
1 Introduction

In recent decades, the finite element method (FEM) has
become the most powerful tool for structural analysis. Auto-
matic generation of consistent, reproducible, high quality
meshes without user intervention makes the power of the
finite element analysis accessible to those not expert in the
area of mesh generation. Therefore tools for automated and
efficient mesh generation, including the discretization of 3D
surfaces, are important prerequisites for the complete inte-
gration of the finite element method with design processes in
CAD, CAE, and CAM systems.

An important class of 3D surfaces is the group of surfaces
described by the stereolithography (STL) file format. This
format approximates 3D surfaces of a solid model with ori-
ented triangles (facets) of different size and shape (aspect
ratio) in order to achieve a smooth enough representation
suitable for industrial processing of 3D parts using stereo-
lithography machines. However, such a representation is not
appropriate for computational analysis using FEM. The aim
of this paper is to extend a recently developed algorithm for
discretization of discrete 3D surfaces [1] to the class of surface
of which the geometry is described by discrete data in the STL
format.

The actual discretization consists of several phases. Ini-
tially, a boundary representation of the entire model is con-
structed from the STL file using feature recognition based on
appropriate topological and geometrical operations. In this
way, distinct model entities (vertices, curves, and surfaces)
of a topological nature (topological features) or with impor-
tant geometrical aspects (sharp features) are established. In
the current implementation, the geometrical operations are
based on the dihedral and turning angle, and on the aspect
ratio of two neighbouring facets. Note that the current imple-
mentation makes no attempt to detect the volumes. In the
next phase, a smooth (limit) surface is recovered over the
original STL grid. This is accomplished using the interpolat-
ing subdivision based on the modified Butterfly scheme,
which yields C1 surfaces (even in a topologically irregular
setting). Similarly, the limit boundary curves are recovered us-
ing one-dimensional interpolating subdivision producing C1

curves. In the last phase, the reconstructed limit surface is
subjected to triangulation accomplished using the advancing

front technique operating directly on the limit surface. This
avoids difficulties with the construction of smooth parame-
trization of the whole surface.

The paper is organized as follows. In Section 2, the STL
file format is described. Section 3 outlines the extraction of
the boundary representation of the model. The reconstruc-
tion of a smooth 3D surface from the discrete STL data using
the subdivision technique is recalled in Section 4. Section 5
briefly describes the actual mesh generation and presents the
capabilities of the algorithm on an example. The paper ends
with concluding remarks in Section 6.

2 STL File format
An STL file is a triangular representation of a 3D surface

geometry. The surface is tessellated logically into a set of
oriented triangles (facets). Each facet is described by the unit
outward normal and three points listed in counterclockwise
order representing the vertices of the triangle. While the
aspect ratio and orientation of the individual facets is gov-
erned by the surface curvature, the size of the facets is driven
by the tolerance controlling the quality of the surface repre-
sentation in terms of the distance of the facets from the sur-
face. The choice of the tolerance is strongly dependent on
the target application of the produced STL file. In indus-
trial processing, where stereolithography machines perform a
computer controlled layer by layer laser curing of a photo-
-sensitive resin, the tolerance may be in the order of 0.1 mm
to make the produced 3D part precise with highly worked out
details. However, much larger values are typically used in
pre-production STL prototypes, for example for visualization
purposes.

The native STL format has to fulfill the following speci-
fications: (i) The normal and each vertex of every facet are
specified by three coordinates each, so there is a total of
12 numbers stored for each facet. (ii) Each facet is part of the
boundary between the interior and the exterior of the object.
The orientation of the facets (which way is “out” and which
way is “in”) is specified redundantly in two ways, which must
be consistent. First, the direction of the normal is outward.
Second, the vertices are listed in counterclockwise order when
looking at the object from the outside (right-hand rule).
(iii) Each triangle must share two vertices with each of its
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adjacent triangles. This is known as the vertex-to-vertex rule.
(iv) The object represented must be located in the all-positive
octant (all vertex coordinates must be positive).

