
Acta Polytechnica Vol. 52 No. 6/2012

OOFEM — an Object-oriented Simulation Tool
for Advanced Modeling of Materials and Structures

Bořek Patzák

Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29
Prague, Czech Republic

Corresponding author: bp@cml.fsv.cvut.cz

Abstract
The aim of this paper is to describe the object-oriented design of the finite element based simulation code. The overall,
object-oriented structure is described, and the role of the fundamental classes is discussed. The paper discusses the
advanced parallel, adaptive, and multiphysics capabilities of the OOFEM code, and illustrates them on the basis of
selected examples.

Keywords: object-oriented design, finite element analysis, parallel and distributed processing, multiphysics simulations.

1 Introduction
The aim of this paper is to describe the object-oriented
design of the finite element based simulation code.
The design follows several design patterns that have
contributed to an extremely modular and extensible
structure and have sustained nearly twenty years of
active development, during which the code has been
extended from a tool that was originally oriented to-
ward solid mechanics to become a truly multiphysics
modeling tool with adaptivity and distributed parallel
processing support, without any large-scale redesign.
The OOFEM code was originally developed by the
author at the Czech Technical University. At present,
the code consists of more than 200k lines of source
code in C++. It is freely available under General
Public License, and it is being developed by an in-
ternational community (visit the project web pages
[1] for further information). The design is based on
traditional object-oriented paradigms, such as encap-
sulation, abstraction, and inheritance. On top of
these fundamental concepts, a hierarchy of classes is
designed to map the mathematical problem described
by a set of partial differential equations in space and
time into flexible and cooperating software objects
that solve the problem. Initially, the object-oriented
design may seem complex in comparison with tra-
ditional finite element codes. However, when it is
structured properly and in agreement with object-
oriented philosophy, many benefits can be achieved.
The encapsulation of attributes and methods into a
class can hide the implementation details, provided
that the object state is requested and manipulated by
the corresponding services. Inheritance allows special-
ization and extension of existing classes, and when
combined with abstract methods defined by parent
classes it allows for extremely modular and extensible

design. The concept of abstract classes allows an ab-
stract interface to be designed in terms of the service
specification. The abstract interface has to be imple-
mented by the derived classes by implementing the
required services. This allows all derived classes to be
treated using the same high-level interface, without
regarding the particular details of each derived class.

In the implementation, single inheritance has been
preferred wherever the parent class defines a compul-
sory basic interface. However, in many cases, optional
functionality may also be implemented by derived
classes. As an example, consider the implementa-
tion of a particular finite element. The compulsory
part of the element interface (involving methods for
evaluating characteristic matrices and vectors, etc.)
is defined by the parent Element class. Additional
functionality, e.g. an error estimation capability, may
be supported only by some elements. It is not a
smart idea to extend the basic interface by including
optional functionality, as this will result in a very
complex interface specification, with many methods
that will prevent implementation of simple elements
without optional functionality. A possible remedy
is then based on using multiple inheritance, where
a particular element is derived from the base class
and optionally from classes defining the optional inter-
faces. This solution may seem natural, but it has one
important drawback: if a class is based on (derived
from) another one, it is automatically derived from all
classes as its parent. This prevents the selective appli-
cation of optional interfaces. This problem has been
solved in some object-oriented languages, e.g. in Java,
where only single inheritance is supported, but a class
can implement several interfaces. Derived classes do
not inherit interfaces automatically; interface imple-
mentation has to be declared by each class explicitly.
As the presented code has been implemented in C++,

59

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/268469595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Acta Polytechnica Vol. 52 No. 6/2012

EngngModel Domain

Element DofManager BoundaryCondition InitialConditionMaterial

NumericalMethod

Figure 1: Problem representation in OOFEM.

an additional concept has been defined to support an
optional interface. It is based on multiple inheritance,
but supplemented by an abstract interface request ser-
vice, which allows selective decisions on implemented
interfaces by particular elements.

