
1 Introduction

Ultrasonic non-destructive testing is commonly used for
flaw detection in materials. Ultrasound uses the transmis-
sion of high-frequency sound waves in a material to detect a
discontinuity or to locate changes in material properties.
Ultrasonic wave propagation in the tested materials is essen-
tially influenced by the structure of the material. Due to
the material structure, the acquired ultrasonic signal can be
corrupted by a relatively high noise level, commonly called
backscattering noise. Another source of noise is from the
electronic circuitry. These noise components are generally
present in all acquired ultrasonic signals, together with flaw
and back-wall echo. Back-wall echo is due to the reflection of
an ultrasonic wave from the end of the material, and fault
echo is caused by the reflection of ultrasonic waves from
cracks or defects.

The main task here is to detect the fault echo in an ultra-
sonic signal; i.e., to locate the cracks or defects in the tested
materials. The flaw detection efficiency is mainly influenced
by the noise level (backscattering and electronic), and for this
purpose efficient signal processing techniques used for noise
reduction and signal separation are proposed. In the past,
many methods have been evaluated [2–5, 11] for efficient
noise reduction in ultrasonic signals. The simplest method [2]
is based on averaging the acquired ultrasonic signals. Other
popular methods are based on filters [2] with finite (FIR) and
infinite impulse response (IIR). These methods are quite sim-
ple, but the noise suppression is not effective. Non-linear
methods based on band-pass filters, known as split spectrum
processing, offer greater signal-to-noise improvement, but
the setting of the parameters is based on heuristic methods,
with varying results. A very popular method is based on
the discrete wavelet transform algorithm [3, 6, 7]. This meth-
od is very efficient, but it is important to choose the proper
mother wavelet, threshold level and threshold rule [8]. Other
methods used for signal de-noising are based on adaptive
algorithms derived from the Wiener filter [9, 10].

This paper presents and evaluates methods used for ultra-
sonic signal de-noising: the discrete wavelet transform, the
Wiener filter and blind source separation with appropri-
ate settings. These methods with selected parameters are
evaluated in terms of signal-to-noise improvement and flaw

detection efficiency. Another method used for ultrasonic sig-
nal and noise separation is also proposed, and its applicability
is discussed in detail. This method is based on independent
component analysis, and it has never been applied before in
the ultrasonic non-destructive testing area.

The rest of this paper is structured as follows. The second
section offers basic theoretical descriptions of the de-noising
and signal separation methods. In the third section there is
an evaluation of methods with different parameter settings.
For the case of the blind signal separation method, the appro-
priate configuration of ultrasonic transducers is described.
Based on the theoretical analysis, all methods are applied
to real acquired ultrasonic signals in section four. For the
evaluation, samples of materials used for constructing aircraft
engines were used. Finally, the results are discussed and future
work is indicated.

2 De-noising and signal separation
methods

2.1 Discrete wavelet transform
The wavelet transform [3, 6, 7] is a multiresolution analy-

sis technique that can be used to obtain a time-frequency
representation of an ultrasonic signal. The discrete wavelet
transform (DWT) analyzes the signal by decomposing it into
its coarse and detailed information, which is accomplished
with the use of successive high-pass and low-pass filtering
and subsampling operations, on the basis of the following
equations:
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where y khigh( ) and y klow( ) are the outputs of high-pass and
low-pass filters with impulse response g and h, respectively,
after subsampling by 2 (decimation). This procedure is re-
peated for further decomposition of the low-pass filtered
signals.

Starting from the approximation and detailed coeffi-
cients, the inverse discrete wavelet reconstructs the signal,
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inverting the decomposition step by inserting zeros and con-
volving the results with the reconstruction filters.

DWT can be used as an efficient de-noising method for
families of signals that have a few nonzero wavelet coefficients
for a given wavelet family. This is fulfilled for most ultrasonic
signals. The common filtering procedure (also called de-
-noising) affects the signal in both frequency and amplitude,
and involves three steps. The basic version of the procedure
consists of:
a) decomposing the signal using DWT into N levels using fil-

tering and decimation to obtain the approximation and
detailed coefficients,

b) thresholding the detailed coefficients,
c) reconstructing the signal from detailed and approxima-

tion coefficients using the inverse transform (IDWT).

When decomposing the signal it is important to choose a
suitable mother wavelet, threshold rule and threshold level.

2.2 Wiener filter based group delay statistics
The Wiener filter [9, 10] is a global filter and produces an

estimation of the uncorrupted signal by minimizing the mean
square error between the estimated signal and the uncor-
rupted signal in a statistical sense. The process representing
the received signal consists of signal and noise, both uncor-
related zero-mean wide-sense-stationary random processes.

