
ing the SOMNOlab 2 PSG Standard by Weinmann
Medical Technology. Designed for polysomnography
studies, this device features a variety of sensors. For
this study, only ECG functionality sampling at 256Hz
was used.

2.2. Trial setup
The study was conducted as a self-experiment. No
recent history of pulmonary or cardiac related diseases
is known. Electrodes were positioned according to
Figure 1. Ten measurements were conducted in
sitting position: In the first 8 runs, the respiratory
frequency was controlled to a specific value and EIT
data was recorded for two minutes, see also Table 1.
In run 9, breath was held after expiration for as long
as possible (25 seconds) and in run 10 the same was
done after inspiration

2.3. Data preprocessing
Data was recorded and exported using the manufac-
turers’ respective software tools, and was imported
into MATLAB. In each trial, a single EIT file was
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Figure 2. Ratio of HF to LF components in the EIT
signal. The heart region can be clearly distinguished
from the background.

recorded, ECG was recorded continuously. The ”for-
ward problem” in EIT is governed by the equations

∇ · ~J(~x) = −∇ · σel(~x)∇φ(~x) = 0 (1)

for ~x ∈ Ω \ ∂Ω and

j(~x) = − ~J(~x) · ~n(~x) = σel(~x)∇φ(~x) · ~n(~x) (2)

for ~x ∈ ∂Ω, see also [8]. Here, ~x is a coordinate inside
a body Ω or on its boundary ∂Ω with normal vector
~n, ~J is current density, φ is electric potential, j is
scalar current density on the boundary, and σel is
conductivity distribution inside the body. If j(~x) and
σel(~x) are known, the partial differential equation 1
has a unique solution φ(~x). The ”inverse problem”
in EIT is where the underlying conductivity distribu-
tion σel(~x) is unknown and needs to be inferred from
current injections and voltage measurements on the
boundary. This is a much harder problem to solve
due to its ill-posed nature, which means that at least
one of the criteria
• existence of a solution,
• uniqueness of the solution or
• continuity of the solution
is violated. To be still able to solve the problem,
a-priori knowledge in the form of regularization is in-
corporated. This usually results in a spatially smooth
reconstructed distribution σel. The EIT system used
here works with an electrode belt with N = 16
electrodes, which leads to N(N − 3) = 208 volt-
age measurements per frame, of which due to reci-
procity only 104 are linearly independent. The de-
vice’s internal linear method of reconstruction was
used, leading to a sequence of impedance images
Z with 32 by 32 pixels at 50FPS. To extract the
cardiac signal, a single pixel Z was selected. In
a first proof of concept, this selection process was
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Figure 3. Time course of the global impedance (top) and of a single pixel in the cardiac region (bottom).

performed manually and yielded reasonable results
[9]. As a subsequent development, the selection pro-
cess was optimized: For this, the time course of
each pixel of the first trial was converted into fre-
quency domain using the Fast Fourier Transforma-
tion (FFT). Next, the ratio of high frequency (HF,
0.99 to 1.12Hz, cardiac activity) to low frequency
components (LF, 0.08 to 0.16Hz, respiratory activ-
ity) was calculated. To avoid division by (nearly)
zero, a small offset was added to the low frequency
component. In Figure 2, the HF/LF ratio is spa-
tially visualized, clearly distinguishing the heart re-
gion from the background. The coordinates of the
maximum value were used in the subsequent exper-
iments. No spatial averaging was performed, since
the reconstructed EIT impedance image data is in-
trinsically ”spatially low-pass filtered”, as argued
above. The difference between the time course of
the global impedance (GI) and the selected pixel is
visualized in Figure 3. While the average impedance
shows changes mainly due to respiration, a strong
cardiac related signal (CRS) can be deduced in the
time course of a single pixel. This signal was re-
sampled to 256Hz to match the ECG sampling rate
and was high-pass filtered to remove the residual res-
piratory component, resulting in CRS∗. The same
high-pass was applied to the ECG signal ECG′, re-
sulting in ECG. CRS∗ and ECG were then cross-
correlated; a very distinct peak could be observed
that was used to calculate tsync, which could then
be used to synchronize the EIT and ECG data by
selecting the appropriate part in the ECG stream.
To remove high-frequency artifacts, CRS∗ was low-
pass filtered before peak detection. No further pro-
cessing was applied to ECG. The algorithm is out-
lined in Figure 4. The resulting arrays tP eak,EIT

and tP eak,ECG were used in the subsequent analy-
sis.

