
Acta Polytechnica 53(2):70–74, 2013 © Czech Technical University in Prague, 2013
available online at http://ctn.cvut.cz/ap/

CLOCK MATH — A SYSTEM FOR SOLVING SLES EXACTLY

Jakub Hladík, Róbert Lórencz, Ivan Šimeček∗

Department of Computer Systems, Faculty of Information Technology, Czech Technical University in Prague,
Czech republic

∗ corresponding author: xsimecek@fit.cvut.cz

Abstract. In this paper, we present a GPU-accelerated hybrid system that solves ill-conditioned
systems of linear equations exactly. Exactly means without rounding errors due to using integer
arithmetics. First, we scale floating-point numbers up to integers, then we solve dozens of SLEs within
different modular arithmetics and then we assemble sub-solutions back using the Chinese remainder
theorem. This approach effectively bypasses current CPU floating-point limitations. The system is
capable of solving Hilbert’s matrix without losing a single bit of precision, and with a significant
speedup compared to existing CPU solvers.

Keywords: integer arithmetic, modular arithmetic, Hilbert’s matrix, error-free, GPGPU, solver,
OpenCL, optimizations.

1. Introduction
Solving linear algebraic equations solution is quite
a frequent task in numerical mathematics. One may
often find difficulties, while solving problems of the ill-
conditioned matrix. Stability of the solution cannot
be ensured for large dense sets of linear equations.
Rounding error during the numerical computation
cannot be tolerated. Methods have been developed
that minimize the influence of rounding errors on the
solution.
One method that we use relies on modular arith-

metics [2] in order to solve dense systems of linear
equations precisely. The underlying idea sounds quite
simple – bypass floating point rounding limitations by
using integer arithmetics. It consists of three parts –
converting floating point numbers into integers, solv-
ing multiple systems of linear equations within their
modules, and finally converting sub-solutions back
using the Chinese remainder theorem.
Nowadays, GPGPU (General-Purpose computing

on the GPU) is a trending topic in high-performance
computing. Since GPGPU began in 2006 hundreds
of articles have been published every year. GPGPU
is usually used to accelerate data-parallel algorithms,
and that is our case. Dozens of systems of linear
equations emerge during the second step of our com-
putation. Each of them can be solved in parallel on
the GPU, hence speedup is achieved.

In this paper, we present a GPU-accelerated solver
of ill-conditioned systems of linear equations. Sec-
tion 3 gives a brief overview of the mathematics that
is used. Section 4 describes the GPU architecture
in general, and presents issues that we faced while
optimizing the computation. Finally, Section 5 shows
our measured results – the speedup and a comparison
with existing systems solving similar problem.

2. State of the Art
Nearly one half of the problems solved in numerical
mathematics lead to problems in linear algebra. The
primary objective of the numerical methods used in
linear algebra is to solve sets of linear equations . . .
They are solved in a chosen computer arithmetic,
most often floating-point arithmetic. Floating-point
arithmetic’s well known advantages have led to its
widespread usage, yet it also has its important disad-
vantages, sometimes resulting in severe problems.

The disadvantages of floating-point arithmetic in-
clude mainly the generation and accumulation of
rounding errors during the calculation, and non-
uniform distribution of values in the real number
subset. There are a variety of alternatives to floating
point representation and associated arithmetic oper-
ations, including modular, logarithmic, p-adic, and
continued fraction arithmetic.

Many numerical problems lead to SLEs with dense
and large matrices. The rounding error sensitivity of
such systems can be so grave that they can be con-
sidered to be ill-conditioned. To solve the problems,
many numerical direct and iterative methods have
been developed that tackle these systems with higher
or lower success.
Apart from many numerical methods, various pro-

gramming and computing tools have been developed
for solving rounding error sensitive SLEs. There are
many computer libraries that allow the user to choose
an optimal virtual length of a computer word that
fully or partially eliminates the destructive influence
of rounding errors. There are also arithmetic units
that tackle this problem by grouping arithmetic oper-
ations, and thus they create a longer computer word
for operations sensitive to rounding. Software tools
that eliminate rounding errors include libraries for
precision computing, such as GMP (GNU Multiple

