Self-Matching Properties of Beatty Sequences

Z. Masáková, E. Pelantová

We study the selfmatching properties of Beatty sequences, in particular of the graph of the function $\lfloor j\beta \rfloor$ against j for every quadratic unit $\beta \in (0,1)$. We show that translation in the argument by an element G_i of a generalized Fibonacci sequence almost always causes the translation of the value of the function by G_{i-1} . More precisely, for fixed $i \in \mathbb{N}$, we have $\lfloor \beta(j+G_i) \rfloor = \lfloor \beta j \rfloor + G_{i-1}$, where $j \in U_i$. We determine the set U_i of mismatches and show that it has a low frequency, namely β^i .

Keywords: Beatty sequences, Fibonacci numbers, cut-and-project scheme.

1 Introduction

Sequences of the form $(\lfloor j\alpha \rfloor)_{j \in \mathbb{N}}$ for $\alpha > 1$, now known as Beatty sequences, were first studied in the context of the famous problem of covering the set of positive integers by disjoint sequences [1]. Further results in the direction of so-called disjoint covering systems are due to [2], [3], [4] and others. Other aspects of Beatty sequences were then studied, such as their generation using graphs [5], their relation to generating functions [6], [7], their substitution invariance [8], [9], etc. A good source of references on Beatty sequences and other related problems can be found in [10], [11].

In [12] the authors study the self-matching properties of the Beatty sequence $\left(\lfloor j\tau\rfloor\right)_{j\in\mathbb{N}}$ for $\tau=\frac{1}{2}(\sqrt{5}-1)$, the golden ratio. Their study is rather technical; they have used for their proof the Zeckendorf representation of integers as a sum of distinct Fibonacci numbers. The authors also state an open question whether the results obtained can be generalized to other irrationals than τ . In our paper we answer this question in the affirmative. We show that Beatty sequences $\left(\lfloor j\alpha\rfloor\right)_{j\in\mathbb{N}}$ for quadratic Pisot units α have a similar self-matching property, and for our proof we use a simpler method, based on the cut-and-project scheme.

It is interesting to note that Beatty sequences, Fibonacci numbers and the cut-and-project scheme have attracted the attention of physicists in recent years because of their applications for mathematical description of non-crystallographic solids with long-range order, so-called quasicrystals, discovered in 1982 [13]. The first observed quasicrystals revealed crystallographically forbidden rotational symmetry of order 5. This necessitates, for an algebraic description of the mathematical model of such a structure, the use of the quadratic field $\mathbb{Q}(\tau)$. Such a model is self-similar with the scaling factor τ^{-1} . Later, the existence was observed of quasicrystals with 8 and 12-fold rotational symmetries, corresponding to mathematical models with selfsimilar factors $\mu^{-1} = 1 + \sqrt{2}$ and

 $v^{-1} = 2 + \sqrt{3}$. Note that all τ, μ , and ν are quadratic Pisot units, i.e. they belong to the class of numbers for which the result of Bunder and Tognetti is generalized here.

2 Quadratic Pisot units and the cut-and-project scheme

The self-matching properties of the Beatty sequence $(\lfloor j\tau \rfloor)_{j \in \mathbb{N}}$ are best displayed on the graph of $\lfloor j\tau \rfloor$ against $j \in \mathbb{N} = \{1, 2, 3, \ldots\}$. An important role is played by the Fibonacci numbers,

$$F_0 = 0, \, F_1 = 1, \quad F_{k+1} = F_k + F_{k-1}, \, \text{for} \, k \geq 1 \, .$$

The result of [12] states that

$$\left| (j+F_i)\tau \right| = \left| j\tau \right| + F_{i-1}, \tag{1}$$

with the exception of isolated mismatches of frequency τ^i , namely at points of the form $j = kF_{i+1} + |k\tau|F_i$, $k \in \mathbb{N}$.