2 Overall design

This section presents the general structure of the
OOFEM code using uniform modeling language
(UML) notation (see [2] for details). The abstract
classes are represented by rectangles. The lines
marked with a triangle represent the generaliza-
tion/specialization relation (inheritance), where the
triangle mark points to the parent class. The lines
marked with a diamond represent the whole/part re-
lation, in which diamond mark points to the “whole”
class possessing the “part” class, and an association is
represented by a solid line drawn between the classes.

The problem under consideration is represented by
a class derived from the EngngModel class, see Fig. 1.
Its role is to assemble the governing equation(s) and
use a suitable numerical method (represented by the
class derived from the NumericalMethod class), to
solve the resulting system of equations. The dis-
cretization of the problem domain is represented by
the Domain class, which maintains the lists of ob-
jects representing nodes, elements, material models,
boundary conditions, etc. The Domain class is an at-
tribute of the EngngModel. For each solution step, the
EngngModel instance assembles the governing equa-
tion(s) by summing up the contributions requested
from the domain components (nodes, elements, etc.).
This abstract approach is supported by suitable ab-
stract services at the element and nodal classes for
getting code numbers and evaluating characteristic
components.
Since the governing equations are typically repre-

sented numerically in matrix form, implementation
is based on vector and sparse matrix representations,
see Fig. 2. The parent SparseMatrix class declares

the abstract interface, allowing manipulation of dif-
ferent sparse matrix formats using the same inter-
face. Derived classes represent different sparse storage
schemes and implement, for example, the skyline, a
compressed row or compressed column formats, as well
as classes implementing the SparseMatrix interface
and representing an interface to third-party libraries,
e.g. IML[3], Spooles[4], DSS[5], or Petsc[6]. The ad-
vantage of the design described here is its modular
design with decoupled problem formulation, numeri-
cal solution and sparse storage. It allows a particular
problem to be implemented in a form that will work
with all suitable numerical solvers and sparse matrix
storage schemes, even those added in the future.
The individual finite elements are represented by

classes derived from ElementGeometry and one or
more classes derived from ElementEvaluator, see
Fig. 3. The ElementGeometry class defines the el-
ement geometry and keeps a list of element nodes.
The ElementEvaluator (or, more precisely, the prob-
lem related class derived from the parent Element-
Evaluator) defines the problem-specific methods (e.g.
methods for evaluating the stiffness matrix or element
load vector) required by the corresponding problem.
The implementation of individual elements is further
facilitated by the library of classes representing inte-
gration points, integration rules, and finite element
interpolation spaces. The ElementEvaluator problem
specific methods can be implemented by the evaluator
itself, without regarding the details of the particular
element, because the evaluator has access to repre-
sentations of element geometry, element interpolation
and integration rules, and each of these can be manip-
ulated by an abstract interface. Multiple integration
rules can be created by elements to implement re-
duced or selective integration schemes, and multiple
interpolation can also be created. Many Lagrange-
based interpolation schemes are provided, as well as
B-spline, NURBS, and T-spline based interpolations.
Thanks to T-spline based interpolations, the imple-
mentation of isogeometric analysis [7] has been pretty
straightforward (see [8, 9] for more details).
The essential feature is decoupling of the element

60



Acta Polytechnica Vol. 52 No. 6/2012

Figure 2: Nonlinear static problem and corresponding classes.

geometry description (represented by the Element-
Geometry class) and problem-specific functionality
(represented by the classes derived from the Element-
Evaluator class), which allows natural implementation
of elements for coupled problems, where one needs to
combine functionality from individual subproblems
into a single element (represented by corresponding
classes derived from ElementEvaluator). This is a
better solution than deriving the coupled element
from several sub-problem elements, leading to dupli-
cation of element geometry data. Introducing the
CoupledEvaluator class makes it possible to combine
individual evaluators. CoupledEvaluator is derived
from the base ElementEvaluator class, and comes with
the capability to group individual low-level evaluators
together (complemented by evaluators for coupling
terms) by performing local assembly from individ-
ual contributions. When a problem-specific evaluator
is available, the definition of a particular element is
straightforward. It consists in:

1. defining a new class, derived from ElementGeom-
etry and class(es) representing problem-specific
evaluator(s);

2. setting up its interpolation(s) and integration
rules.