70

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/268469659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ctn.cvut.cz/ap/

vol. 53 no. 2/2013 Clock Math — a System for Solving SLEs Exactly

Precision Arithmetic Library). Unfortunately, these
tools lead to such great time complexity when they
are used to solve rounding error sensitive SLEs that
they may not be applicable to practical problems.
Another limiting factor when solving SLEs with a

square matrix is the inherent algorithmic time com-
plexity O(n3), where n is the dimension of the matrix.
To solve large SLEs with a large number of equations,
special computers and processors have been developed.
These are vector computers. Until recently, the vec-
tor processors available on the market were CRAY
SV1ex (2001), Fujitsu VPP5000 (1999) and VMIPS
(2001). IBM Virtual Vector Architecture brings vec-
tor processing features to its most recent POWER6
mainframe processors (2007). Another suitable archi-
tecture for solving rounding error sensitive SLEs is
SIMD (Single Instruction, Multiple Data). Today the
SIMD features can be found as extensions of the stan-
dard processor instruction set, for example, Intel-SSE,
AMD-3DNow! or Motorola-Altivec. These are used
in multimedia applications such as video, 3D graphics,
animation, audio, etc. The recent trend is GPGPU.
Today, at least three of ten top supercomputers in the
top 500 list use GPU for numerical acceleration. Both
major GPU manufacturers, NVIDIA and AMD, offer
the possibility to run general purpose computation on
their GPUs.
At present there are no single-purpose numerical

accelerators for solving rounding error sensitive SLEs.
We use common NVIDIA Fermi graphics cards to-
gether with Intel Core processors to accelerate the
solution.

3. Mathematical Background
Let us take a system of linear equations (see [1]):

Ax = b, (1)

where A ∈ RN×N is the matrix of a system of N
equations of N unknowns, b ∈ RN is the right-side
vector and x ∈ RN is the desired vector, the solution
of our system of linear equations.

3.1. Matrix Scaling
Matrix scaling is the first thing to do. The goal
of matrix scaling is to adjust all the floating-point
numbers of the matrix to their corresponding integer
versions. Basically, every matrix row is multiplied
by its scaling constant (scalar multiplication). This
has to be done without losing a single bit of precision.
This condition will be achieved only when the scaling
constant is 2n, where n ∈ N1.
The question now is how to determine the scaling

constant. First, we should continue by finding the
smallest absolute value element (closest to zero) in
each row. Then, we extract the absolute value of its
exponent and multiply it by the 253 constant, because
a significant mantissa bit size in the IEEE 754 [6]

double precision floating point number format is 53
bits long. Finally, the scaling constant s is computed:

s = 253 ∗ 2|exp(minrow)|, (2)

where exp is a function that extracts and returns the
exponent (as an integer – power of 2) and minrow is
the element in the row closest to zero. The approach
being used is explained in greater detail (and with
alternatives) in [2].

3.2. Solving a System of Linear
Equations

From the previous step we have an properly scaled-up
system of linear equations:

Ax = b, (3)

where aij matrix A elements and xi and bi vector
elements are just big integers.

We solve it using a multi-modulus arithmetics over
the commutative ring (Zβ ,⊕,�) with a base vector β
that is equivalent to the single-modulus arithmetics
over (ZM ,+, ·) and module M .
M has to be a big enough positive integer to avoid

rounding errors during our computation. Hadamard’s
determinant D estimate of matrix A can be used to
estimate the maximum M value:

|D|2 ≤
n∏
i=1

(
|a2
i1|+ |a2

i2|+ · · ·+ |a2
in|
)
. (4)

The highest value of M that could appear during the
computation:

M > 2 max

n

n
2 max(an

ij), i,j=1,2,...,n,

n(n−1)
(n−1)

2 max(aij)n−1 max(yi),
i,j=1,2,...,n

 (5)

and
gcd(M,D) = 1. (6)

We also need the following conditions for the vector
β = (m1,m2, . . . ,mr) and module M to be satisfied:

•
r∏
i

mi = M ;

• m1 < m2 < · · · < mr;
• m1,m2,mr are prime numbers.
The following condition for the SLE (given by Eq. (3))
determinant is satisfied when:

|D|mi
6= 0, i = 1, 2, . . . , r, (7)

then the SLE (from Eq. (3)) solved within (Zβ ,⊕,�)
due to vector β can be expressed as:

|Ax|mi
= |b|mi

, (8)

or, for individual modules mi of vector β:

|Ax|mi
= |b|mi

, i = 1, 2, . . . , r. (9)

71

Jakub Hladík, Róbert Lórencz, Ivan Šimeček Acta Polytechnica

The following expression is also valid for Eq. (3) within
(Zβ ,⊕,�):

|AA−1|β = |A−1A|β = E (10)

and
|x|β = |A−1b|β , (11)

where E is the identity matrix. To solve the SLE from
Eq. (9) within the specific modular arithmetics we
will use the Gauss-Jordan elimination algorithm with
non-zero pivotization. The difference from the original
Gauss-Jordan elimination is the usage of modular
arithmetics for all algorithm steps. There is also
pivotization simplification – we do not need to find
the greatest element in the elimination step, a non-
zero element is good enough.
Using the GJ elimination algorithm, let us have

an matrix W of dimensions n× (n+ 1) consisting of
matrix A and vector b:

W =

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn

 . (12)

The goal of the algorithm is to eliminate all W el-
ements one by one to get the resulting x vector to
Eq. (11) after ≈ n3 elimination steps.

