
1 Introduction
Electron avalanches, as precursors of stable gas dis-

charges, have been studied from the very beginning of the
20th century. Townsend was the first to make a major study of
this type of non-self-sustained discharges. In the 1930s in
connection with streamer discharges, Raether [1], Loeb [2],
and Meek [3] built up a new streamer theory which in-
corporated the Townsend electron avalanche as a necessary
starting base for launching the streamer channel. According
to this view, a single avalanche with a high electron popula-
tion n �( , )10 108 9 is accompanied by UV radiation intensive
enough to facilitate photoionisation as a major “driving
force” of electron multiplication while collisional ionisation
successively loses its governing role. According to this theory,
a single big Townsend avalanche n �108 starts the streamer
luminous channel of cold plasma that follows the track of the
initial Townsend avalanche.

At first sight it might seem that there are certain statisti-
cal similarities between streamers and Townsend avalanches.
But, surprisingly, this is not the case. Both theoretical [4] and
experimental results [1, 5–7] have shown that electron popu-
lations n of poor Townsend avalanches n �105 developed in-
side a discharge gap of length d are governed by the Furry [8]
probability density w n d( , )

w n d
n n

w n d
n

n
n

n

n

( , ) ,

lim ( , ) exp

� ��
�	



��

� �
�
�

�
�
�

�

��

1
1

1

1

1

,

( )n x x
x

� � �
�

�

	
	




�

�
�� � d

0

(1)

whereas populations of pre-streamer (n �( , )10 105 8 ) and

streamer (n �108) avalanches are governed by another statis-
tical law [9–17], which is different from that of Furry. The
experimental data from these highly populated avalanches is
best fitted [11–17] by the Pareto distribution function

w n d n D( , ) ( )� � � �const 1 , (2)

where D is the so-called fractal dimension. The different
statistical behaviour of lowly and highly populated avalanches
has been verified many times in our laboratory [11–17] when
we have measured the height statistics of DC partial dis-
charges with sandwiched electrode systems. Depending
on the actual experimental conditions, partial discharges
are in fact electron avalanches often mixed with streamers
(see Fig. 1) and sometimes even developed into microscopic
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Fig. 1: Streamer spots on the dielectric barrier
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sparks. The height statistics of DC partial discharges are
nothing else than statistical distributions of electron ava-
lanches via their populations, i.e. via the number of charge
carriers that they have. Fig. 2 shows one of our avalanche
statistics measured with an ultra-fast digitiser [12, 13].
Avalanches were detected across a resistance (the resistance
( R � 100 k�) was connected in series to the discharge gap (C)
so that the two components formed a classical RC circuit – for
more details see ref. [14]) as short voltage pulses with random
heights u. Since we did not calibrate the voltage pulses u
against the number of electrons n, our resulting distribution
curves w are dependent on u instead of n. Fig. 2 shows that
the power function w u c uo

D( ) ( )� � � �1 represents an excellent
fit of the measured data. Assuming linear proportionality
u c n� � , our curve w(u) will preserve the same shape as that
of Furry w n n D( ) ( )� � � �const 1 , i.e. they will both possess
the same value of the exponent (1+D).

Unfortunately, no theory has been developed so far to ex-
plain the different statistical behaviour of lowly and highly
populated avalanches. To resolve this puzzle, it is necessary to
find the corresponding physical process underlying the phe-
nomenon. There are several important points that should be
taken into account when forming a theoretical concept ex-
plaining the cross-over from Furry statistics to Pareto statistic:

� The change in the statistical behaviour occurs simulta-
neously with the change in electron multiplication, i.e.,
when photoionisation starts dominating over collisional
ionisation and highly populated avalanches appear
( )n �105 .

� Since all fractal objects are governed by Pareto statistics, the
electron multiplication mechanism that forms the Pareto
set of avalanches has to be of a fractal nature, too.

� The fractal photoionisation multiplication should be based
on creating additional smaller avalanches accompanying
the initial (parent) avalanche, because an increase in elec-

tron populations within the parent avalanches leads only
to an increase in average population n, which does not
change the character of the Furry distribution itself (1).

