
1 Introduction
Nominally flat surfaces are widely used in practice. These

can be mathematically described by the composition of the
deterministic and random components of irregularities in the
given Cartesian coordinate system:

� � � � � �h x y S x y x y, , ,� � � (1)

where S(x, y) is the deterministic function of the surface (x, y)
coordinates and �(x, y) is the homogeneous random normal
field. The parameters of surface irregularities measured over
the whole surface (the topographic parameters) characterize
more positively the functional properties of the surface than
the h profile parameters. Surface deviations are functions of
two coordinates (x, y) and therefore the profile evaluation
gives incomplete information about the surface.

2 Surface topography parameter
measurement
For surface topography parameter measurement it is nec-

essary to determine the actual value of the parameter and
to know the accuracy of the measurements. In this case
the analogue mean value is taken for the actual value of
the parameter, and[s] the measurement error is determined
by the systematic and random components. The series of
the surface topographic parameters can be represented as
an averaging operator of the generalized transformation
G{h(x, y)} of the surface coordinates on the given rectangular
area of the surface L1 × L2 with sides L1 and L2 [1]:
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Since there is a random component on the measured sur-
face, the topographic parameter measured is a random value,
which is characterized by the mathematical expectation E(Ps)
and the variance D(Ps). Therefore, one of the problems in
measuring the topographic parameter is the determination
of its probability characteristics, i.e., the mathematical expec-
tation E(Ps) and the variance D(Ps). It is known that the
mathematical expectation of the parameters given by equa-
tion (2) can be derived by integration of the mathematical
expectation E(G) of the transformation G{h(x, y)} in equation
(2) by the x and y variables. As an example of the application
E(G) of the transformation G{h(x, y)} in equation (2) by

the x and y variables. As an example of the application of mea-
suring methods of the topographic parameters the Ps � Ras
parameter is used. This is the arithmetic mean deviation of
the surface coordinates of the mean plane.
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where � �h x y, is the absolute value of the h(x, y) surface coor-
dinate. This expression can also be extended for the h(x, y)
surface:
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where � � � �� z t t
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exp d is the Laplace function.

The generalized transformation G{h(x, y)} is the random
field which has the correlation function [3] defined as
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where � �h h x y1 1 1� , , � �h h x y2 2 2� , are the coordinates of the
surface at the� �x y1 1, and � �x y2 2, points, � �f h h1 2, distribution
density expands into a series in terms of Hermite polynomi-
als. The correlation function (5) can be represented as [3]:
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�1 2 1� �x x

�2 2 1� �y y

� is the r.m.s. deviation of the random component �(x, y) and
� �� � �1 2, is the correlation coefficient of the random compo-

nents �(x, y) , � �h h x y� , , � �S S x y� , . For the generalized
transformation � �� � � �G h x y h x y� �, , , which determines the
Ras parameter, the coefficients Cn in equation (7) are written
as follows after the transformation:
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where Hn(z) are Hermite polynomials. The variance of the
parameter PS is determined by integration of the correlation
function � �K x x y yG 1 2 1 2, , , of the generalized transformation
G{h(x, y)} using variables x1, x2, y1, y2:

� � � �D P
L L

K x x y y x x y y

LLL

S G d d d d� ���1

1
2

2
2 1 2 1 2 1 2 1 2

000

211

, , , . (9)

Calculation of the integral in equation (9) involves consid-
erable difficulties; therefore, in the general case, formula (9)
in not suitable for calculations. However, having � �S x y, " �

and � �S x y, # � offers simplified evaluations of the variance.
Thus, having � �S x y, " � from equation (8),

C1 $ �
Cn $ 0 n � %2 3, , (10)

