
1 Introduction

In recent years much effort has been invested in an inves-
tigation of how to employ quantum systems as parts of a com-
puter. It has been demonstrated that quantum information is
different from classical information and that the essence of
this difference lies in the entanglement of quantum systems.
Entanglement is a simple consequence of the linearity of
quantum mechanics, hence it does not have a classical coun-
terpart. This effect equips a quantum computer with massive
parallelism and hence could be used to speed up computa-
tion. Therefore quantum information processing could be
more efficient than classical information processing. On the
other hand, it has become clear that the linear character of
quantum theory imposes severe restrictions on the character
of elementary tasks of quantum information processing. For
example it is impossible to clone an arbitrary quantum state
perfectly [1].

Nevertheless, imperfect copies can be made [2, 3]. This
particular process of cloning belongs to the class of so called
universal processes. These processes act on all input states of
a quantum system in a ‘similar’ way. For universal processes
working with one quantum system in a pure state and finish-
ing in an N-particle state this property is mathematically de-
scribed by the so called covariance condition. Two-particle
processes fulfilling this condition were analyzed in [4]. In this
paper a theoretical framework was developed within which all
possible two-particle universal processes can be described and
those compatible with the linear character of quantum theory
were determined. Of special interest were universal processes
generating entangled two-particle output states which do
not contain any separable components. It has been shown
that this particular subclass forms a one-parameter family of
totally anti-symmetric states with respect to permutations
of the two particles.

The aim of this paper is to generalize the results obtained
for two-particle universal processes to the subclass of multi-
-particle universal processes from one to N particles. For this
purpose we use theoretical framework developed in [4]. We
show how the general statement for a multi-particle universal
process can be constructed. The one-parameter family of
processes generating totally anti-symmetric states was gener-
alized to a multi-particle regime and its properties were
studied, mainly bipartite entanglement. For this purpose we
use the concept of negativity [5]. Finally we briefly review the
question of the complete positivity of the obtained universal
processes.

2 General structure of a universal
process
We will now derive the general structure of the N-particle

covariant mapping using the statement for the two-particle
case [4]. In the following we assume that the D-dimensional
one-particle Hilbert space � is the same for all N particles.
An arbitrary one-particle pure state can be described by D-di-
mensional generalized Bloch vector p. Such a state will be
simply denoted by|p .

Consider a linear map � from 1 to N particles, i. e.
� � � � �: ( ) ( ), ( ) ( ), ( ) ( ),� � � �in out in out

Np p p p� � � � (1)

where the density matrix �in ( )p has the form

�in N
N

D
I( ) ( )

( )p p p� � �
� �1

1
1 , (2)

i.e. the first particle is in the pure state p , and all others are
in the state of a complete mixture.

We will call this map universal (or covariant), if it possesses
the following covariance property

� �out
N

out
NU U( ) ( ( )) ( )( ( ) )†p p p p� � �

0 (3)

where the one-particle unitary transformation U(p) maps the
state p0 to the state p , i. e.

p p p� U( ) 0 . (4)
To construct the general statement for covariant mapping

with N particles we will use the results for the two-particle [4].
We will now summarize the main results.

An arbitrary density operator of a D dimensional quan-
tum system can be represented in terms of some basis of the
su(D) algebra. In order to implement the covariance condi-
tion (3) we used the basis{ }A ij , ( , , , )i j D�1 � , which fulfills the
following commutation relations
[ , ] ( )A A Aij mn ab jm ai bn in am bj� �� � � � � � , (5)
(we have used the Einstein summation convention in which
we have to sum over all indices which appear in an expression
twice from one to D). A representation of these generators is
given by the D×D matrices

( )( )A ij
kl

ik jl ij klD
� �� � � �

1 . (6)

The density matrix �in ( )p can be written in the form

�in ij ijD
p A( ) ( ).p I� �

1 (7)

In terms of matrices (6) the most general output state is
represented by the density matrix
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� � �

�

out ij ij ij ij

ijkl

N
( ) ( ) ( )( ) ( )p I I p A I p I A� � � � � �

�

1
2

1 2

( ) ,p A Aij kl�

(8)

where the linearity requirement of quantum mechanics im-
plies that �ij

( )( )1 p , �ij
( )( )2 p and �ijkl( )p have to be linear with

respect to the parameters of the Bloch vector p. To fulfill the
covariance condition (3) the matrix (8) has to involve only
terms invariant under the transformation of the form U�U,
i.e. the scalar part, or terms which transform like the genera-
tors of the su(D) group A ij , i.e. the vector part. It was shown in
[4] that the nontrivial scalar is A Aij ji� and the nontrivial
vectors have the form A Aki kj� , A Aik kj� . From these facts,
the most general output matrix that fulfills the covariance
condition (3) and depends linearly on the input must have
the form

� � �out ij ij ij ij

ij ji

N
p p

C

( ) ( ) ( )p I I A I I A

A A

� � � � � �

� � �

1
2

1 2

� ��p pij ik kj ji ki jkA A A A� � � .