No additional coding is necessary.
Nonlinear, path-dependent material models require

keeping a loading history in each integration point,
described by a set of internal variables. Naturally,
these variables should be stored in the corresponding
integration point. However, efficient implementation
is not straightforward, as the amount and the type of
internal variables vary for different material models.
Instead, each material model defines an associated
status, a class derived from MaterialStatus, which

serves as a container for material model specific inter-
nal variables. The integration point comes with the
possibility to store a unique material status instance,
which is created by the corresponding material. As
the integration point is the parameter to all services
provided by a material model, the associated status
and the corresponding internal variables are conve-
niently accessible. The elements do not communicate
directly with the associated material model, as an
additional layer is inserted between them represent-
ing the cross section model. The role of the cross
section is to integrate the response (in terms of stress
and strain, for example) over the cross section geom-
etry composed of possibly different materials. This
is especially helpful in the case of shell and beam
elements, where the introduction of the cross section
allows cross section details to be hidden by decoupling
finite element and cross section formulations. This
approach allows the use of the same beam element
formulation with integral or layered cross section de-
scriptions, for example. For problems where the cross
section model is irrelevant, a simple dummy cross sec-
tion model is provided, routing all requests directly
to the underlying material model.

3 Parallelization Strategy
The code provides support for parallel and distributed
computations. The design of parallel algorithms re-
quires partitioning of the problem into a set of tasks,
the number of which is greater than or equal to the
number of available processors. The partitioning of
the problem can be fixed (static load balancing) or
can change during the solution (dynamic load balanc-
ing). The latter option is often necessary in order
to achieve good load balancing of the work between
processors, and thus optimal scalability. The adopted

61



Acta Polytechnica Vol. 52 No. 6/2012

Figure 3: Element implementation.

parallelization strategy is based on the domain de-
composition paradigm, where the computational mesh
is divided into partitions assigned to individual pro-
cessing units. The node cut approach is used. This
approach is based on unique assignment of individual
elements to partitions. A node is then either assigned
to a partition (local node), if it is surrounded exclu-
sively by elements assigned to that partition, or is
shared by several partitions (shared node), if it is in-
cident to elements owned by different partitions. The
communication model is based on the message pass-
ing paradigm, which is available on most hardware
configurations. This allows different parallel archi-
tectures to be supported, ranging from systems with
shared memory to massively parallel systems with
distributed memory. The Message Passing Interface
(MPI) [10, 11] is used.

Efficient parallelization requires that all steps in
the solution procedure can be processed in parallel.
In a typical problem, this involves assembling the
characteristic problem, solving it, and postprocessing
it. High-level communication services were developed
on the top of the message passing library, providing
transparent data streams for parallel, non-blocking
communication between partitions. Provided that the
partitioning of the problem is given, each processor
can assemble its local contribution to the global char-
acteristic equation(s). The rows of global matrices
and vectors are distributed on individual processors
according to the distribution of nodes and correspond-
ing DOFs. This part is identical to the serial assembly
process. After local assembly is finished, the shared
node contributions are exchanged. This is integrated
into general purpose assembly services, so that the
users can use any sparse matrix representations and
the exchange of shared contributions is performed
transparently. After the assembly process is finished,
the global set of (linearized) equations is solved in
parallel. After the solution, the local solution vectors

on each partition are collected, and local postpro-
cessing (stress and strain evaluation, for example)
is performed on each partition in parallel, typically
without the need for further communication.

The load balance recovery is achieved by reparti-
tioning the problem domain and transferring the work
(typically represented by finite elements) from one
sub-domain to another. There are in general two ba-
sic factors causing load imbalance between individual
subdomains:

1. one coming from the nature of the application,
e.g. switching from a linear response to a nonlin-
ear response in certain regions or local adaptive
refinement;

2. external factors, caused by resource reallocation,
typical in non-dedicated cluster environments,
where individual processors are shared by differ-
ent applications and users, leading to variation
in allocated processing power.