However, for non-native STL applications, the STL for-
mat can be generalized. The normal, if not specified (three
zeros might be used instead), can be easily computed by the
application from the coordinates of the vertices using the
right-hand rule. Moreover, the vertices can be located in
any octant. And, finally, the facet can even be on the interface
between two objects (or two parts of the same object). This
makes the generalized STL format suitable for modelling 3D
non-manifold objects.

3 Extraction of boundary
representation
Although an STL file represents a fully conforming grid,

the construction of a boundary representation suitable for
further processing is not trivial. First of all, the STL file has to
be converted to a topologically more consistent form (called a
background (bg) file hereafter) containing initially a list of
vertices (called bg nodes hereafter), each one defined by an
identification number (id) and three coordinates, and a list of
facets (called bg faces hereafter), each one defined by id and
three bg nodes ids. The background file is then extended by a
list of bg edges, each defined by id and two bg nodes ids. Note
that each bg edge must coincide with a side (called a bg side
hereafter) of at least one bg face. Firstly, bg edges correspond-
ing to topological features are detected. These are all those
bg sides that are not shared exactly by two bg faces. Then
bg edges corresponding to geometrical (sharp) features are
identified. Three criteria are used in the following order. The
first criterion is based on finding all neighbouring bg faces
that form a continuous plane. Then those bg sides that are
shared only by one bg face corresponding to a particular
plane formed by at least three bg faces is marked as a bg edge.
The second criterion whether a bg side forms a sharp feature
uses the dihedral angle (based on the angle of normals)
between the two neighbouring bg faces sharing that bg side.
Should this angle exceed a user specified threshold the bg
side is marked as a bg edge. Taking into account that the
aspect ratio of bg faces corresponds to the curvature of the
surface, the third criterion is based on the ratio of heights of
two neighbouring bg faces with respect to the shared bg side.
Should this ratio exceed a user prescribed threshold and the
normals of those bg faces are not same and do not exceed the
angle threshold, then the bg side is marked as a bg edge.
When all bg edges are identified, the bg nodes corresponding
to topological features are detected and classified as a model
vertex. These are all bg nodes that are not shared exactly by
two bg edges. Then the bg nodes corresponding to geometri-
cal features are searched for. Again three criteria are used.
The first criterion is based on finding all neighbouring bg
edges that form a continuous straight line. Then those bg
nodes that are shared only by one bg edge corresponding to a
particular line formed by at least two bg edges is classified as
a model vertex. The second criterion classifies as a model
vertex all those bg nodes that are shared by two bg edges at a
turning angle above a user prescribed value. And thirdly,
if the ratio of the lengths of two neighbouring non-colinear bg
edges exceeds a user specified value, the bg node shared by

those bg edges is also classified as a model vertex. Note that
the current implementation makes no attempt to detect
a sharp vertex not connected to any bg edge (e.g. the tip of a
cone). Note also that each model vertex keeps a list of all bg
edges connected to it. Once the model vertices are identified,
model curves can be determined by traversing the chains of
connected bg edges from a starting vertex until the ending
vertex is reached. Every visited bg edge and its not yet classi-
fied end nodes are classified to the corresponding model
curve. Loops of not visited bg edges (there is no model vertex
on any of those bg edges) and their end nodes are also classi-
fied to a particular model curve. Finally, the model surfaces
are identified. This is simply accomplished by assembling all
neighbouring bg faces that do not share the same bg edge.
Each face and its not yet classified corner nodes are classified
to the corresponding model surface. Since the border of each
model surface is formed by bg edges, which are in turn classi-
fied to model curves, it is easy to set up for each surface the
list of boundary curves. This makes the extraction of the
boundary representation complete.