(9)

where �( , )12 and C are real parameters and � is complex. The
ranges of these parameters are restricted by the fact that
�out( )p must be a density matrix, i. e. a positive operator with
a unit trace.

This statement can be easily generalized to the N-particle
case. The output density matrix has to involve only the scalar
terms (multiplied by an arbitrary constant) and the vector
terms (multiplied by a constant with the parameters of the ini-
tial state pij). These terms can be constructed by the tensor
product of the one-particle scalar I and vector A ij , and the
two particle scalar and vector terms. To obtain a scalar term
we have to sum over all free indices, and for a vector term two
indices must remain free (these are later summed with the pa-
rameters pij). The summation is done in such a way that one
summation index is in the first position while the second is in
the second position of the generators (6).

For example we will show the explicit form of the scalar
and vector terms for the case N � 3 (for more information on
three-particle universal processes see [6]):

� Scalar terms
– A A Iij ji� � , A I Aij ji� � , I A A� �ij ji ,
– A A Aij jk ki� � � hermitian conjugate

� Vector terms
– A I Iij � � , I A I� �ij , I I A� � ij ,
– A A Iik kj� � , A I Aik kj� � , I A A� �ik kj
+hermitian conjugate
– A A Aij kl lk� � , A A Akl ij lk� � , A A Akl lk ij� � ,
– A A Aik kl lj� � , A A Akl ik lj� � , A A Aik lj kl� �
+hermitian conjugate

In this case the output density matrix �out( )p depends on
23 real parameters, which are restricted by the positivity of
this operator. Compared with just five real parameters in
the two-particle case, we see that the complexity of the N-par-
ticle covariant mapping grows rapidly with the number of
particles N.

If we want to study the properties the covariant mappings
in more detail, we can simply study the resulting density
matrix for an arbitrary input state. Due to the covariance (3),

functions like the entropy or the entanglement measures of
the particular universal process will have the same value for
all possible input states, because these functions are invariant
under local transformations.

The universal processes generating entangled two-
-particle output states which do not contain any separable
components were studied in [4]. It has been shown that this
particular subclass forms a one-parameter family of totally
anti-symmetric states with respect to permutations of the two
particles. We will now give a generalization of this class for the
case of N-particle processes.

3 Generalization of the universal
process generating anti-symmetric
states to N particles
In this section we propose a generalization of the two-par-

ticle universal process generating totally anti-symmetric states
to an arbitrary number of particles. The initial state of the first
qudit is assumed to be 1 without loss of generality, due to
the covariant condition (3). We will use the following notation
A j Z j j j j j j D

B j Z

D
N

N N

D
N

� � � � � � � �

� �

{ | ( , , , ), }

{ |

� �

� �

�

1 22 2 3
�

� �

�

�

j j j j j j D

j
N

j

N N� � � � � �

�

( , , ), }

{ }
!

sgn( ) )

1 1 2

1

2
1

� �� �� jN
PN

) ,
��
	

(10)

where PN is a group of permutations of N elements. The out-
put states of the N-particle universal process generating to-
tally anti-symmetric states form a one-parameter family and
can be written in the form

� 	 
N
anti

N N
anti

N N
antip p( )

( )
( )

( )
( )( )� � 
1 , p N( ) ,� 0 1 , (11)

where the matrices 	N
anti( ) and 
N

anti( ) are given by

	




N
anti

j A

N
anti

N
D D N

j j

D

( )

(

( ) !
( ) ( )

{ } { } ,�
�

� � �
�
	1

1 1�

� �

�

) ( ) !
( ) ( )

{ } { } .�
�

� �
�
	N

D D N
j j

j BD

1
1�

� �

�

(12)

In the case N � D, i.e. when the number of particles is
equal to the dimension of the one-particle Hilbert space, we
have to put p N( ) � 0 and the one-parameter family collapses
to a single process generating an N-particle singlet state.
This is the only case when the one-parameter family produces
a pure state, while in all other possible cases the output state
�N

anti( ) is always mixed. The maximally mixed state is de-

scribed by the parameter p
D N

DN( ) �
� and the output den-

sity matrix involves all
D
N

�

�


�

�
� N-particles anti-symmetric states

with the same probability. In this case the output density ma-
trix has the form

�N
anti

N
j C

p
D N

D

D
N

j j

D

( )
( ) { } { }�

��
�


�
�
� �

�

�


�

�
�
�

�
	

1
� �

�

, (13)

where the set CD is defined as

C j Z j j j DD
N

N� � � � � � �{ | }
�

�1 1 2 . (14)
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This state is invariant under the transformation of the
type U N� and therefore this particular process involves only
the scalar part.

