
1 Introduction

There are many different methods and tools that can be
used to deliver the macroscopic constitutive response of hete-
rogeneous materials from a local description of the micro-
structure behavior. Here we are concerned with non-linear be-
havior caused by inelasticity of the constituents or with the ini-
tiation and growth of damage. In developing the homogeni-
zation procedures for non-linear materials we have to define
both the homogenization step itself (from local variables to over-
all variables) and the often more complicated localization step
(from overall controlled quantities to the corresponding local
quantities. As practical tools in the homogenization frame-
work we have mainly three categories of methods involving
the linearly elastic behavior of the composite aggregate:

� First, we consider exact solutions and theorems that deliver
variational bounds on the overall constitutive parameters.
At that level, we can mention Voigt and Reuss bounds,
Hashin-Shtrikman bounds in the linear context, and more
recent works (Ponte Castaneda, 1991; Ponte Castaneda
and Willis, 1995; Ponte Castaneda and Suquet, 1998),
whicht give pertinent results for inelastic behavior.

� Second, good estimations of overall mechanical properties
are provided by the techniques for estimating the over-
all mechanical properties based on generalizations of the
Eshelby method, proposed in 1957. These techniques are
particularly useful for situations with random misconstrues
(multiconnected phases, randomly distributed shapes, size
orientations of lay-ups, polycristalline aggregates, etc), see
(Šejnoha M., Zeman J., Šejnoha J., 2000), (Zeman J., Šej-
noha J., Šejnoha M., 2000), (Šejnoha M., Šejnoha J., Ze-
man J., 2002), (Šejnoha J., Šejnoha M., 2001), (Procházka
P., Šejnoha J., 2000), (Procházka P., Šejnoha J., 2003)
(Šejnoha J., Šejnoha M., 2000), (Šejnoha J., Šejnoha M.,
2003).

� Third, numerical techniques, most often based on the
assumption of microstructure periodicity. In these cases,

which may be quite particular, periodic homogenization
techniques (Suquet, 1998) are able to describe the local
stress (and strain) fields and their evolutions very correctly.
They also deliver the overall stress strain behavior of the
considered representative volume element of the material.
Use is made of finite element methods or fast Fourier
transform solutions. These numerical methods are limited
to quasi-periodic situations. Moreover their cost is very
high and their direct use in a true structural analysis is at
present limited to very special cases.

Nonlinear problems of localization and homogenization
are of great importance today. Not only classical composites
suffer from deterioration of the material due to hereditary
problems (aging, viscoelasticity). On the other hand, compos-
ite materials prepared in a special way can improve the
properties of another materials, and the resulting effect can
be much better than before. In this case, nonlinear and time
dependent behavior has to be taken into account.

The present paper develops constitutive equations for in-
elasticity and damage of heterogeneous materials that bene-
fit from some specificities of a special boundary element
method. On the one hand, we need to obtain better approxi-
mations of the local stress and strain fields than are provided
by Eshelby based approaches, especially when considering
damage and failure conditions. On the other band, we want
to simplify the numerical techniques of overall homogeniza-
tion in order to obtain a treatable system of equations that can
recover the status of a constitutive equation.

In this paper we restrict ourselves to the application and
improvement of a method proposed initially by Laws (Laws,
1973, Dvorak, 1992). The most elaborated version, called
transformation field analysis (TFA) (Dvorak and Benveniste,
1992), incorporates in the same framework thermo-elasticity,
plasticity and viscoelasticity (Dvorak, 1992), or even piezo-
electric-elasticity couplings (Benveniste, 1993). It can be used
either with a low number of sub-volumes (or subphases), typi-
cally one subvolume per actual phase, then recovering the
context of Eshelby type approaches, or with a larger number
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of sub-volumes, corresponding to some simplifications (or
averaging) of the finite element based methods.

We note the main lines of the TFA method, and some of its
properties for two-phase exploitations (Dvorak and Ben-
veniste, 1992). Since we know the relative “stiffness” of the
method when applied to a two-phase system (uniform fields
on each phase), we propose and exploit a correction method
that takes advantage of “tangent formulation” under asymp-
totic conditions (Section 3). Introducing damage effects
through a continuum damage mechanism (CDM) formula-
tion within each sub-volume, the models will be based on
numerical results obtained via the overall strain over the
external boundary of representative volume element (RVA)
and the localization process. The boundary element method
is used as a very powerful tool for problems of this kind. The
method has proved to be appropriate particularly for solving
the contact problem of debonding fibers from the matrix, and
also for “softening” of the matrix due to damage, cracking,
and other continuum phenomena.

