
1 Introduction
The mean temperature distribution in resonators with

high amplitudes of the acoustic field is caused by thermo-
dynamic state changes due to the mean pressure and the
density changeover, and in addition due to the conversion of
acoustic energy into heat due to the viscous losses. The mean
temperature distribution needs to be known in some ap-
pliances, such as thermoacoustic engines. The one-dimens-
ional model equation for nonlinear standing waves of the
2nd order including a viscous boundary layer is modified to
describe the acoustic standing waves in a resonator with a
longitudinal distribution of mean temperature. It is assumed
that the mean temperature changes are small.

2 Model equations
Let us consider a one-dimensional acoustic field in an

axisymetrically shaped gas-filled resonator driven by means
of an external force. The model equation describing the
acoustic field is derived from the basic equations of fluid
mechanics. The one-dimensional form of these equations
with terms up to the 2nd order is presented here: Navier-
-Stokes equation, see [1],
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the continuity equation taking into account the boundary
layer, see [2, 3],
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where the fractional derivative represents an integrodifferen-
tial operator
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and the thermodynamic state equation taking into account
heat conductivity and mean temperature change, see [4],
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where � �� , p v, are acoustic density, pressure and velocity,
p0 0 0, ,� � are equilibrium state pressure, density and tem-
perature, � is mean temperature, �� 
 � � ��, � 
a a t� is the
driving acceleration, x is the spatial coordinate along the reso-
nant cavity, t is time, � 
r r x� is radius of the resonator,
� � c cVp is ratio of specific heats at constant pressure
and volume, 
 is the coefficient of thermal conduction, �0 is
kinematic viscosity, �, � are the coefficients of bulk and
shear viscosity, Pr is the Prandtl number, c0 is the small-signal
sound speed due to equilibrium temperature �0 and c is the
small-signal sound speed due to changed mean temperature
defined as
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After linearization, from equations (1), (2) and (4) we
obtain the following relations with terms of the 1st order
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where � is velocity potential, v t� �� � . For deriving the
model equation, the following method is used: linearized
equations, Eqs. (5), (6), (7), are substituted into terms of the
2nd order and so the resulting error is of the 3rd order. It is
assumed that the mean temperature changeover is small and
that its time and spatial derivatives are of the 2nd order.

After eliminating acoustic density �� from Eq. (1) using
Eq. (6), introducing velocity potential and after its integra-
tion with respect to the spatial coordinate x we obtain the
relation
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We can eliminate pressure �p from Eq. (8) using Eq. (4).
Thus we get
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After differentiating Eq. (9) with respect to time, we
eliminate the time derivative �� �� t using Eq. (2), thereby
obtaining a model equation describing the nonlinear stand-
ing waves in an acoustic resonator with a spatial distribution
of mean temperature. The derived model equation has the
form
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(10)

where � 
b c cV� � � �� � 
4 3 1 1 p is the diffusity of sound.

This model equation is written in the coordinates moving
together with the resonator body, consequently the boundary
conditions have the form

��

�x
v� �0

for x �0 and x � �, where � is the resonator cavity length.

The acoustic pressure and density can be calculated from
the numerical solution of Eq. (10), applicable equations are
derived from relations (8) and (9)
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A one-dimensional model equation describing the
temperature distribution is derived from the energy equation
for an ideal gas, see [5],
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where �ij is the Kronecker delta, indices i, j, � go from 1 to 3
and vi represents three components of the acoustic velo-
city vector. A one-dimensional form of Eq. (13) is obtained
using the relation for one-dimensional divergence in an axi-
symetrically shaped waveguide, see [1],
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where y is the spatial coordinate normal to the resonator wall.
The last term of Eq. (14) describes the heat flow through the
boundary layer to the resonator wall.

For the temperature in the resonator cavity, we can write
� 
 � 
 � 
� � �x y t x y t x tB M, , , , ,� � , where �B is the temper-

ature in the boundary layer and �M is the mainstream
temperature. It is easy to show, see [3], that
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Integrating Eq. (14) with respect to the resonator cross-
-section with help of the divergence theorem yields
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where � is the resonator cross-section and � is its boundary.
After substitution of relation (16) into Eq. (17) and calcul-

ation of the integrals (acoustic quantities are assumed to be
constant with respect to the integration domain), we obtain
the model equation for the temperature distribution
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Eq. (10) is solved numerically in the frequency domain,
and driving acceleration a is assumed to be periodic. Owing to
the numerical instability of Eq. (18) solved in the frequency
domain, the mean temperature change is estimated from
the thermodynamic state equation (it is assumed that all the
heat generated in the resonator cavity due to viscous losses
is conducted out through the resonator cavity walls) as
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3 Numerical results and conclusions
Fig. 1 shows the spatial distribution of the mean tempera-

ture in the cylindrical, conical and bulb resonator due to
the medium thermodynamic state change in an intensive
sound field. The temperature was estimated using Eq. (19).
The resonator driving acceleration a 
 3000 m�s�2, the driv-
ing frequency agrees with the 1st natural frequency of the
resonant cavities, the length of the resonators � 
 0.17 m,
the radiuses of the resonators are:
� cylindrical resonator – � 
r x �001. m,

10 ©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/
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Fig. 1: Mean temperature distribution in a cylindrical, conical and bulb resonator



� conical resonator – � 
r x x� �00056 0268. . m,
� bulb resonator– � 
 � 
 � 
r x x x� �0003 3 0005. sin exp .� � � m.

It can be seen that the mean temperature is found near
the pressure antinodes.

Fig. 2 compares the acoustic velocity spectrum distribut-
ion in a conical resonator where the influence of the temper-
ature distribution is taken into account (dashed line) and
where it is not taken into account (solid line). Fig. 3 compares

the frequency characteristics for the same resonator. The
numerical results show a slight resonant frequency shift and a
waveform changeover if these mean temperature changes in
the medium are taken into account.

Fig. 4 shows an example of a thermoacoustic engine. The
upper figure shows the mean temperature distribution, the
bottom figure compares the acoustic velocity spectrum if the
mean temperature distribution is taken into account (dashed

©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 11
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Fig. 2: Distribution of the acoustic velocity spectrum in conical resonator. Dashed line: temperature distribution is taken into account,
solid line: temperature distribution is not taken into account.

Fig. 3: Frequency characteristics of a conical resonator. Dashed line: temperature distribution is taken into account, solid line: temper-
ature distribution is not taken into account.



line) and if the mean temperature distribution is not taken
into account (solid line).
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Fig. 4: Mean temperature distribution in cylindrical resonator due to external heating and cooling (upper figure), comparison of acous-
tic velocity spectra in the resonator if the mean temperature distribution is taken into account (dashed line) and if the mean tem-
perature distribution is not taken into account (solid line).