Pixel Selection

EIT-Device

Resampling

High-Pass

Z  50Hz  [32 x 32]

Z  50Hz

Z‘  256Hz

CRS*

ECG‘  256Hz

ECG

Cross Correlation

Low-Pass

Peak Detection

CRS

ECG-Device

High-Pass

Peak Detection

tPeak, EIT tsync

Max

tPeak, ECG

Figure 4. Outline of the algorithm to extract heart-
beats from EIT and ECG as well as synchronizing the
raw data.

2.4. Data analysis
First, beat-to-beat intervals (BBI) were calculated
from the arrays containing the peaks. Since these
time intervals are by definition unevenly sampled
and thus located on an irregular grid, the BBI de-
rived from CRS were linearly interpolated to the lo-
cations of the BBI obtained from ECG. Then, the
root mean square error (RMSE), the median absolute
error (MAE) and correlation coefficient r were cal-
culated. To validate the RR, the global impedance
signal was evaluated in the frequency domain, using
the FFT. To evaluate RSA, the Lomb periodogram
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Figure 5. Time course for run #5.
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Run # 7, RR = 12 BPM
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Figure 6. Time course for run #7.

was calculated. This allows the use of BBI directly
without interpolating them to the regular grid. The
respiratory rate was identified as the peak in the peri-
odogram above 1BPM. The heart rate was calculated
as the inverse of the median BBI. Additionally, the
delay between peaks derived via ECG and EIT was
calculated. Here, values below 150 and above 400
milliseconds were considered to be outliers, and were
discharged.
It is known that the tidal volume (TV) influences

the degree of RSA: It was found in [10], that the
change in BBI shows an almost linear dependence

on TV. Additionally, the coefficient was found to be
frequency dependent, being almost constant up to a
corner frequency, which was found to be different for
each subject, with a mean value of 7.1±1.5 BPM. For
higher breathing frequencies, it showed an exponen-
tial roll-off of around 20.4± 2.4 dB per decade ([10],
Table 2).

In this study, only the breathing frequency was
actively controlled with the help of an acoustic and
visual signal. No such device was employed to keep
TV constant. Since the global impedance correlates
very well with TV, it was used as a surrogate. Visual
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Run # 10, Breath Hold (Inspiration)
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Figure 7. Time course for run #10.

Run RR RREIT RRCRS RRECG
# [BPM] [BPM] [BPM] [BPM]

1 6 6.00 5.99 5.95
2 10 10.00 10.00 10.00
3 14 14.00 14.01 14.05
4 18 18.00 18.09 18.09
5 20 20.00 20.11 20.10
6 16 16.00 15.99 16.00
7 12 12.00 12.05 12.05
8 8 8.00 7.99 7.99

Table 1. Respiratory rate according to the protocol
(RR), calculated from EIT (RREIT) and calculated
via BBI periodogram analysis from CRS (RRCRS)
and ECG (RRECG). Run 9 and 10 were breath-hold
experiments.

inspection of the time course of the global impedance
showed a small variation in TV over time, see Figure 3.
For exact analysis, all breaths were identified using
a simple peak detector. Next, the difference of the
maximum and the minimum in global impedance as
well as the difference between maximum and mini-
mum BBI in a small window around each peak were
determined.

3. Results and discussion
Tables 1 and 2 present the values described above.
Additionally, Figures 5 to 7 present the time course of
the global impedance change, BBI derived from CRS
and ECG as well as the ECG to CRS peak delay. One

can observe that high frame rate EIT is capable of
analyzing cardiac function with great precision. Table
1 shows that the effect of RSA can clearly be inferred
from the BBI signal derived via EIT, since the calcu-
lated respiratory rates are almost identical. Figures 5
to 7 also show very good agreement of BBI calculated
via EIT and ECG. A careful analysis of the raw data
shows that relatively high RMSE stems from singular
artifacts, especially from the misclassification of beats
in CRS. These errors greatly influence RMSE, whereas
MAE is influenced only minimally. This is especially
prominent in run 9, where the correlation coefficient
is below 0.7 and RMSE is above 90ms, while the
MAE shows a very low value below 10ms, proving
that singular outliers influence the result. Combin-
ing all experiments, RMSE is 34.31ms and MAE is
15.91ms. This is a promising observation, considering
that the EIT device used here has a frame rate of
50FPS, resulting in a sampling time of 20ms.
An interesting observation can be made from Fig-

ures 6 and 7. In general, the ECG and CRS peaks are
not synchronous, since ECG stems from the electrical
activity of the heart, whereas a peak in CRS stems
from a maximum in contraction, i.e. a mechanical
activity. The delay of roughly 200 milliseconds be-
tween the ECG peak (R-wave) and the CRS peak is
consistent with values in the literature, relating ECG
and blood volume inside the heart [11]. It is very
interesting to observe a slow drift in Figure 7, peak-
ing just before expiration, i.e. just before maximum
discomfort was reached. Figure 6, however, shows a
sharp jump. While at first glance an artifact seems
the most reasonable explanation, the consistency of
the BBI derived from CRS and from ECG does not
indicate an obvious source of error.
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Run HRCRS HRECG RMSE MAE r
# [BPM] [BPM] [ms] [ms]