2 Transformation field analysis

2.1 Local and overall constitutive equations
We begin by the expression for the local elastic constitutive

equations, assuming a uniform elastic stiffness Lr over each
sub-volume Vr . The local stresses �r(x) and strains �r(x) relate
by:
� � �

� � � � �

r r r r

r r r r r r r

( ) ( ) ,

( ) ( ) ( ) ( ) (

x L x

x L x x x C

� �

� � � ��1 x x) ( )� �r

(1)

Prescribed distribution of local eigenstrains is denoted
�r( )x and � �r r r( ) ( )x L x� � is the corresponding eigen-
stress fieId. These eigenstrains can be thermal strains, pIastic
strains, transformation strains. In the macroscale, the overall
(uniform) strain E and stress � are also reIated by:

� �� �L E , E L� ��1� � (2)

where L is the overall elastic stiffness matrix and � and � are
eigenstresses and eigenstrains.

In the case of pure elasticity, eigenstrains and eigen-
stresses may be given by a change of temperature, swelling,
watering, prestressing, for example. They are not unknowns,
but are given in advance. Then the following procedures are
not of interest to us, as the expressions for internal states in
the composite body can be calculated in a much simpler way.

In pure elasticity, concentration factors A and B are
sought, such as:

�r( ) ( )x A x E� , � �r( ) ( )x B x� . (3)
It is immediately clear that the relationship between the

two concentration factors follows from (1), (2) and (3) as:
L A x B x Lr r r( ) ( )� . (4)

Note that according to Dvorak and Benveniste, (1992), it
holds:

L L A�� cr r r
r

. (5)

In this way the overall stiffness can be calculated, knowing
the stiffnesses and strain concentration factors and volume
fractions of both phases: c V Vr z� .

Similarly, the eigenparameters can be determined from
the stress and strain concentration factors and volume frac-
tions as:

� ��� cr r
T

r
r

B . (6)

Note that the Lippman-Schwinger equation is used in this
text and will be derived in a slightly different way than usual.
The Lippman-Schwinger equation relates strains, strains of a
comparative medium and the eigenstrain (eigentress) field.
Some particular implementations of this equation enable us
to derive very important results, using the theory of gen-
eralized functions (distributions). The Lippman-Schwinger
equation has the form:

� �� � � � � � � �( ) ( ) )( ( ) ( ))� � ��0 � � � � � � � �

�

x L x L x x xd (7)

in which �0 denotes the strain field (in our case considered to
be uniform) that would exist in a comparable homogeneous
medium L

0 under the same boundary conditions. The kernel
� is defined by:

� ��ijkl ijkl jkilG G� � � � � � � � �x x x� � �� �
1
2

, (8)

where Gijkl is the Green function of the homogeneous medi-
um L0 obeying:

L Gijkl kplj ip
0 0� ��� � � 	 
 
x x� �( ) , (9)

where 
ip is the Kronecker symbol and 
( )x � � is the Dirac
continuous functional.

2.2 Localization and homogenization
In this section eigenstrain and eigenstress are dealt

with and involved into the computation. No body forces are
present.

Let us consider the coordinate system 0y1y2 in 2D (for the
sake of simplicity our restriction is to 2D, while the generali-
zation to 3D is straightforward), bounded domain � (unit
cell) with the boundary �� � �� 	f m, � �f m
 �0, see
Fig. 1.
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Fig. 1: The unit cell – geometry and denotation



We define average quantities < . > by:

� � � �a a�

�
�

�
1

meas
d( ) ( )y y , (10)

where meas � stands for the volume (area) of �.
The homogenization can start by introducing the overall

(average) strain E, or stress tensor �, or periodic conditions
can be prescribed. The latter conditions are the most useful in
applications. There are plenty of other boundary conditions
which are less important than those we have mentioned.