Reduced states of K particles are the same for all K-particle
subsystems and have the same form as the output state of the
K-particle universal process. The only difference is that the
parameter p K( ) has to be replaced by p N

K
( )
( ), which is given by

p
K N K

NN
K p N

( )
( ) ( )

( )
�

� �
. (15)

The properties of the two-particle subsystems are de-
scribed by the parameter p N( )

( )2 . The entanglement of two-par-

ticle subsystems is quantified by the negativity [5]. For this
one-parameter family this function is given by ( c.f. [4])

� �
N p

p

D

p

D

p

D
( )

( ) ( )
( )

( ) ( ) ( )
2

2 2
2

2
2

2

2 1
1
2 1

1

1
�

�
�

�
�

�

�
. (16)

The negativity of the two-particle subsystems of the N-par-
ticle universal process generating totally anti-symmetric states
is then given by

N p
N D

N p

Dp N D p N

N N

N N

( )
( )

( )

( ) ( )

( ) ( )

�
�

� ��
�


� � � �

1
2 1

2 2

4 4 22 2 4 4� � �
�
�N D .

(17)

This function has a minimum for

p
D N

NN( ) �
� , (18)

i.e. the scalar process that produces the most disordered state
also produces the state with the least entangled two-particle
subsystems.

The maximal value of negativity is obtained for p N( ) �1
or p N( ) � 0, depending on the relation between N and D. For
D > 2N�1 the maximum is at the point p N( ) � 0 and has the

value

N D N
N D N N

N Dmax( )
( )

( )
� � �

� � � �

�
2 1

2 4 4
2 1

. (19)

For D < 2N�1 the maximum is at the point p N( ) �1 and is

given by

N D N
Dmax( )� � �

�
2 1

1
1

. (20)

In the case when D � 2N�1 the values of negativity at the
points p N( ) � 0and p N( ) �1are equal, so the function N p N( )( )
has two equal peaks.

The output density matrix (11) has the form of the convex
sum of two density matrices, 	N

anti( ) is the sum of the projec-
tors onto the anti-symmetric subspace involving the initial
state 1 , 
N

anti( ) involves the complementary projectors to those

in 	N
anti( ) on the N-particle anti-symmetric subspace. For the

special case of p N( ) � 0 only the matrix 	N
anti( ) is involved and

the output density matrix can be written as

	 �N
anti

N in N
N

D D N
A A( ) ( ) !

( ) ( )
�

�

� � �

1
1 1�

, (21)

where AN is the projection operator onto the anti-symmetric
subspace of the N-particle Hilbert space. Hence this particu-

lar process can be realized by a certain projector acting on the
initial state. Universal processes with this property will be
studied in the following section.

4 Realization of universal processes
As was shown above, some important universal processes

can be realized by the action of certain projectors on the input
state. Besides the example in the previous section, where the
projector on the anti-symmetric subspace of the N-particle
Hilbert space was used, we can mention the optimal universal
copying process from one to N particles, which can be imple-
mented by using a projector on the symmetric subspace of the
N-particle Hilbert space [2]. These projectors play the role of
Kraus operators for a given processes and can be used to con-
struct a unitary evolution operator in the canonical way [7], as
will be shown below.

The natural question arises what class of projectors have
this property of realizing covariant processes. Let T be a pro-
jector on some subspace of the N-particle Hilbert space and
�in. The mapping on the density operators � �out inT T� � ,
where � is normalizing factor �out to be a density matrix, ful-
fills the covariant condition if the following equality is satis-
fied for all one-particle unitary transformations U and for all
one-particle pure input states p p :
T U U I T

U T I TU

N

N N N

( )† ( )

( ) ( ) †

p p

p p

�

� �

� �

� � � �

1

1
(22)

A sufficient condition for T to satisfy (22) is
U T TUN N� ��( ) ( ), (23)

i.e. T must commute with all unitary transformations of the
form U N�( ).

All N-particle transformations U N�( ) form an N-particle
representation of a one-particle unitary group. This represen-
tation is generally reducible for N � 2. From Schur’s lemma,
which states that a representation is irreducible if and only if
the only matrix commuting with all members of the represen-
tation is proportional to the identity, we can deduce that if T is
proportional to the projector on invariant subspace of the
reducible representation then condition (23) is satisfied.

More generally, let { }P� be a set of all projectors on the
minimal invariant subspaces, then operator T, which is de-
fined as

T P� 		� �

�

, (24)

commutes with all unitary operators of the form U N�( ),
for arbitrary 	� � �. Now it is obvious that the mapping ~T

�out

N

NT
T I T

T I T
� �

�

�

� �

� �
~( )

( )

[ ( ) ]

( ) †

( ) †p p
p p

p p

1

1Tr
, (25)

where T is of the form (24), from the pure one-particle input
states to the N-particle output density operators satisfies con-
dition (22). The next simple consequence of the presented
construction is that any convex combination of transforma-
tions of the form (25) also satisfies (22).