The problem of the above concept consists in the fact that
it gives no guide how to choose the individual thresholds.
This is the consequence of the fact that the STL file does not
possess information about the original tolerance used to
generate it, and that the identification of the original geo-
metry from the STL file is generally not unique. In other
words, there may exist several geometries that are repre-
sented by the same STL file generated for the same tolerance.
A reasonable strategy to tackle this problem is to use an itera-
tive approach in which the algorithm accepts the already
identified features from previous iterations. Initially, conser-
vative values of thresholds, which yield only really “sharp”
features, are chosen to produce the first boundary representa-
tion of the object. Alternatively, no values may be specified at
all, resulting in boundary representation based solely on
topological features. Next, suitable values are interactive-
ly specified for individual entities of the model to further
define the boundary representation. However, even such an
approach can fail to detect some significant features of the
object (or can detect them only at the cost of detecting
simultaneously some undesirable ones). Therefore the identi-
fication procedure cannot rely only on the threshold values
and must also accept an interactive input of manually selected
(or deselected) bg edges. This, however, makes the process of
extracting the boundary representation tedious.

4 Reconstruction of a limit surface
The smooth surface over the original STL triangulation is

reconstructed using a suitable subdivision technique based on
the hierarchical recursive refinement of triangular simplices
forming the STL mesh (Fig. 1). Each step of the refinement
consists of two stages – splitting and averaging (Fig. 2). In the
splitting stage, new bg nodes are introduced exactly in the
middle of individual bg edges. During the averaging, the
bg nodes are repositioned to a new location evaluated as
a weighted average of bg nodes in the neighbourhood (ac-
cording to the so called averaging mask). As the level of
refinement grows, the resulting grid approaches the so called
limit surface.
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In the presented implementation, the recursive subdi-
vision based on the modified Butterfly scheme [2] has
been employed. It is the interpolating non-uniform station-
ary scheme, in which the existing bg nodes (on the current
level of refinement) remain unchanged and the position of a
new bg node S on the next level (Fig. 3a) is calculated as
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Fig. 1: Two levels of hierarchical refinement of a bg face

Fig. 2: Two stages of refinement – splitting and averaging

Fig. 3: Averaging masks: a) surface mask (n � 7), b) 4-point curve mask, c) 3-point curve mask



The modified Butterfly scheme exhibits favourable
properties:
� generality – it works with a control grid of any topology,
� smoothness – it yields C1 continuous limit surface,
� locality – it uses only a one-level neighbourhood and
� simplicity – it ensures easy and efficient evaluation.

Similarly, the limit boundary curves are recovered using a
one-dimensional interpolating subdivision [3] producing C1

continuous curves. The adopted 4-point (for a new bg node
between two curve bg nodes) and 3-point (for a new bg node
between a vertex bg node and a curve bg node) averaging
masks are depicted in Fig. 3b and 3c.

The final interpolating procedure evaluates the position
of a new bg node according to the classification and regularity
of the end bg nodes of its parent bg edge (a surface bg node of
valence 6 is called regular, otherwise it is called irregular):
1. for every surface bg edge bounded by an irregular surface

bg node and a regular surface bg node, compute the bg
midnode position using the surface averaging mask with
respect to the irregular surface bg node,

2. for every surface bg edge bounded by two irregular or
regular surface bg nodes, compute the bg midnode posi-

tion using the surface averaging mask with respect to both
end bg nodes and take the average,

3. for every surface bg edge bounded by a surface bg node
and a non-surface bg node, compute the bg midnode
position using the surface averaging mask with respect
to the surface bg node,

4. for every surface bg edge bounded by two non-surface bg
nodes, compute the bg midnode position as the average of
the positions of the end bg nodes,

5. for every curve bg edge bounded by two curve bg nodes,
compute the bg midnode position using the 4-point curve
averaging mask,

6. for every curve bg edge bounded by a curve bg node and a
vertex bg node, compute the bg midnode position using
the 3-point curve averaging mask,

7. for every curve bg edge bounded by two vertex bg nodes,
compute the bg midnode position as the average of the
positions of these vertices.

An example of the application of the modified Butterfly
scheme to a simple domain is depicted in Fig. 4. The control
grid is derived from 24 triangular facets covering a regular
12-sided polygon by shifting two interior nodes (opposite
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Fig. 4: Application of the modified Butterfly scheme to a simple domain: original control grid (top left), four refinement levels (top
right, middle row, and bottom left), and the limit surface (bottom right)



with respect to the polygon center) out of the plane of the
polygon (each one in the other direction).