Repartitioning is an optimization problem with mul-
tiple constraints. The optimal algorithm should bal-
ance the work while minimizing the work transfer
and keeping the sub-domain interfaces as small as
possible. Other constraints can reflect the differences
in the processing power of individual processors, or
may be induced by the topology of the network. The
load balancing layer is transparently integrated into
the computational kernel. Details on implementing
dynamic load balancing in OOFEM can be found
in [12, 13].

4 Multiphysics and adaptive
capabilities

The framework supports both fully and weakly (stag-
gered) coupled multiphysics simulations. The devel-
opment of multiphysics solution schemes is relatively

62



Acta Polytechnica Vol. 52 No. 6/2012

2
0
0

400
100

260

300

36

14

Plane of symmetry

Free
surface

Figure 4: Geometry of an Anchor Pullout Test.

straightforward, as the individual elements can easily
be constructed from existing single physics formula-
tions by supplying only a definition of corresponding
coupling terms, by implementing the corresponding
element evaluator. Concurrent multiscale simulations
have also been developed, using a microscale model
of the representative volume element in each integra-
tion point to obtain a macroscale material response
by means of homogenizations. Additionally, any pri-
mary or secondary variable can be represented as a
field. Fields can represent any scalar, vector or ten-
sorial quantity and provide services to evaluate the
field at any point of interest. This feature simplifies
mutual field exchange in staggered simulations to a
large extent, naturally allowing the possibility to have
different discretizations on each subproblem. The
individual subproblems can be arbitrarily assembled
into a staggered solution scheme, and data is transpar-
ently exchanged. The field mapping is also essential
in h-adaptive, nonlinear solution procedures, enabling
the solution state to be mapped from old to updated
discretization. The sequence of meshes is generated
on the basis of spatial error distribution, estimated
by a suitable a-posteriori error estimator, represented
by a class derived from the abstract ErrorEstimator
class. The mesh can be refined by a built-in, fully
parallel, subdivision-based remeshing algorithm or by
an external application. At present, an interface to
the T3D mesh generator [14, 15] is supported.

5 Examples

5.1 Parallel analysis of 3D anchor
test

The capabilities and the performance of the parallel
adaptive load-balancing framework are illustrated on a
three-dimensional adaptive analysis of an anchor pull-
out test. In this example, h-adaptive analysis is used
together with a heuristic error indicator based on the

0 5 10 15 20 25 30 35
CPUs

0
10

00
0

20
00

0
30

00
0

T
im

e 
[s

]

no load balancing
post lb each step
post lb each 2nd step
pre lb each step
pre lb each 2nd step

0 5 10 15 20 25 30 35
CPUs

0

1

2

3

4

5

6

7

S
pe

ed
up

 (
re

la
tiv

e 
to

 4
 C

P
U

s) no load balancing
post lb each time step
post lb each 2nd step
pre lb each step
pre lb each 2nd step

Figure 5: Anchor pullout: timing and speedups.

attained damage level. In order to assess the behavior
and performance of the proposed methodology, the
case study analyses were run without dynamic load
balancing (static partitioning was employed, marked
as “nolb”), and with dynamic load balancing per-
formed before error assessment (“prelb”), or after
error assessment (“postlb”).
The geometry and setup of the test are shown in

Fig. 4. The anchor is located close to the bound-
ary, requiring full 3D analysis with only one plane of
symmetry. As the steel anchor is pulled out of the
concrete, a crack surface is initiated at the anchor
head and starts to propagate towards the boundary
as the loading increases. An anisotropic, non-local
damage based model has been used for modeling the
concrete fracture. The original mesh consists of 16772
linear tetrahedral elements and 1456 nodes, which
was subsequently refined in 20 steps into a final mesh
with 125400 elements and 22441 nodes. The problem
was solved on an SGI Altix 4700 machine installed at
the CTU computing center. The obtained solution
times (averaged over two or three analysis runs) and
the corresponding speedups (relative to 4 CPUs) are
summarized in Fig. 5.
The results reveal that the effect of dynamic load

balancing is quite substantial. When no load bal-
ancing is applied, the solution times decrease only
slightly with the number of CPUs. This is a direct

63



Acta Polytechnica Vol. 52 No. 6/2012

Figure 6: Oparno Bridge.