A proposal for a convenient fractal mechanism of electron
multiplication, capable of creating the Pareto set of electron
avalanches, is formulated in the next paragraphs of this pa-
per. In addition, a derivation of the general statistical pattern
which follows the Pareto behaviour (2) together with its appli-
cation to experimental data will also be presented.

2 Fractal multiplication of electron
avalanches
On the basis of the experimental observations and deduc-

tions mentioned above, it is clear that the multiplication
mechanism of highly populated avalanches, whose popula-
tions follow Pareto’s distribution, has to be governed by a
fractal scenario that should be very similar to the following:
(i) Beside a parent avalanche a series of additional smaller

avalanches arises inside the discharge gap. These
smaller avalanches are generated in a hierarchical man-
ner with different mean populations nd to fulfil the
fractal scenario
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In this way the number of less populated avalanches in-
creases and, as a consequence, deviations from the Furry
distribution may occur.

(ii) Multiplication of highly populated avalanches with
mean populations � �nd j

J
�0 must be generated accord-

ing to a fractal scenario of branching or partitioning
like most fractals when going to smaller scales. There-
fore, some type of fractal avalanche branching should
be taken into account. The branching should originate
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Fig. 2: Avalanche statistics (E p � 52 VPa�1m�1, voltage pulses) in air at normal laboratory conditions



with a parent avalanche possessing a mean population
nd

d
,0 � e� (fractal initiator). After passing a certain initial

distance � � 0 and gathering a certain number of ener-
getic electrons N d� �e� 1, which are capable of creating
a group of UV photons, a photoionisation process starts
and a swarm of K �1smaller avalanches with mean pop-
ulations nd

d
,

( )
1 � �e� � appear along the parent ava-

lanche. Let us call them “side avalanches of the first
generation”. Thus the side avalanches of the first gener-
ation actually represent the so-called fractal generator
given by multiplicity K . The side avalanches, once cre-
ated, become parent avalanches for the next generation
of new side avalanches. So, the side avalanches of the
first generation become parent avalanches for the side
avalanches of the second fractal generation with the
mean population nd

d
,

( )
2

2� �e� � . This process of ava-
lanche multiplication may or may not continue up to
the last possible generation J d� �� 1 with the mean
population nd J

d J
,

( )� � �e� � . Provided the multiplying
process reaches the j-th generation, the mean (average)
total number of side avalanches in this generation is just
K J . The described multiplicative process yields a hier-
archy of avalanches and when extended to infinity
( )J � � , it yields an infinite set of avalanches that is sim-
ilar to the well-known fractal object called the Cantor
fractal set [18]. Using this similarity, a relation between
avalanche characteristics and properties of the Cantor
fractal set can easily be found

K
L
l

n

n
K N D

Kj o

j

D
d o

d j

D
j j D�



�

�
�

�

�

�
�

�


�

�
�

�

�

�
�

� � � �,

,
( )

ln
ln N

. (4)

Since all the fractal objects obey the Pareto statistics with
probability density in the form of the power law (2), the
studied avalanche set, being of a fractal nature, will also
follow this statistical law

w n x n nD
K
N( , ) ( ) (

ln
ln

)
� � � �� � � �

const const1 1
. (5)

Such a strictly deterministic mechanism, which has al-
ready been described, might hardly be expected in a real
situation. Instead, a strongly stochastic mechanism is
more probable with certain distributions of the quanti-
ties �, K, and N. However, the use of their average values
�, K , and N makes the treatment more realistic and partly
advocates the deterministic view of the problem.

(iii) The described fractal mechanism of multiplication of
highly populated avalanches anticipates that the most
probable place where a parent avalanche initiates side
avalanches is in some of the first �-intervals because, due
to diffusion at a larger distance, the parent avalanche is
broadened enough to integrate the side avalanches.