Even though transformation (25) fulfils covariant condi-
tion (22) it need not be completely positive, which is a neces-
sary condition for the physical acceptability of this mapping.
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From the Kraus theorem we have the following criterion [8]:
linear mapping P from the density matrices on the input
Hilbert space to the density matrices on the output Hilbert
space is completely positive if and only if there exists a so
called Kraus decomposition of a given transformation, i.e. if
there exists a set of linear mappings, Kraus operators, { }Ek
satisfying the two following conditions for any input density
operator 	,

� �
P

E E

E E

k kk

k kk

( )
†

†
	

	

	
�

	
	Tr

(26)

E E Ik k
k

† �	 . (27)

The definition of transformation ~T guarantees fulfillment
of the first condition (26). To satisfy (27) we must restrict the
range of parameters 	� in (24) to inequality 	� �1for all �.

The construction of the completely positive universal pro-
cesses which was described above can still be generalized. The
transformation of the form (25) describes the universal pro-
cess from one to N particles. By applying the partial trace
operation over arbitrary M particles, M < N, to the N-particle
output state of transformation (25) we get the transformation
from one particle pure states to an (N � M)-particle. It is easy
to see that in this case the covariant condition remains satis-
fied and we get the completely positive universal process on
N � M particles. The last form of the universal process on N
particles built up of projectors is therefore the following

� �
�

�

�
out

i i
L

in
L L

L
in

M
T I T

T I
�

�

�

� �

�

Tr

Tr
1

1
, ,

( ) ( ) ( )†

( ) (

( )

(

�

� �L LT�1) ( )†)
, (28)

where M � �0, L � N � M, { , , } { , , }i i LM1 1� �� and T (L) is
the transformation of the form (24) on the L-particle Hilbert
space, where the condition 	� �1 is required for all �. Note
that by tracing out different particles we can generally get a
different classes of processes [9]. The simple consequence
of the linearity of quantum theory is that the convex com-
bination of the processes of the form (28) is also a completely
positive universal process.

In the case of formula (28) the mapping T L( ) does not
play the role of the Kraus operator of the universal process
(except the case M � 0), but (28) can be further rewritten in
the following way:

�

�

out

j j k k
i i

in
N

j j k kM M
M

M M
I

�

� � �
� �

1 1
1

1 1

1
, , ,
, ( )

, , ,� �

�

� �

� �

i i

j j
k k

D

L
in

L L

M

M
M

T I T

1

1
1

1
1

1

, †

,
,

( ) ( ) ( )†( )

�

�

�

�
�

� �

	

�Tr �
(29)

where D is a dimension of the one-particle Hilbert space and
� j j k k

i i
M M

M

1 1
1

, , ,
,
� �

� are the linear operators on the N-particle

Hilbert space, which are defined

� j j k k
i i

i M i
L

M

M M
M

M
j j P

k k
1 1
1

1
1

1

, , ,
, ( )

.

� �

�
�

�

� �� � �

� � �
(30)

Subscription by the bra-vector i j means that i acts
on the j-th component of the tensor product, i.e. on the j-th
particle. The operators defined by equation (30) form the set
of Kraus operators of the universal process (28).

We generalize the bipartite universal processes to the
subclass of the multi-particle universal processes from one
to N particles. We show how the general statement for a
multi-particle universal process can be constructed. The one-
-parameter family of processes generating totally anti-sym-
metric states was generalized to a multi-particle regime and
its entanglement properties were studied. A view on the com-
plete positivity and the possible physical realization of the
universal processes is given.

5 Conclusions
Universal processes may play an important role in various

branches of quantum information processing, e. g. in pre-
paration of entangled states or copies of the input state.
In addition to operations with two particles, multi-particle
operations are also of interest. For this purpose we have gen-
eralized the two-particle universal processes to a multi-parti-
cle regime and we have shown how the general statement for
the multi-particle universal process can be constructed using
the results for two-particle universal processes. For the prepa-
ration of multi-particle entangled states we generalized the
one-parameter family of processes generating totally anti-
-symmetric states to a multi-particle regime and studied its
bipartite entanglement properties. This one-parameter class
generates entangled states with equal reduced states, thus the
entanglement is shared uniformly between all pairs of parti-
cles. A particular process of this one-parameter family can
be realized by a simple action of a projection operator. For
processes of this kind we can in a canonical way construct a
unitary evolution operator, thus they are completely positive.
An open question is whether other universal processes can be
performed by an action of a certain projector, possibly on a
larger Hilbert space ( i. e. with more particles ) and then trac-
ing over some of the particles. Such processes will also be
completely positive, and therefore physically feasible, which
makes them very interesting for the possible future realization
of a quantum computer.
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