Figure 7: Multiscale computational scheme.

consequence of the heavy imbalance due to the local-
ized refinement resulting in a dramatic increase in the
number of elements in one subdomain or in a small
number of subdomains. With dynamic load balanc-
ing, this effect is alleviated. The obtained speedup
of the load-balanced computation shows a nice linear
trend, indicating very good scalability of the parallel
algorithm.

5.2 Multiscale Heat Transport

This example illustrates multiscale simulation, which
helped to find the optimal position for cooling pipes
and a cooling regime on an arch bridge over the
Oparno Valley, Czech Republic. The bridge was built
between 2008 and 2010, with the arches spanning
135m, see Fig. 6. Hydrating concrete produces a
significant amount of hydration heat, which causes
several problems in massive concrete elements. There
were concerns that significant tensile stresses might
appear during the cooling of a massive cross-section of
the arch. These tensile stresses can lead to cracking,
which can negatively affect the durability of the final

Figure 8: Oparno Bridge: Temperature profile.

Figure 9: Oparno Bridge: comparison with measure-
ments.

structure. Another negative effect can appear when
the temperature exceeds 70 degrees Celsius, when the
formation of monosulphate can be followed by ettrin-
gite formation (so-called delayed ettringite formation,
DEF). Two computational scales were involved (see
Fig. 7):

1. the level of cement paste, where the CEMHYD3D
[16] material model predicts the evolution of a dis-
crete microstructure on the scale of micrometers
and returns the liberated heat;

2. the structural level, where the heat balance equa-
tion is solved with finite elements.

The details can be found in [17].
Fig. 8 shows the temperature evolution during con-

crete hardening and the induced out-of-plane stress.

64



Acta Polytechnica Vol. 52 No. 6/2012

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.05

0.1

0.15

Experiment - 1s
Experiment - 1.5s
Experiment - 2s
Experiment - 3s
Simulation - 1s
Simulation - 1.5s
Simulation - 2s
Simulation - 3s

Figure 12: LBOX test: profiles of the spreading concrete at different times.

0.1 0.615

0.14

walls

air

0.
15

0.
6

co
nc

re
te

sliding door

Figure 10: LBOX test: geometry.

The simulation runs on the left symmetric part of
the arch cross-section. Fig. 9 compares the multiscale
simulation with the temperature in the core of the
cross-section. The temperature measured in the con-
crete remained below 65°C during summer casting,
which was found acceptable.

5.3 Casting Simulation
The last example illustrates the simulation of fresh
concrete casting, where the fresh concrete has been
modeled as a homogeneous, non-Newtonian fluid. The
simulation is based on an incompressible flow model
of two immiscible fluids (concrete and air), where
the interface tracking technique is used to track the
position of the interface between the fluids. The
geometry and the setting of the experimental setup,
known as the L-Box test, is presented in Fig. 10.
The concrete is confined in an L-shaped reservoir

with a vertical gate. After the removal of the gate,
the concrete starts spreading into the form-work. Fric-
tionless boundary conditions are assumed on the walls

Figure 11: LBOX test: spreading conrete profiles.

forming the reservoir, and also on the formwork. The
numerical simulations use the Bingham model for
the concrete suspension. The unstructured, triangu-
lar grid consists of 3652 nodes and 6927 triangles.
Realistic modeling of the gradual gate opening is par-
ticularly important, as the results, especially in the
initial phase, are very sensitive to the gate opening
speed. The profiles of the fresh concrete at different
times (see Fig. 11) are compared with experimental
observations in Fig. 12. Very good agreement has
been obtained.