The properties of the limit surface (and also the curve) can
been deduced by a standard examination of the eigenstruc-
ture of the local subdivision matrix corresponding to the
adopted subdivision scheme [4]. This includes especially the
derivation of the so called derivative masks used for the calcu-
lation of vectors tangent to the limit surface at the limit
position of a bg node of the control grid. These tangent
vectors are then in turn used for evaluating the limit surface
normal.

An important aspect is that the above seven rules for eval-
uating of the limit position of new bg nodes were derived for
more or less isotropic control grids, i.e., for control grids with
elements of approximately unit aspect ratio. However, STL
meshes typically consist of elements of very large aspect ratio,
which is the consequence of the curvature based tessellation
procedure used to generate them. In this context, the 4th rule
for the subdivision of a surface bg edge bounded by non-
-surface bg nodes was found too restrictive (rigid) and was
replaced by the following rule:

4. for every surface bg edge bounded by two non-surface bg
nodes, find the off-diagonal bg nodes of the quadrilateral
formed by two bg faces sharing that bg edge and compute
the bg midnode position

(a) according to appropriate from rules 1 - 3 using the
temporarily swapped bg edge, if any of the off-diagonal
bg nodes is a surface bg node,

(b) as the weighted average of positions calculated ac-
cording to rule 4 for the original (weight 0.75) and tem-
porarily swapped bg edge (weight 0.25), if both
off-diagonal nodes are non-surface bg nodes.

It should be emphasized that the topological change
to the STL mesh by swapping the bg edge should be of
temporary character only (just for the evaluation of the
position of the corresponding bg midnode). Otherwise the
change of connectivity (in the case of STL meshes often
regular) induced by the swapping may seriously deteriorate
the quality of the recovered limit surface.

5 Mesh generation
Having obtainedthe limit surface, the goal is now to gen-

erate a new triangular mesh over it, respecting a given mesh
density distribution (typically prescribed at the nodes of the
STL mesh serving as the control grid and/or curvature based)
that makes the mesh suitable for subsequent computational
analysis. The discretization is carried out in a hierarchical
manner. Firstly, the model vertices are discretized. Then the
(limit) curves are segmented using the mass curve of the
required element density along that curve. And finally, the
individual (limit) surfaces are triangulated.

In order to control the element size distribution, an octree
is built around the domain to be discretized. The size of the
individual octants corresponds approximately to the required
element spacing, while the nodes (corners) of the octants are
storing the required spacing exactly. To ensure the gradual
variation of the element size, the maximum one-level octree
difference of octants sharing an edge is enforced. This will
guarantee the creation of well shaped triangles. During the

actual mesh generation the required element size is extracted
from the octree for a given location using the interpolation of
octree nodal values of the element size.

In the presented implementation, the surfaces are dis-
cretized by the advancing front technique constrained directly
to the surface and modified to reflect surface curvature [5].
Firstly, the initial front consisting of mesh edges at boundary
curves of the surface (including inner loops) is established.
Once the initial front has been set up, mesh generation con-
tinues on the basis of an edge removal algorithm according
to the following steps until the front becomes empty:

� the first available edge AB is selected from the front,
� the position of the “ideal” point P (forming the new � ABC)

is calculated taking into account the local curvature of the
limit surface and element size variation,

� the projection �P of point P to the limit surface is evaluated,
� the local neighbourhood of point �P is established (in terms

of a set of octants),
� the neighbourhood is searched for the most suitable candi-

date C to form a new � ABC,
� the intersection check is carried out to avoid overlapping of

the candidate triangle with an already existing one in the
neighbourhood,

� the front is updated to account for the newly formed
� ABC.

The generated mesh is then subjected to an optimization
in order to improve the quality of the final mesh. The La-
placian smoothing technique in combination with topological
transformations (diagonal edge swapping) is adopted. This
yields the optimized grid after only a few cycles of smoothing
(typically up to six). Note that, unlike to the smoothing car-
ried out in 2D, the repositioning of a node during the smoot-
hing is likely to shift the node out of the surface. Therefore,
the node has to be projected back to the surface to satisfy the
surface constraint.