The foregoing paragraphs have summarised the main
properties of the concept of fractal multiplication of highly
populated avalanches. If all these assumptions are sound, the
derivation of a new statistical pattern using the existence of
side avalanches should be fruitful. Naturally, this new pat-
tern must be capable of generating linear behaviour in the

bilogarithmic co-ordinates with the slope � �( ln ln )1 K N .
Such a derivation is realised in the next section.

3 Statistical pattern of fractal
avalanche multiplication
With reference to points (i)–(iii), the probability densities

for generations of side avalanches can be formed as follows
j = 0: Zero generation – parent avalanche
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j = 1 : The first generation of side avalanches
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j = 2 : The second generation of side avalanches
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j : The j-th generation of side avalanches
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The probability density F(n, d) measured at the anode,
which is placed at a distance d from the cathode, is given as
the sum of all the probability densities of the avalanches cre-
ated within the discharge gap
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where
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Within the exponential approximation (1) the total proba-
bility density (11) reads
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Relations (11) and (13) are generalised statistical distribu-
tions that include the original Furry distribution (1) and its
exponential approximation as special cases ( j � 0) when no
side avalanches are generated.

At first sight the probability densities (11) / (13) seem un-
likely to follow the Pareto power law (2), but the opposite is
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true. When these functions are plotted with convenient pa-
rameters nd , K , and N within bilogarithmic co-ordinate sys-
tems, their graphs indeed show linear sections (power behav-
iours) spanning over many orders of magnitudes of electron
populations – see Fig. 3. The relation for the slope

s
K
N

� � �


�
��

�

�
�� � �1

ln
ln

1.6309

is also fulfilled, as can be verified from Fig. 3. Nevertheless,
to provide full rigorous grounds for the fractality (power law
behaviour) of the generalised probability density F(n, d), it
would be necessary to perform a full mathematical proof of
this property. This would not be an original task, as several re-
searchers [19–28] have worked on a similar problem, though
with different starting functions (usually of Lévy type).

Professor T. F. Nonnenmacher – inspired probably by the-
oretical works [19], [23] dealing with the origin of the fractal
scaling laws in biophysics – has systematically studied [24–28]
a similar problem that emerged from protein gating kinetics.
As a prominent mathematical physicist he succeeded in find-
ing an original way to transform the functions that have
assumed the form of a discrete exponential chain, like series
(13), into the power law functions. The required exact mathe-
matical proof can therefore be found in his works [24–28].

Finally, to illustrate straightforwardly the capability of the
generalised statistical pattern (17) of Furry’s functions to pro-
vide a faithful fit for experimental data of population statis-
tics, the experimental data from Fig. 3 has been fitted by pat-
tern (17) in bilogarithmic co-ordinates – see Fig. 4. As can be
seen from the two figures, the fractal dimensions are in excel-
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Fig. 3: Fractal statistical pattern developed into a power law

Fig. 4: Fractal pattern fit of pre-streamer statistics (voltage pulses – data taken from Fig. 2)



lent agreement (� 0.471 versus � 0.473). At this point we
would like to mention that all other data measured in our lab-
oratory has been processed in the same way, showing the clear
capability of the statistical pattern (17) to reproduce faithfully
statistical data of highly populated electron avalanches. In
brief, the generalised statistical patterns (17) seem to provide
very convenient approximations capable of incorporating all
the main specific features of fractal avalanche multiplication.

4 Conclusions
In conclusion we would like to underline several main

points that have been presented in this paper:
� A new concept of fractal multiplication of highly populated

avalanches (streamer-like avalanches) has been proposed.
The concept is based on a generalised photoionisation
mechanism leading to side branching of avalanches.

� The branching may propagate to higher generations of
side avalanches. This process is inherently stochastic and
requires the introduction of average multiplicity K and av-
erage number N of initiating electrons to provide an analyt-
ical description of the branching procedure.

� The generalised statistical pattern (17) representing the
probability density of avalanches created in a discharge gap
has been derived. This pattern includes the original Furry
distribution (1) and its exponential approximation as spe-
cial cases ( J � 0) when no side avalanches are generated.

� The capability of the generalised statistical pattern (17) to
fit faithfully experimental data from avalanche experi-
ments has also been illustrated (Fig. 4).
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