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Chaos in GDP

R. Kř́ıž

Abstract

This paper presents an analysis of GDP and finds chaos in GDP. I tried to find a nonlinear lower-dimensional discrete
dynamic macroeconomic model that would characterize GDP. This model is represented by a set of differential equations.
I have used the Mathematica and MS Excel programs for the analysis.
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1 Introduction
Humanity has always been concerned with the ques-
tion whether the processes in the real world are of a
stochastic or deterministic nature. Answers are ex-
plored by theologians, philosophers and scientists in
various fields. I take the view that real processes are
more deterministic in nature. An interesting case of
determinism is deterministic chaos. The only purely
stochastic process is a mathematical model described
by mathematical statistics. The statistical model of-
ten works and is the only possible description if we do
not know the system. This also applies to economic
quantities, including forecasts for GDP. In this pa-
per I have tried to grasp the hidden essence of the
problem in order to formulate a prediction more eas-
ily. The basic question is therefore the existence of
chaotic behavior. If the system behaves chaotically,
we are forced to accept only limited predictions. In
this paper I will try to show the chaotic behavior of
GDP and then propose a simple lower-dimensional
system under which the system evolves.

2 Methodology for the
analysis

I will briefly state the basic definitions and describe
the basic methods for examining the input data.

2.1 Gross domestic product

Gross domestic product (GDP) is a major
macroeconomic indicator. It measures the overall
production performance of the economy. It is the
total market value of all final goods and services pro-
duced within a country during some period, usually
one year, expressed in monetary units [8]. It is of-
ten considered an indicator of a country’s standard
of living. GDP can be determined in three ways, all
of which should, in principle, give the same result.
They are the product (or output) approach, the in-

come approach, and the expenditure approach.

Y = C + I +G+ (X − M) (1)

• C (consumption) is normally the largest GDP
component in the economy, consisting of pri-
vate (household final consumption expenditure)
in the economy.

• I (investment) includes business investment in
equipment, for example, and does not include
exchanges of existing assets.

• G (government spending) is the sum of gov-
ernment expenditures on final goods and ser-
vices.

• X −M (net exports) represents gross exports
X — gross imports.

2.2 Hurst exponent

The Hurst exponent is widely used to character-
ize some processes. The Hurst exponent is a mea-
sure that has been widely used to evaluate the self-
similarity and correlation properties of fractional
Brownian noise, the time-series produced by a frac-
tional (fractal) Gaussian process.
As originally defined by Mandelbrot [5], the Hurst

exponent H describes (among other things) the scal-
ing of the variance of a stochastic process y(t),

σ2 =
∫ +∞

−∞
y2f(y, t) dy = ct2H (2)

where c is constant.
The Hurst exponent is used to evaluate the pres-

ence or absence of long-range dependence and its de-
gree in a time-series.
The Hurst exponent (H) is defined in terms of

the asymptotic behavior of the rescaled range as a
function of the time span of a time series, as follows

E

[
R(n)
S(n)

]
= CnH as n → ∞, (3)
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where [R(n)/S(n)] is the rescaled range; E[y] is ex-
pected value; n is number of data points in a time
series, C is a constant.
An algorithm for calculation is used from

Wikipedia [12]. To calculate the Hurst exponent,
one must estimate the dependence of the rescaled
range on the time span n of observation. The av-
erage rescaled range is then calculated for each value
of n. For a (partial) time series of length n, Y =
Y1, Y2, . . . , Yn, the rescaled range is calculated as fol-
lows:
1. Create a mean-adjusted series

Ut = Yt −
1
n

n∑
i=1

Yi for t = 1, 2, . . . , n (4)

2. Calculate the cumulative deviate series V ;

Vt =
n∑

i=1

Ui for t = 1, 2, . . . , n (5)

3. Compute the range R;

R(n) = max(V1, V2, . . . , Vn)−min(V1, V2, . . . , Vn)
(6)

4. Compute the standard deviation S

S(n) =

√√√√ 1
n

n∑
i=1

(Yi − Ȳ )2 (7)

5. Calculate the rescaled range and average over
all the partial time series of length n. The Hurst
exponent is estimated by fitting the power law, ac-
cording to the definition.
The values of the Hurst exponent vary between

0 and 1, with higher values indicating a smoother
trend, less volatility, and less roughness. Random
walk has a Hurst exponent of 0.5.