By filtering y(t) we estimate s(t) using a time-invariant
linear system with transfer function H(f). The resulting mean-
-square error will then be
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where N(f) and S(f) are power spectral densities of the noise
and the signal. Error e is minimized over H(f) for fixed S(f)
and N(f). The transfer function can be estimated by means of
the group delay target signal having a deterministic phase
delay over the working frequency [9]. The following tech-
niques are based on using a discrete group delay. It can be
calculated by
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where �(k) is the phase component of the discrete Fourier
transform, k is the frequency index and N is the total number

of points. To minimize the edge effect, various windows for
the received time sequence are applied. To obviate disconti-
nuity in the group delay phase unwrapping techniques are
used. Two useful variants [9] based on group delay statistics
are the group delay moving standard deviation
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and the group delay moving entropy

	 
H f T f Tk j j
j k

M k
� �

� �

�

� ( ) log ( )2
1

. (5)

Both estimates are computed within a moving window M.
Window M is set to a small compared data length, and reflects
a trade off between resolution and estimation error.

2.3 Blind signal separation
Blind signal separation (BSS) consists in recovering unob-

served signals or sources from several observed mixtures. The
simplest BSS model assumes the existence of n independent
signals s t s tn1( ), , ( )� and the observation of as many mixtures
x t x tn1( ), , ( )� , these mixtures being linear and instantaneous.
This is compactly represented by the mixing equation

x A s( ) ( )t t� , (6)

where 	 
s( ) ( ), , ( )t s t s tn� 1 �
T is a column vector collecting the

source signals, vector x(t) similarly collects the n observed
signals and the square mixing matrix A contains the mixture
coefficients. The BSS problem consists in recovering the
source vector s(t) using only the observed data x(t), the as-
sumption of independence between the entries of the input
vector s(t) and possibly some a priori information about the
probability distribution of the inputs. This can be formulated
as the computation of an n×n separating matrix B whose
output y(t)

y B x( ) ( )t t� (7)

is an estimate of the vector s(t) of the source signals. The basic
BSS model can be extended in several directions taking
into account, for example more sensors than sources, noisy
observations, complex signals and mixtures. The solution of
equation (7) depends on the selected algorithm. Many algo-
rithms have been published with different results. One of the
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Fig. 1. Configuration of ultrasonic transducers for BSS



most popular algorithms, called FastICA (Fast Independent
Component Analysis), is described in detail in [12, 13].

Before the FastICA algorithm can be used, it is very im-
portant to characterize the model for the ultrasonic signal
separation. The main question is how to propose the source
signals s(t). In our study, we used two ultrasonic transducers
and acquired the ultrasonic signals synchronously with the
ultrasonic transducer configuration, as shown in Fig. 1.

3 Theoretical results
First of all, for the detailed analysis and for performing

the de-noising methods it is necessary to generate the simu-
lated ultrasonic signal. The signal is simulated based on the
amplitude and frequency analysis of a set of acquired ultra-
sonic signals. Based on this analysis and a physical analysis of
ultrasonic wave propagation, the signal was generated based
on a simple clutter model using the equation [11]:
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where � is the material attenuation coefficient, cl is the veloc-
ity of the longitudinal waves, xk is the grain positions of
k K tot�1� is the number of grains and �k is a random vector
depending on the grain volume. An example of a generated
ultrasonic signal is shown in Fig. 2. The signal consists of
noise (backscattering, electronic), fault echo and back-wall
echo.

First of all, the DWT de-noising algorithm was used. For
efficient noise reduction, it is necessary to select the shape of
the mother wavelet, the threshold level and the threshold
rule [8]. The shape of the mother wavelet has to be very simi-
lar to the ultrasonic echo [6]. It has to fulfill the following
properties: symmetry, orthogonality and feasibility for DWT.
A group of mother wavelets was tested: Haar’s wavelet, the
discrete Meyer wavelet, Daubechie’s wavelet and Coiflet’s
wavelet. In the proposed procedure, only local thresholding
of detailed coefficients was used. In the case of the thres-
holding rule, soft and hard thresholding can be used. Accord-
ing to the literature [6, 8], soft thresholding is not a proper
option for noise reduction in ultrasonic signals, because the
noise level and the amplitude of the fault echo are decreased

by the threshold level. Other options for thresholding rules
are to modify the hard thresholding rule using the following
equations:

The compromise thresholding rule [7] can be defined as
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where Tij is the threshold level for sample i at level j and �
is the coefficient for a compromise between hard and soft
thresholding.