From (10) we get, for example:

� � � � �� ��

�
�

�E y y
1

meas
d( ) ( ) (11)

� � � � �� � ��

�
�

�
1

meas
d( ) ( )y y . (12)

Without loss of generality, we focus only on given E. Then
we have to solve the problem:

Div �( )y �0 in �, u y E y( ) � on �� . (13)

The real displacement u and the real strain � may be
written in the form of the sum of E and the fluctuating terms
u and � as:

u y E y u y( ) ( )� + , � �( ) ( )y E y� �  . (14)

In the case of elastic behavior of both fiber and matrix and
the fiber-matrix interface, it holds:

�  � �� � 0

The procedure for solving of � is split into two steps: First,
let u0, �0, and �0 be the known displacement, strain, and
stress fields, respectively, defined on a comparative medium
L0. The linear Hooke law relates the stresses and strains:

� �0 0 0�L in 	, u E y0 � on �	 . (15)

Matrix L0 is not yet fixed. An obvious option is to put
�0 �E and in the sense of the above definitions L0 can be
expected to be the average sought stiffness. It will be seen that
this assumption is not so easy.

In the second step, a geometrically identical body is con-
sidered, which is heterogeneous, anisotropic, and may exhibit
nonlinear behavior. The displacements u, the strains �, and
the stresses � are unknown, and the generalized Hooke law
including the eigenstresses �, or eigenstrains �, holds valid as:

� � �� �L in 	, u E y� on �	 , � �� �L . (16)

Similarly to [19] we define the symmetric polarization
tensor 
 by:

� � 
� �L0 . (17)

We also define

u u u� � 0 in 	, u �0 on �	 , (18)

� � �� � 0, � � �� � 0. (19)

Our aim is to obtain the relations strain, or stresses and
eigenstrain, or eigenstresses. Since both � and �0 are statically
admissible, the following equations have to be satisfied in the
sense of distributions:

Div � �0 in 	, (20)


 � �� � �[ ]L 0 in 	, (21)

u 0� on �� . (22)
where

[ ] ( )L L y L� � 0 (23)

Subtracting (17) from (16) yields
� � 
� �L0 . (24)

3 Numerical derivation of quantities
Solution of problems involving the linear or nonlinear be-

havior of composite bodies is mostly formulated in terms of
integral equations. Consequently, a natural way to solve these
problems is to describe the behavior of such bodies by the
boundary integral equation method.

The integral equation equivalent to (21) to (24) can be ex-
pressed as:

u u y p y y p y u y y

y

( ) ( ; ) ( ) ( ; ) ( )

( ; ) (

� � �

� � 


� �

�

� �* *

*

u p

d d

� �� �

y y) , ,d ( )� �

�

� ��

(25)

where the starred quantities are the given kernels. Due to
the validity of the boundary equation (22), � �� �� p and the
second integral on the right hand side of (25) disappears.
Therefore, we get:

u u y p y y y y y( ) ( ; ) ( ) ( ; ) ( )� � � � 
� �� �* *

u

d d ( )

�� �

� . (26)

Differentiating the latter equation successively by one of
the coordinate � , we arrive at the expression

� � � � � 
 � 
( ) ( ; ) ( ) ( ; ) ( ) ( )� � �� �h y p y y y y y* *

u p

d d( )

�� �

. (27)

The convected term � arises at the internal point of � by
the interchange of integration and differentiation when de-
riving (27) from (26). Note that this unpleasant term may be
avoided by introducing Eshelby’s trick, which is very famous
in the theory of composite materials. Levin in his work on
termal bounds uses a similar trick leading to omitting the
convected term.

4 Numerical interpretation of TFA
Now, our goal is to derive the strain – eigenstress relation

of the form
� �� �A E G , (28)

where A and G are the influence function tensors (A is mostly
referred to as the mechanical concentration function tensor).
Note that once computed, these matrices do not change their
value during the incremental process for nonlinear solution
of plasticity and damage.

After discretization of the boundary and the domain �

into M internal cells, we get the discretized form of the
integral equations:

U p S S 0�  � �� � , (29)

� � � ��� �  �H p , (30)
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where U is a square matrix (2N×2N) and 2N is a number of
degrees of freedom on the boundary in 2D (when using, e.g.,
a linear approximation of both tractions and displacements,
N is the number of nodal points), p is the vector (2N) of
discretized unknowns tractions at the nodal points on �� , S,
S are the matrices (2N×3M) of influences of the strains

and eigenstrains in the discretized domain (in 2D three
components of the strain tensor are independent), H is a
(3M×2N) matrix, and, finally, � and � are square matrices
(3M×3M).