2.3 Fractal

The term “fractal” was first introduced by Mandel-
brot [4]. A fractal is a complicated geometric figure
that, unlike a conventional complicated figure, does
not simplify when it is magnified. In the way that Eu-
clidean geometry has served as a descriptive language
for classical mechanics of motion, fractal geometry is
being used for the patterns produced by chaos [9].
The fractal dimension, D, is a statistical quan-

tity that gives an indication of how completely a frac-
tal appears to fill space, as one zooms down to finer
and finer scales. There are many specific definitions
of fractal dimension.
Hurst exponent H is directly related to fractal di-

mension D, because the maximum fractal dimension
for a planar tracing is 2:

D +H = 2 (8)

2.4 Correlation dimension

Correlation dimension (DC) describes the dimension-
ality of the underlying process in relation to its ge-
ometrical reconstruction in phase space. The corre-
lation dimension is calculated using the fundamental
definition. Define the correlation integral for set of
data M :

C(r) =
1

M(M − 1)

M∑
i, j = 1

i �= j

H (r − ‖yi − yj‖) (9)

where H is the Heaviside step function.

H(x) =

⎧⎪⎪⎨
⎪⎪⎩
0 y < 0
1
2

y = 0

1 y > 0

(10)

A Euclidean metric is used for all calculations in
this paper. When a lower limit exists, the correlation
dimension is then defined as

DC = lim
r → 0
M → ∞

ln(C(r))
ln(r)

(11)

2.5 Lyapunov exponents

The Lyapunov exponent or the Lyapunov character-
istic exponent of a dynamical system is a quantity
that characterizes the rate of separation of infinitesi-
mally close trajectories. Quantitatively, two trajecto-
ries in phase space with initial separation δZ0 diverge
(provided that the divergence can be treated within
the linearized approximation)

δZ(t) ≈ eλt |δZ0| (12)

where λ is the Lyapunov exponent.
The maximal Lyapunov exponent can be defined

as follows:

λ = lim
δZ0 → 0
t → ∞

1
t
ln

|δZ(t)|
|δZ0|

(13)

The limit δZ0 → 0 ensures the validity of the
linear approximation at any time.
Maximal Lyapunov exponent determines a notion

of predictability for a dynamical system. A positive
Maximal Lyapunov exponent is usually taken as an
indication that the system is chaotic (provided some
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other conditions are met, e.g., phase space compact-
ness) [13].

3 Introduction to nonlinear
dynamics

If the world is not linear (and there is no qualitative
reason to assume that it is linear), it should be nat-
ural to model dynamical economic phenomena non-
linearly [2]. If it is present in the general system of
nonlinear dynamics, a deterministic system can gen-
erate random-looking results, but may include hid-
den order. In this paper I have studied only a low-
dimensional discrete dynamical system.

3.1 Discrete dynamical system

Definition from Goldsmith [6]: A discrete-time dy-
namical system on a set Y is just the function

Φ:Y → Y (14)

This function, often called a map, may describe
the deterministic evolution of some physical system:
if the system is in state y at time t, then it will be in
state Φ(y) at time t+ 1. The study of discrete-time
dynamical systems is concerned with iterates of the
map: the sequence

y,Φ(y),Φ2(y), . . . (15)

is called the trajectory of y and the set of its points is
called the orbit of y. These two terms are often used
interchangeably, although we will remain consistent
in their usage. The set Y in which the states of the
system exist is referred to as the phase space or state
space. We will restrict our attention to maps Φ(y)
such that Y is a subset of Rd.

3.2 One-dimensional discrete
dynamical system

The one-dimensional discrete system is

yt+1 = f(yt) yt ∈ � (16)

One-dimensional, discrete dynamical systems in
economics are surely suited for demonstrating the
relative easy with which complex behavior can be
modeled. The mathematical properties of one-
dimensional dynamical systems seem to be better un-
derstood than higher-dimensional systems [2].
The logistic equation is a typical example of easy

one-dimensional discrete dynamical systems which
can be chaotic.

yt+1 = μyt(1− yt) (17)

The logistic equation has been described in many
books and papers e.g. [1,2,6,9,10]. The logistic equa-
tion is chaotic, when control parameter μ is between
3.569 9 . . . and 4.