6 Conclusions

The paper has focused on a description of the object-
oriented structure of a finite element based simulation
framework. The fundamental design patterns and
their consequences have been discussed. The paper
has also described the design and implementation
of some advanced features, including parallel and
distributed support and multiphysics. In the final
part, selected examples have been used to demonstrate
the capabilities of the code.

Acknowledgments

This work was supported by the Ministry of Edu-
cation of the Czech Republic, under project MSM
6840770003.

65



Acta Polytechnica Vol. 52 No. 6/2012

References
[1] B. Patzák. OOFEM project home page, 2012.

http://www.oofem.org.

[2] D. Pilone and N. Pitman. UML 2.0 in a Nutshell.
O’Reilly Media, Inc.; 2nd edition, 2005.

[3] J. Dongarra, A. Lumsdaine, R. Pozo, K. Reming-
ton. IML++ (Iterative Methods Library) project
page, 2012. http://math.nist.gov/iml++.

[4] C. Ashcraft et al. SPOOLES: SParse Ob-
ject Oriented Linear Equations Solver, 2012.
ww.netlib.org/linalg/spooles/spooles.2.2.html.

[5] R. Vondráček. Use of a Sparse Direct Solver in
Engineering Applications of the Finite Element
Method. Česká technika – nakladatelství ČVUT,
ISBN: 978-80-01-04245-8, 2008.

[6] Satish Balay, Kris Buschelman, William D.
Gropp, Dinesh Kaushik, Matthew G. Knep-
ley, Lois Curfman McInnes, Barry F. Smith,
and Hong Zhang. PETSc Web page, 2001.
http://www.mcs.anl.gov/petsc.

[7] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs. Isogeo-
metric Analysis: CAD, Finite Elements, NURBS,
Exact Geometry and Mesh Refinement. Com-
puter Methods in Applied Mechanics and Engi-
neering, 194, 4135-4195, 2005.

[8] D. Rypl, B. Patzák. From the Finite Element
Analysis to the Isogeometric Analysis in an Ob-
ject Oriented Computing Environment. Advances
in Engineering Software, 44 (1), pp. 116-125,
2012.

[9] D. Rypl, B. Patzák. Object Oriented Imple-
mentation of the T-spline Based Isogeometric
Analysis. Advances in Engineering Software, 50,
pp. 137–149, 2012.

[10] Message Passing Interface Forum. MPI: A
message-passing interface standard. Technical
report, University of Tennessee, 1995.

[11] Marc Snir, Steve Otto, Steven Huss-Lederman,
David Walker, and Jack Dongarra. MPI: The
Complete Reference. MIT Press, Boston, 1996.

[12] B. Patzák, D. Rypl, and Z. Bittnar. Parallel
explicit finite element dynamics with nonlocal
constitutive models. Computers and Structures,
79(26-28):2287–2297, 2001.

[13] B. Patzák, D. Rypl. Object-oriented, paral-
lel finite element framework with dynamic load
balancing. Advances in Engineering Software,
47(1):35 – 50, 2012.

[14] D. Rypl. T3D project home page, 2012.
http://www.t3d.info.

[15] D. Rypl. Sweeping of Unstructured Meshes over
Generalized Extruded Volumes, Finite Elements
in Analysis and Design, 46 (1–2), 203–215, 2010.

[16] V. Šmilauer, T. Krejčí. Multiscale Model for
Temperature Distribution in Hydrating Concrete.
International Journal for Multiscale Computa-
tional Engineering, 7(2), 1543–1649, 2009.

[17] V. Šmilauer, J. L. Vítek, B. Patzák, Z. Bit-
tnar. Optimalizace chlazení oblouku Oparen-
ského mostu. Cooling optimization in Oparno
bridge’s arch. Časopis Beton TKS. 2011, vol. 11,
no. 4, p. 62-65.

66