Since the system is well-posed, the regular matrix U may
be inverted. Elimination of p from both latter types of equa-
tions provides

W T� � �� �0 , or W E T� �� � , (31)

where

W I HU S T HU S� �  �  � � �� �� �1 1, . (32)

Obviously, W is a regular (6M×6M) matrix, since for the
given component of � a unique response � may be expected.
The sought influence function tensor G is equal to W T�1 ,
while W�1 is the mechanical concentration function tensor A.

Now we turn to concentration factors for the phases.
There still is a certain freedom in selecting matrix L0. Let put
� �0 and then successivelyL L0 � f andL L0 � m in (23). Then
obviously

[ ] ( )L L y L� � f forL L0 � f (33)

and

[ ] ( )L L y L� � m for L L0 � m. (34)

In the same way 
 in (21) changes, and the influence on
the integral (25) to (27) appears as:

u u y p y y p y u y y

L L

( ) ( ; ) ( ) ( ; ) ( )

( )

� � �

�

� � �

� �

� �* *

u p

d d

f m

� �� �

*( ; ) ( ) , ,y y y� � �d ( )� �

�

� �

(35)

� � �

� � �

( ) ( ; ) ( )

( ) ( ; ) ( )

� � �
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�E h y p y y

L L y y y

*

*

u

d

d( )f m

f

��

�

� � � 
( ),
(36)

� � �

� � �

( ) ( ; ) ( )

( ) ( ; ) ( )

� � �

� �

�E h y p y y

L L y y y

*

*

u

d

d( )m f

m

��

�

� � � 
( ).
(37)

In (36) and (37) it is important that the integration is
led over only one phase and the second is not explicitly
obtained in the formulas. This fact can principally speed up
the computation, particularly if the fiber volume ratio is very
small (fiber reinforced concrete), or is very large (classical
composites). Because of well-known identity

c cf
f

m
mA A I� � (38)

one concentration factor can be calculated from either (36) or
(37), and the remaining follows from (38). Note that for an

unlimited domain � the Lippman-Schwinger equation is
fully fulfilled.

The last relation makes clear why we concentrated our
attention on splitting of the integrals into integration over
the fiber and integration over the matrix. Because of (38) we
can simply calculate the integrals either over the matrix, or
fiber, exceptionally. Then, using (38), we get the second
concentration factor needed.

Hence, in the case of elastic behavior, the homogenization
is straightforward:

� �
� � � �� � � � � � � � � �

� � � � � �

� � �

� �

L L

L A L A E

f f f m m m

f f f m m m
(39)

and the elastic stiffness matrix appears to be:

L L A L A* f f f m m m� � � � � �� � . (40)

It is worth noting that the stress concentration factor can
be derived in the same way:

� �� � ��B � � �f m (41)

Note that in the general case relation (41) is calculated
from the given �. This leads to similar integral equations, but
the solution is not the same. Since the external forces are
equilibrated, the rigid motion of the unit cell is disregarded,
and the solution is then unique. Here we use relation (41) and
the possibility to invert L*.

Including the eigenparameters into the calculation, we
can derive from (35) to (37) the relations

� � � � � � �
�

� �
� �� � � �A E D B Fk

k
k

k� � �f m. (42)

The relations (42) are the starting points for the theories
established by Dvorak. He assumes that the concentration
functions are estimated by approximate formulas following
Mori-Tanaka, or the Self-consistent method. The calculations
presented in this paper are considered to be very accurate and
fast.

5 Viscoelasticity
In linear viscoelasticity it is always possible to write the

stress-strain relation in a similar form to that of elasticity
with the terms of the L* matrix now representing suitable
differential or integral operators, rather than elastic con-
stants. Thus in an isotropic continuum a pair of operators
corresponding to an appropriate pair of elastic constants will
appear – while for anisotropic material up to 9 separate
operators may be necessary.

Typically, the viscoelastic part of the strain may thus be de-
scribed by

� �c � �L 1 , (43)

where each term of the viscoelastic matrix, L�1, may take up
a form of Kelvin chains. This, as is well known, can be inter-
preted as a response of the form:

�

�t
( )e A B en n s n n� �� (44)

The increments of each such term in a time interval may
now be found from the above expression from the knowledge
of the current value of appropriate stress component �s and
the current value of en. Thus it becomes necessary to store
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only a finite number of such terms as e
n

at their current value
to represent the full history effect. The viscoelastic strains can
be treated as eigenstrains, value A representing spring and
value B representing dashpot.