4 Analysis of GDP

4.1 Input data

The gross domestic product by type of expenditure
in current prices is used in this paper. I have used
data (quarterly, without seasonal adjustment) from
the Czech Statistical Office. I analyze data from the
Czech Republic between 1995 and 2010 [11].

Fig. 1: GDP with linear trend of GDP

4.2 Calculation of H and Dc

The main problem in analyzing GDP is the lack of
data. Therefore, all results are only estimates.
I have computed the Hurst exponent for GDP

H = 0.75 according to the algorithm in chapter 2.2.
This value is in accordance with expectations. We
know that the value of H is between 0 and 1, whilst
real time series are usually higher than 0.5. If the
exponent value is close to 0 or 1, it means that the
time-series has long-range dependence. Value 0.75
is directly between the stochastic and deterministic
process. I think that 0.75 value is a sufficient value
for credible prediction. Now we also know the fractal
dimension 2− 0.75 = 1.25.

Fig. 2: Correlation integral, value with a linear trend
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The correlation dimension is calculated using the
fundamental definition in Section 2.4. We have had a
problem with lack of data for this computing. I have
put the calculated data into a graph in logarithmic
coordinates, and I have made a linear interpolation.
(cf. Figure 2). On this basis, the correlation dimen-
sion for the small value of r can be estimated.
The estimate of the correlation dimension is a

value lower than 2. If the correlation dimension is
low, the Lyapunov exponent is positive and the Kol-
mogorov entropy has a finite positive value, chaos is
probably present. From estimates H and Dc it can
be concluded that GDP is a deterministic chaos.

4.3 Analyzing in phase space

In the previous section (Section 4.2) we verified the
presence of chaos in GDP.
Data with a trend can cause problems for future

analysis. The trend is removed by subtracting the
linear interpolation. Denote GDP without trend as
Y (t).

Fig. 3: GDP without trend

Fig. 4: GDP in phase space

A phase portrait 2D of GDP is constructed so
that each ordered pair of {Yt;Yt−1, t = 2, . . . , N} is

displayed in the plane where the x-axis represents the
values of Yt and y-axis value Yt−1 (cf. Figure 4). The
individual points {Yt;Yt−1} of phase space are con-
nected by a smooth curve. This curve looks like a
chaotic attractor. The points are located mainly in
the first and third quadrant.
The phase portrait 3D of GDP is constructed

so that each ordered trio of {Yt;Yt−1, Yt−2, t =
3, . . . , N} is displayed in the space. The individual
points {Yt;Yt−1, Yt−2} of 3D phase space are con-
nected by a line (cf. Figure 5) or covered by a surface
(cf. Figure 6). Figure 6 looks very strange.

Fig. 5: GDP in 3D phase space (Yt, Yt−1, Yt−2)

Fig. 6: GDP in 3D phase space (Yt, Yt−1, Yt−2)

5 GDP as a dynamical system

I have tried to find a system that will be similar to
GDP, based on the previous analysis.
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5.1 Comparison of GDP with an
one-dimensional discrete
dynamical system

Chaotic course Yt can be immediately simulated by
a logistic equation, but a progression in the phase
space is completely different. A logistic equation can
be appropriate for simulation, but not for forecast-
ing. If we consider a function, it should be an odd
function.
I have studied several one-dimensional systems

with a cubic function. It is reasonable to assume that
that function has one root 0. The desired equation
can be written in the form:

yt+1 = yt(αy2t − β) (18)

Fig. 7: Cubic function: Plot [y^3-2.8y,y,-2,2]

Fig. 8: Bifurcation diagram of function y3−by, {b, 2.25, 3}

Fig. 9: Chaos in cubic function Yt+1 = Y 3t − 2.8Yt

6 Conclusion
I have shown in this paper that GDP can be chaotic.
I found a very simple nonlinear differential equa-
tion which properly captures GDP. According to the
phase portrait, it seems that the function should be
odd. The most appropriate function is the cubic
equation with a single zero root. It is a simple system
that is easy to interpret. It should be noted that this
system is not perfect and it would be useful to find
a set of differential equations of higher order. The
biggest problem in finding a suitable system is the
lack of data. This paper analyzes GDP as such. It
would be more sophisticated to create a theoretical
model and calibrate it.
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