1 69.50 69.03 28.92 12.60 0.97
2 74.56 75.29 30.14 16.98 0.96
3 77.58 79.59 37.46 23.13 0.91
4 87.77 88.79 31.39 18.13 0.86
5 85.81 85.81 23.04 15.06 0.91
6 78.37 80.21 29.68 17.20 0.94
7 75.29 76.42 33.49 21.24 0.94
8 74.38 76.04 24.89 11.72 0.96
9 65.08 67.22 98.08 7.32 0.68
10 61.69 61.69 18.38 6.14 0.98

Table 2. Heart Rate calculated from CRS (HRCRS) and from ECG (HRECG). Additionally, Root-mean-square
error (RMSE), median absolute error (MAE) as well as correlation coefficient (r) of BBI calculated from ECG and
CRS.

Run RR std(∆GI) r(∆GI,∆BBI) p(∆GI,∆BBI) a b
# [BPM] [A.U.] [ms/A.U.] [ms]

1 6 0.13 0.91 0.0002 871 -596
2 10 0.05 0.19 0.4445 200 -83
3 14 0.08 0.01 0.9741 3 20
4 18 0.05 0.10 0.6757 63 -29
5 20 0.04 0.22 0.2893 184 -112
6 16 0.04 -0.29 0.1593 -398 366
7 12 0.06 0.09 0.6938 58 18
8 8 0.08 0.80 0.0011 341 -223

Table 3. Respiratory rate according to protocol (RR), standard deviation of global impedance peaks (std(∆GI)) as
well as the correlation coefficient (r(∆GI, ∆BBI)) of the change in GI and the change in BBI and the corresponding
p-Value. a and b represent the parameters of the linear fit ∆BBI = a · ∆GI + b.

An analysis of the tidal volume dependence of RSA
is presented in Table 3. It can be seen that although
the change in TV is relatively small, a correlation
greater than 0.9 could be measured in run 1, which
is the one with the lowest RR. The run with the
second lowest RR (run 8) also showed a relatively
high correlation. Beyond the RR of 8, no correlation
could be determined. This is probably due to the low
variation in TV in combination with the exponential
decay of the slope parameter a discovered in [10] —
see also its determined values for RR of 6 and 8 in
Table 3. Figures 8 and 9 plot the time course as
well as the direct comparison of the change in global
impedance and the change in BBI, clearly showing
the correlation.

4. Conclusions and outlook
This paper has proved the general feasibility of EIT as
a tool for analyzing cardio-respiratory coupling. HRV

could be measured with MAE below 20ms, allowing
the calculation of RR from BBI analysis. This is a
redundant task here, since global impedance can be
used with less effort. However, it serves to prove the
accuracy of the CRS extracted from EIT. Moreover,
it shows the redundancy in the measured data that
could be used in a model for multi sensor data fusion,
exploiting the cardio-respiratory coupling. Interesting
observations can be made on the basis of an analysis
of the relationship between CRS and ECG. Slow drifts
could be observed in the time interval between ECG-
peak (R-wave) and CRS-peak (maximum contraction
of the heart) in the breath-hold experiment. This ob-
servation needs further investigation and might allow
non-invasive analysis of traditional parameters such as
blood pressure, or the derivation of novel surrogates
for cardiac health. Finally, the known coupling of
heart rate variability and tidal volume could be shown
using a change in global impedance as a surrogate for
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Figure 8. Time course of the change in GI and the change in BBI for run #1.
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Figure 9. The change in BBI over the change in GI for run #1.

the latter.

Since this study presents only a proof of concept,
some limitations do exist: Only a single subject par-
ticipated in the experiment, a larger cohort needs to
be examined to test robustness. Moreover, only the
respiratory rate was controlled. Additionally, a sim-
ple peak detector is likely to be only a suboptimal
approach to identifying the true maximum of CRS.
Firstly, this may lead to a systematic offset if the
shape of the peak changes, which could be an explana-
tion for the jump observed in Figure 6. Secondly, this
leads to some misclassifications which are responsible
for outliers. While small in number, their high ampli-
tude leads to serious degrading in non-robust metrics
like RMSE and the correlation coefficient. Finally,
other sources of information, e.g. the CRS waveform
or its slope should be examined. This could lead the
way to new, non-invasive tools for cardio-respiratory
model verification, and potentially to new methods of
diagnosis.
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