6 Damage properties
Damage effects are split into two parts: the first part is

connected with exclusion of tensile stress in the principal
direction, which overcomes some prescribed value (tensile
strength �+). Note that if the tensile strength is different
from zero, the mathematical formulations lead to problems,
the correct solution of which is not yet fully proved. Neverthe-
less, the mechanical results are reasonable and for practical
applications they are treated as correct, at least from the
mechanical standpoint. If the principal stress is too low, the
stiffness is weaker. The tests are carried out in each cell of the
discretization into the boundary elements and internal cells.
The second criterion of damage is violation of the Mohr-Cou-
lomb hypothesis in the principal shear direction. Because the
outcome of such a violation is shear cracks – disconnection
of displacements – the shear modulus is calculated for the new
stage.

7 Example
Since the procedure leads to a linear relations at each

stage, for given (step by step increasing) values of components
of either stress tensor (elastic and relaxation part) or the strain
tensor (elastic and viscoelastic part) of “unit impulses” we do
not need to compute the influence tensors. Now the

procedure fully described in [15] can be used. Note that in
[15], the values of the concentration tensors, which are the
most important quantities for numerical computation, are
computed by very approximate methods (Mori-Tanaka, etc.).

A quarter of a unit cell is considered with a fiber volume
ratio equal to 0.6, according to Fig. 2.

We used the following elastic material properties of the
phases: Young’s modulus of fiber Ef � 210 MPa, Poisson’s
ratio �f � 0.16; for the matrix Em � 17 MPa, and �m � 0.3.
For a fiber volume ratio 0.6, the radius of the fiber is r � 0.714.
The homogenized elastic matrix L* in this case possessed the
following values:

L*
.

.
. .

�

�

� �

�

�

�
�
�

�

�

�
�
�

182 62 005
62 182 0034
075 11 98

.

From the above matrix we can conclude that the responses
on the normal unit strains are computed with high accuracy
(comparing the symmetry), while the results from the
shearing strains are less accurate, but still very precise.

The angle of internal friction was � � 25°, and cohesion
c � 270 kPa. The results are depicted in Fig. 3. In the upper
and lower part of the ilustrations damage is obvious (de-
bonding occurred) and on both sides viscoelastic behavior
prevails.

The computation was run on Pentium IV PC, 2.6 GHz in
FORTRAN. The program for generating the meshes of the
internal cells and also the boundary nodes had been pre-
pared, as is clearly shown in Fig. 2. According to the wish of
the user, the meshing can be improved. The time needed
for computing even a large system of equations (150×150),
which can be stored into memory without the use of a hard
disc or an extended/expanded memory, was negligible in
each step. Our illustration does not reach such dimensions of
computation. It is also not necessary, in such problems, to in-
crease the precision of the meshing, which would reduce the
efficiency. The iteration at each step of loading was also very
fast. It is worth noting that similar computations were carried
out using FEM, but finer meshing had to be imposed to get
comparable results with BEM in the procedure presented
here. The comparison was tested in such a way that the sum of
the concentration factors would be the unit tensor.
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Fig. 2: Geometry of boundary elements and internal cells

Fig. 3: Distribution of �11 and �11



8 Conclusions
This paper has presented the fundamental idea of a nu-

merical procedure leading to the overall viscoelastic and
damage behavior of the matrix in a composite aggregate on a
unit cell. Based on Transformation Field Analysis it is possible
to obtain strain and stress/strain influence matrices, that re-
late the strains and the eigenstrains and eigenstresses. Since
this problem leads to integral equations, the most suitable
numerical tools appear to be BEM. The obvious advantage
of this procedure is found in a priori computed influence ma-
trices (concentration tensors). These may be stored into a
computer and, hence, the iteration process for solving the
nonlinear material behavior of the structures is very efficient.
Moreover, attention may be focused on integrals over either
the matrix or the fiber.

A very important property of the above procedure is the
linearity of the problem at each stage. The accuracy of the
overall stiffness (compliance) matrix is not dependent on the
size of the step, providing there is no “unwanted” unloading
in any internal cell at the current stage. When this is the case,
the time is slightly extended, as the standard iterative pro-
cess has to be carried out. This was not the case for our
computations.

Although it is not our intention to discuss cases of eigen-
strain fields, it is appropriate to mention the connection
between the present formulas and those obtained in studies of
the thermoelastic response in composite materials subjected
to a uniform change of temperature.
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