A crucial aspect of the proposed mesh generation strategy
is related to the point-to-surface projection. Simple and effi-
cient algorithms available for the projection to parametric
surfaces cannot be adopted, simply because parametrization
of the limit surface is missing. The situation is further compli-
cated by the fact that the normal to the limit surface can be
evaluated only at the bg nodes of the original or refined
control grid. Therefore in order to make the projection suffi-
ciently accurate (in terms of the distance from the limit
surface and match with the exact normal), it is necessary to
subdivide the original control grid up to a high level. This
results in a huge amount of data to be stored, which is not
acceptable. In [6], an efficient and reliable approach for pro-
jecting of a point to the limit surface has been proposed. This
approach is based on localized progressive refinement of the
control grid towards the actual projection. Recursive imple-
mentation of this algorithm enables virtually an unlimited
number of refinements with constant memory requirements
to be performed. Note that the refinement is of a tempo-
rary character, and it is discarded after the projection is
completed. Since some of the projections during mesh gener-
ation can be accomplished with considerably lower accuracy
(without any significant impact on the resulting mesh), an
alternative approximate, but more efficient projection tech-
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nique was suggested. This is based on approximating of
bg faces of the control grid by quadratic Bezier triangular
patches and on employing of a standard projection technique
applicable to parametric surfaces (see [6] for details).

With respect to the application of the above meshing
technique to the limit surfaces reconstructed from the STL
meshes, it should be noted that planar surfaces (seemingly
the simplest case) must be handled in a special way. The
reason is that a planar surface, having zero curvature in all di-
rections, prevents the use of a curvature based mechanism to
tessellate it into STL bg faces. Therefore the aspect ratio and
orientation (in plane) of the individual bg faces cannot be re-
lated to the curvature. This allows two neighbouring bg faces
forming the same planar surface to considerably differ in the
aspect ratio measured with respect to the shared bg side. As a
direct consequence, the limit surface folds over itself, possibly
crossing the boundary of the surface. Even though such a sur-
face still seems to be planar, it is not any more, since the
normal changes orientation from point to point, which is fatal

for the meshing algorithm. Therefore, when triangulating a
planar surface, the subdivision is not invoked and the bg faces
of the control grid are used for localization purposes only.

The proposed methodology for the discretization of sur-
faces described by STL meshes is demonstrated on the exam-
ple of a propeller. The original STL mesh is depicted in Fig. 5.
The triangulation with curvature based element size control is
presented in Fig. 6. Although the original STL representation
is rather coarse, the final mesh captures the shape of the pro-
peller well.

6 Conclusions
This paper has introduced an approach for the direct

triangulation of 3D surfaces described by STL meshes. Al-
though the STL mesh is a valid fully conforming triangula-
tion, its special designation for rapid prototyping makes it
very specific. The actual discretization consists of several
phases. Firstly, a boundary representation of the object is
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Fig. 5: STL mesh of a propeller

Fig. 6: Graded mesh of a propeller



constructed from the STL file using a feature recognition ap-
proach. It has been shown that this is an ambiguous task
which cannot generally be fully automated. A successful com-
pletion of this procedure often requires user intervention in
the framework of an interactive environment. In the next
phase, a smooth (limit) surface is reconstructed over the origi-
nal STL mesh using a subdivision technique yielding the
differentiable C1 limit surface. An interpolating subdivi-
sion based on the slightly modified Butterfly scheme has
been adopted. The modifications make the limit surface
smoother in situations where the original strategy seems to be
insufficiently flexible, which is often the case for STL meshes
containing elements of large aspect ratio spanning the whole
extent of the surface in a particular direction. Finally, the limit
surface is subjected to a triangulation based on the advancing
front technique constrained directly to the limit surface. The
vitality of the proposed approach has been demonstrated on
some examples. Further research focus on primarily on addi-
tional improvement of the construction of the boundary
representation in order to enable as much as possible auto-
mated processing of complex STL models.
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