The custom thresholding rule [7] is defined as
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where 	 is the coefficient characterizing the sample level from
which the thresholding is valid. The principle of compromis-
ing and custom thresholding together with hard and soft
thresholding is shown in Fig. 3.

We evaluated common thresholding methods imple-
mented in the Matlab Wavelet toolbox [7] (rigsure, sqtwolog,
heursure, minimaxi). Due to the unsatisfactory results we pro-
posed a new method based on standard deviation V1 and
mean value together with standard deviation V2. The local
thresholds at each level of decomposition are given by
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and

V Vk
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 , (12)

where n is the length of the vector detail coefficients, k is a
constant (crest factor), cD is the vector of detailed coefficients,
and 
 is the mean value.

©  Czech Technical University Publishing House http://ctn.cvut.cz/ap/ 5

Acta Polytechnica Vol. 47  No. 6/2007

fault echo

back-wall echo

Fig. 2: Simulated ultrasonic signal

threshold level

thresholding

hard
soft

no thresholding

compromising

T�T

Fig. 3: Wavelet thresholding demonstration



With the use of all the mother wavelets, proposed thresh-
old levels and rules we evaluated the de-noising process on
the simulated ultrasonic signals (Fig. 1) by calculating of two
parameters. The first parameter evaluates the signal-to-noise
ratio enhancement and can be expressed as

SNRE
P
P

�10 1

2
log , (13)

where P1 and P2 are the power of the noise before and af-
ter de-noising. Another parameter evaluates the fault echo
changes and the decrease the amplitude, and can be ex-
pressed as
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where R is the cross-correlation function, and Ab and Aa are
the fault echo amplitudes before and after de-noising. Many
combinations have been processed with different threshold
levels, threshold rules and mother wavelets, and the fault

echo within 1–100 % of initial echo amplitude was added to
the simulated ultrasonic signal. In the case of threshold rule
evaluation, parameters k, � and 	 were changed within the ap-
propriate range.

Best results for hard, custom and soft thresholding are
shown in Table 1, Table 2 and Table 3.

It can be seen from Table 1 that in the case of hard thres-
holding the best results were obtained using the discrete
Meyer mother wavelet and threshold level based on standard
deviation. The value SNRE � 37.59 dB and fault echo with
amplitude of the 5 % of the initial echo amplitude was de-
tected. Other thresholding rules and mother wavelets do not
provide better results. The noise was suppressed and fault
echo equal in amplitude to the noise level was efficiently
detected.

The next method to be evaluated here is based on the
Wiener filter, using group delay statistics. The Wiener filter
based group delay moving entropy and group delay moving
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threshold level V1