3.3. Inverse Transformation
After completing the two previous steps, we have
a set of vectors x within each module from β =
(m1,m2, . . . ,mr). They represent a sub-solution for
the specific (Zmi ,+, ·) arithmetic. Now we advance
to the inverse transformation back to (Zβ ,⊕,�). The
necessary condition for each β module solution x is
its non-zero determinant from Eq. (7).
The algorithm used for this transformation is the

Chinese remainder theorem. The product of our last
step consists of the vector x elements in the form of
fractions that contain the solution of SLE (3).

4. GPU and Optimizations
GPGPU is the area of our research, so we optimize
on the PC graphical hardware. There were several
platforms to choose from:
• NVIDIA CUDA, the mainstream platform today,
was rejected; it is proprietary, and its usage is lim-
ited to NVIDIA hardware;

• Microsoft DirectX 11 DirectCompute was rejected;
it is bound to the Microsoft Windows platform only
(not used in HPC in general);

• OpenCL is an open standard that works well across
platforms (GNU/Linux, Microsoft Windows and
Apple Mac) and on all latest graphical hardware
(NVIDIA, AMD and latest Intel GPUs); we use
OpenCL for the implementation.

0 %

25,00 %

50,00 %

75,00 %

100,00 %

16 32 64 128 256 512 1024

co
m

pu
ta

tio
n

sh
ar

e
[%

]

matrix size [m]
Matrix scaling Beta vector computation
SLEs solution Inverse transformation

Figure 1. Measured computation shares.

4.1. Profiling
The whole SLE solving process is a rather time-
consuming task (Fig. 1), so optimizations had to be
made. First, all the big number ALU operations –
Eq. (5) and Section 3.3 – are performed using the
GMP library, which is tuned for this platform.

Solving dozens of systems of linear equations using
modular arithmetics (Section 3.2) within the β vector
is the most computation-intensive part of our task,
see Fig. 1.

According to Ahmdal’s Law (expressed in Eq. (13),
the benefit (overall speedup) from optimizing part of
the computation is equal to:

Speedup = 1
(1− P) + P

S

, (13)

where P is the proportion of the computation we
are optimizing and S is its speedup. Because modular
arithmetics SLEs take a great amount of time to solve,
we optimize the matrix elimination.

4.2. GPU architecture
All modern common GPUs have a similar architecture
(from our optimization type point of view). They con-
sist of a global memory (1–4GB) and several (2–24)
SMP1 processors (example in Fig. 2). SMP features
a scheduler of lightweight threads that have zero over-
head. Each SMP contains dozens (8–48) of processor
cores that share the SMP memory (shared memory
≈ 64 kB) and execute the same code. If it happens
that one processor core branches differently, the per-
formance goes down dramatically. Each processor
core also has its own integer and floating-point unit.
More details with examples and a description of the
CUDA platform are given in [5].

The processor cores have access to the GPU global
RAM, but the memory access has to be aligned. Oth-
erwise performance will be affected. We used SMP
processor cores to load part of the matrix (the row

1SMP – symmetric multiprocessor

72

vol. 53 no. 2/2013 Clock Math — a System for Solving SLEs Exactly

Matrix size [n] Clock Math [s] linSolve-0.7.15 [s] Speedup [%]

16 0.006 0.006425 16.82
32 0.006 0.014921 42.10
64 0.029 0.046871 61.97
128 0.117 0.195461 67.06
256 1.043 1.401498 34.40
512 11.252 16.215546 44.11

1024 124.375 212.557002 70.90

Table 1. Measured results: comparison of execution times for Clock Math Solver, for linSolve-0.7.15 and corresponding
speedups.

Figure 2. NVIDIA Fermi SMP [5].

that contains the current pivot). We used it for com-
putation and then stored the elimination step results
back to global memory.