The correlation function of the transformation G{h(x, y)}
from equation (6) is reported approximately as
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By using � �S x y, # � from equation (8) we obtain
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The correlation function of the transformation G{h(x, y)}
from equation (6) is
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In both cases the correlation function � �KG � �1 2, is a func-
tion of only two variables �1 and �2. Thus, for the above-men-
tioned approximations, D(PS) can be calculated by using the
formula:
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The following notation is now used:
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with L L SK1 2! " Gequation (13) may be written approxi-
mately:
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� �KG 0 0, is the variance of G{h(x, y)}. It is not possible to carry
out analogue measurements of the topographic parameter
PS. Therefore the analogue-discrete and discrete methods are
the only ones that can be used to measure the topographic

parameters. With analogue-discrete measurements the aver-
aging operator is:
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where &1 is the sampling in the sampling interval between the
profiles and N1 is the number of profiles. The evaluation of
the parameter in equation (2) in the general case is therefore
shifted together with the task of determining the parameter
probability characteristics, i.e., for its mathematical expecta-
tion and variance it is necessary to determine the shift in the
value of the evaluation of equation (16) with respect to that of
equation (2). We can regard the probability characteristics of
the evaluation (16) for that particular transformation as

� �� � � �G h i y h i y& &1 1, ,� . (17)
�Ras represents the analogue-discrete evaluation of the top-

ographic parameter Ras. The mathematical expectation of
the transformation (17) will be determined by the expression
in equation (4) with � � � �S x y S i y, ,� &1 . The mathematical
expectation of the �Ras parameter is identically:
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The integrals in equation (18) are not taken into account,
but if the deterministic component � �S i y&1, is linearized
with a small error using the y argument on the terminal num-
ber of intervals the length of which is 	2 then it is possible
to obtain an exact expression for the evaluation � �E R�as of the
topographic parameter Ras. For this, we expand the deter-
ministic component � �S i y&1, in its Taylor series by using the
y argument up to the linear terms at the point j = 1, 2, …, n:
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By substituting equation (19) into equation (18) and tak-
ing into account equation (4), we obtain:
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The integrals in both components of expression (20) can
be tabulated [4]. Then after transformation we obtain:
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The � �� z and exp( )�z2 and the standard calculation pro-
gram for the � �� z and exp( )�z2 functions can be used to
calculate E R( � )as on the computer. Formula (22) shows that the
mathematical expectation of the parameter �Ras depends on
the characteristic of the � �
 
S i y&1 , the deterministic compo-
nent S i y( , )&1 and the random component �

2. With the
definite relationship between the deterministic and the ran-
dom components, an approximate evaluation of E R( � )as can
be obtained.

Thus, having � �S x y, # � and linearizing equation (4) we
obtain:
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By using � �S x y, # � and linearizing equation (4):
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Fig. 1: Representation of surface roughness measurement
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Fig. 2: Representation of surface roughness measurement
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Figs. 3 and 4: A 3D topographical image
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To analyse the E R( � )as dependence on S � and to deter-
mine what relationship with S � is needed in order to make
formulae (23) and (25) applicable to the determination of the
mathematical expectation E R( � )as , calculations were carried
out using formulae (22), (23) and (25). The mathematical
models of the composition surface and the experimental
calculation of the parameter
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where hij is the deviation of the h (x, y) surface from the mean
plane at the discrete points. The random component was

modelled with the help of the random number generator.
The deterministic component was designated by formula
(19).

3 Discussion
� If the deterministic component is a piecewise linear func-

tion and the random component is a homogeneous normal
field, then the mathematical expectation of parameter �Ras
increases with increasing S �.

� IfS � � 1, when E R( � )as is calculated the influence of the de-
terministic component can be ignored and the error is less
than 10 %.

� When S � � 3, formula (25) can be used to calculate E R( � )as
with an error of less than 10 %.

� If S � � 4, E R( � )as can be evaluated with an error of less
than 10 % by using the deterministic component (for-
mula 23).

� Formula (22) holds for the whole range of S � changes.
� Full agreement with the theoretical expression can be

demonstrated by the experimental calculations using for-
mula (26).

� Some optical profilometers based on these principles are
shown in figures (1–6) to measure the statistical parameters
of rough surfaces. The contrast is found to be related to sur-
face roughness when the length of coherence of the light
[are] is comparable in magnitude.

4 Conclusion
The theoretical dependence of the mathematical expecta-

tion of parameter �Ras has been determined for the case when
the deterministic component S(x, y) can be linearized on the
separate sections. The dependence of the evaluation bias in
parameter �Ras on the relationship between the random and
deterministic components has been determined.
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Fig. 6: Microtopograph of a rough surface