Mother wavelet / parameter db2 db4 db6 dmey

max. Dx (-) 0.869 0.820 0.887 0.820

max. SNRE ( dB ) 26.88 35.72 29.38 32.23

min. Af ( % ) 9 7 11 6

k (-) 1.35 2 1.1 1.4

�v (-) 0.16 0.22 0.18 0.2

	v (-) 0.03 0.04 0.03 0.03

Table 3: Evaluation of custom thresholding

threshold level V1 V2

mother wavelet / parameter db2 db4 db6 dmey db2 db4 db6 dmey

max. Dx (-) 0.991 0.991 0.989 0.991 0.959 0.967 0.982 0.976

max. SNRE (dB) 26.76 32.88 31.09 31.83 26.70 32.98 30.34 30.81

min. Af ( % ) 8 6 9 5 13 10 20 10

min. k (-) 1.35 2 1.1 1.4 1.35 4.5 1.4 1.4

min. �v (-) 0.16 0.22 0.18 0.2 – – – –

Table 2: Evaluation of compromise thresholding

threshold level V1 V2

mother wavelet / parameter db2 db4 db6 dmey db2 db4 db6 dmey

max. Dx (-) 0.994 0.989 0.978 0.981 0.967 0.976 0.966 0.984

max. SNRE (dB) 25.97 37.76 35.18 37.59 24.70 24.59 19.33 19.72

min. Af ( % ) 9 7 9 5 13 9 20 2

min. k (-) 1.35 2 1.1 1.4 1.35 4.5 1.4 1.4

Table 1: Evaluation of hard thresholding



standard deviation were used, and the best parameters were
also searched for efficient ultrasonic signal noise reduction.
The main idea of using group delay statistics is that the useful
signal has a constant group delay in a certain frequency
range. This frequency range depends on the frequency re-
sponse of the ultrasonic transducer. The de-noising efficiency
can be increased by using an appropriate window with fre-
quency bandwidth and threshold level. In our evaluation only
the Hamming window was used. In the case of threshold level
and frequency bandwidth we changed the threshold level
within 1–80 % of the maximal amplitude of the Wiener filter
transfer function and frequency bandwidth within 5–15 MHz.
The Wiener filter was evaluated using the same parameter
SNRE as in the case of DWT. An evaluation of the Wiener fil-
ter based group delay statistics is shown in Fig. 4. An ultra-
sonic signal with a different fault echo amplitude was also
generated. The best results were obtained with a threshold
level of 40 % and a frequency bandwidth corresponding to
9 MHz. With this setting, the highest SNRE � 14.7 dB. A com-
parison of the two algorithms shows that the SNRE values for
the Wiener filter based standard deviation are higher. How-
ever, the SNRE values are lower than in the case of DWT. This
may be that because the Wiener filter is similar in shape to a
band pass filter that suppresses only the frequencies outside
the frequency range of the proposed filter.

The last method applied here is blind source separation
used on an ultrasonic signal and noise separation in the con-
figuration shown in Fig. 1. Based on this configuration the
ultrasonic signals were acquired. We obtained two ultrasonic
signals that can be described using the following equations:

x t a s t a n t
x t a s t a n t

s s n e

s s n e

1 1 1 1 1

2 2 2 2 2

( ) ( ) ( ),
( ) ( ) (

� �

� � ),
(15)

where s1s(t) and s2s(t) is the source signal acquired with ultra-
sonic transducer no. 1 and no. 2, and ne(t) is electronic noise.
The source signals in this configuration are considered to be
all the reflections from the material structure (backscattering
noise, fault echo and back-wall echo). If the basic presump-
tions of equation (6) are valid, sources s t s ts s1 2( ) ( )� and noise
n t n te e1 2( ) ( )� . Here the presumptions are only theoretical,
and if we investigate the real situation in detail the conditions
are completely different. The ultrasonic waves propagated
through the material structure from ultrasonic transducer no.

1 clearly have different reflections from the ultrasonic waves
propagated from ultrasonic transducer no. 2. This means that
the two sources are different, due to the different material
structure, and it is clear that s t s ts s1 2( ) ( )$ . The situation
with the noise ne(t) is the same. If the electronic noise struc-
ture from ultrasonic transducer no. 1 is to be equal to the
electronic noise structure from transducer no. 2, the two ul-
trasonic transducers, the ultrasonic system and the cables
and measurement conditions must have been completely the
same. This is also impossible; nobody can design the same
parts with the same noise characteristics, so n t n te e1 2( ) ( )$ .
From this simple overview it is clear that the basic presump-
tions cannot be fulfilled and the blind source separation
method cannot be used in the area of ultrasonic non-destruc-
tive testing in the configuration presented here.

4 Experimental results
For the performance of all proposed de-noising algo-

rithms, we used the ultrasonic signals acquired on samples of
coarse-grained materials used for constructing aircraft en-
gines. For all measurements, we used an ultrasonic transducer
with a frequency of 25 MHz. The signals were measured
above the flaw, and consequently de-noising algorithms were
used. Fig. 5b shows the de-noised signal with DWT using the
discrete Meyer mother wavelet, hard thresholding and a
threshold based on standard deviation. The noise was effi-
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Fig. 4: Wiener filter evaluation
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Fig. 5. Ultrasonic signal de-noising using the DWT algorithm,
a) acquired signal, b) filtered signal



ciently suppressed and the fault echo and back-wall echo are
without amplitude changes.

In the case of the Wiener filter, the noise was also effi-
ciently suppressed, but the signal after de-noising is more cor-
rupted by noise.

It can be seen that the noise was also efficiently suppressed
but the fault echo amplitude was decreased. In general, it can
be concluded that DWT is a more efficient method and more
useful than the Wiener filter in the case of ultrasonic signal
de-noising.

5 Conclusion
This paper describes and evaluates methods for ultrasonic

signal de-noising and separation. Based on our analysis, the
best de-noising method for efficient noise suppression is the
discrete wavelet transform. The noise reduction for a signal
with fault echo is 35 dB. The amplitude of fault echo higher
than 5 % of the initial echo amplitude is without changes, and
the fault echo can be easily detected. We also investigated
improvements in fault detection sensitivity using the appro-
priate parameter setting. Our setting identifies the fault echo
with amplitude comparable with the noise level. However, the
Wiener filter using group delay statistics does not offer effi-
cient noise suppression. The blind source separation method
is not appropriate for separating the signal and the noise in

ultrasonic signals, because the basic presumptions of this
method are not fulfilled.
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