4.3. GPU Kernels, Optimizations
The OpenCL framework defines the term kernel. It is
an function written in slightly modified C99 language
which is to be executed on an OpenCL capable device.
In parallel, OpenCL runtime executes the same kernel
on every processor core within an SMP. In the example
of the SAXPY function, we are able to process (8–48)
vector elements at once. However, our case is not so
simple.
Our system is currently limited to the matrix size

of 4096×4096. The row with the current pivot is used
in n multiply-add-modulo vector operations. Hence,
it is quite useful performance-wise to cache it in the
SMP shared memory. Current generation NVIDIA
GPUs have shared memory size of 48 kB. One matrix
row fits the local memory easily (4096 ∗ 8 = 32758B).
The processor cores fetch a matrix row from global
memory and compute the inverse of the pivot ele-
ment. Then the processor cores multiply the cached
row and multiply-add-modulo other rows in global
memory. More details, including the processor core
synchronizations and source code samples, are avail-
able online2.

5. Results
After embedding architecture-related optimizations
into our Clock Math solver and verifying the correct-
ness of our results, we were finally able to benchmark
them. There are not many up-to-date solvers like
ours currently. We benchmarked primarily against
linSolve-0.7.15 [7], a highly optimized solver with per-
formance critical parts written in x86 assembler. The
results (Tab. 1) are very satisfying. Clock Math solver
outperforms linSolve-0.7.15 almost twice for larger
matrices.

2http://www.github.com/kubbing/Clock-Math

73

Jakub Hladík, Róbert Lórencz, Ivan Šimeček Acta Polytechnica

6. Conclusion
We have presented the working system for solving
ill-conditioned systems of linear equations exactly.
We have managed to effectively bypass floating-point
rounding error by using modular arithmetics. Most
of the entire computation has taken place by solv-
ing SLEs within their corresponding modules. This
part of the computation can be (and is) solved in
parallel on the common-grade GPU. GPU is capable
of solving several SLEs at once (8–16, depending on
its memory size) and also each system in parallel on
its SPE (8–40 cores). Double parallelism has been
utilized, so significant speedup is achieved compared
to other implementations. We are currently working
on advanced kernel optimizations with larger matrix
support.

7. Future Work
As we now have a working system, we would like to
proceed to:
• add support for both single and double precision for
matrix elimination, as the β vector module count
and GPU performance may differ;

• add support for larger matrices than 4096× 4096 –
optimize SMP shared memory usage;

• add support for automatic kernel group size tuning
for larger matrices, as the group size lowers the mem-
ory access time on different GPUs/architectures;

• examine the modulus operation performance across
different GPU architectures and further opti-

mize the SAXPY, respectively DAXPY functions
(modm);

• utilize OpenMPI library to add cluster support;
• adjust and run the solver on our university STAR
cluster to test AMD’s OpenCL CPU implementa-
tion.

Acknowledgements
This research has been supported by CESNET De-
velopment Fund project 390/2010 and by the grant
SGS12/097/OHK3/1T/18.

References
[1] Lórencz, R.: Aplikovaná numerická matematika a
kryptografie. Vydavatelství ČVUT, 2004

[2] Gregory, R.T.: Error-free computation: why it is needed
and methods for doing it. R. E. Krieger Pub Co, 1980

[3] Lórencz, R., Morháč, M.: A modular system for
solving linear equations exactly. Computers and
Artificial Intelligence, Vol. 12, 1992

[4] Zahradnický, T.: MOSFET Parameter Extraction
Optimization. Ph.D. thesis, Department of Computer
Systems, Faculty of Information Technology, Czech
Technical University in Prague, 2010

[5] Kirk, D.B., Hwu, W.W.: Programming Massively
Parallel Processors, A Hands-on approach. Morgan
Kaufmann Publishers, 2010

[6] IEEE Standard for Floating-Point Arithmetic. IEEE
Std 754-2008, pages 1-58, 2008

[7] Vondra, L., Lórencz, R.: System for solving linear
equation systems. Seminar on Numerical Analysis, pages
171-174, Technical University Liberec, 2012

74

	Acta Polytechnica 53(2):70--74, 2013
	1 Introduction
	2 State of the Art
	3 Mathematical Background
	3.1 Matrix Scaling
	3.2 Solving a System of Linear Equations
	3.3 Inverse Transformation

	4 GPU and Optimizations
	4.1 Profiling
	4.2 GPU architecture
	4.3 GPU Kernels, Optimizations

	5 Results
	6 Conclusion
	7 Future Work
	Acknowledgements
	References