Our aim is to show a very simple proof of these results that is valid for all quadratic units $\beta \in (0,1)$. Every such unit is a solution of the quadratic equation

$$x^2+mx=1,\ m\in\mathbb{N},$$
 or
$$x^2-mx=-1,\ m\in\mathbb{N},\, m\geq 3.$$

The considerations will differ slightly in the two cases.

a) Let $\beta \in (0,1)$ satisfy $\beta^2 + m\beta = 1$ for $m \in \mathbb{N}$. The algebraic conjugate β' of β , i.e. the other root β' of the equation, satisfies $\beta' > -1$. We define the generalized Fibonacci sequence

$$G_0 = 0, G_1 = 1, G_{n+2} = mG_{n+1} + G_n, n \ge 0$$
 (2)

It is easy to show by induction that for $i \in \mathbb{N}$, we have

$$(-1)^{i+1}\beta^i = G_i\beta - G_{i-1} \text{ and } (-1)^{i+1}\beta^{i} = G_i\beta' - G_{i-1}.$$
 (3)

b) Let $\beta \in (0,1)$ satisfy $\beta^2 - m\beta = -1$ for $m \in \mathbb{N}$, $m \ge 3$. The algebraic conjugate β' of β satisfies $\beta' > 1$. We define $G_0 = 0$, $G_1 = 1$, $G_{n+2} = mG_{n+1} - G_n$, $n \ge 0$ (4)

$$G_0 = 0, \ G_1 = 1, \quad G_{n+2} = mG_{n+1} - G_n, \ n \ge 0$$
 (4)
In this case, we have for $i \in \mathbb{N}$

$$\beta^{i} = G_{i}\beta - G_{i-1} \text{ and } \beta^{i} = G_{i}\beta^{i} - G_{i-1}$$
 (5)

The proof we give here is based on the algebraic expression for one-dimensional cut-and-project sets [14]. Let V_1 , V_2 be straight lines in \mathbb{R}^2 determined by vectors $(\beta, -1)$ and $(\beta', -1)$, respectively. The projection of the square lattice \mathbb{Z}^2 on the line V_1 along the direction of V_2 is given by

$$(a,b) = (a + b\beta')\vec{x}_1 + (a + b\beta)\vec{x}_2$$
, for $(a,b) \in \mathbb{Z}^2$,

where
$$\vec{x}_1 = \frac{1}{\beta - \beta'}(\beta, -1)$$
 and $\vec{x}_2 = \frac{1}{\beta' - \beta}(\beta', -1)$. For the de-

scription of the projection of \mathbb{Z}^2 on V_1 it suffices to consider the set

$$\mathbb{Z}[\beta'] := \{a + b\beta' | a, b \in \mathbb{Z}\}$$

The integral basis of this free abelian group is $(1, \beta')$, and thus every element x of $\mathbb{Z}[\beta']$ has a unique expression in this base. We will say that a is the rational part of $x = a + b\beta'$ and b is its irrational part. Since β' is a quadratic unit, $\mathbb{Z}[\beta']$ is a ring and, moreover, it satisfies

$$\beta' \mathbb{Z}[\beta'] = \mathbb{Z}[\beta'] \tag{6}$$

A cut-and-project set is the set of projections of points of \mathbb{Z}^2 to V_1 , that are found in a strip of given bounded width, parallel to the straight line V_1 . Formally, for a bounded interval Ω we define

$$\Sigma(\Omega) = \left\{ a + b\beta' \middle| a, b \in \mathbb{Z}, a + b\beta \in \Omega \right\}$$

Note that $a + b\beta'$ corresponds to the projection of the point (a, b) to the straight line V_1 along V_2 , whereas $a + b\beta$ corresponds to the projection of the same lattice point to V_2 along V_1 .

Among the simple properties of the cut-and-project sets that we use here are

$$\Sigma(\Omega - 1) = -1 + \Sigma(\Omega), \quad \beta' \Sigma(\Omega) = \Sigma(\beta\Omega),$$

where the latter is a consequence of (6). If the interval Ω is of unit length, one can derive directly from the definition a simpler expression for $\Sigma(\Omega)$. In particular, we have

$$\Sigma[0,1) = \left\{ a + b\beta' \middle| a + b\beta \in [0,1) \right\} = \left\{ b\beta' - \middle| b\beta \middle| \middle| b \in \mathbb{Z} \right\},\tag{7}$$

where we use that the condition $0 \le a + b\beta < 1$ is satisfied if and only if $a = \lceil -b\beta \rceil = - \mid b\beta \mid$.

Let us mention that the above properties of one-dimensional cut-and-project sets, and many others, are explained in the review article [14].

3 Self-matching property of the graph $\lfloor j\beta \rfloor$ against j

An important role in the study of the self-matching properties of the graph $\lfloor j\beta \rfloor$ against j is played by the generalized Fibonacci sequence $(G_i)_{i\in\mathbb{N}}$, defined by (2) and (4), respectively. It turns out that shifting the argument j of the function

 $\lfloor j\beta \rfloor$ by the integer G_i results in shifting the value by G_{i-1} , with the exception of isolated mismatches with low frequency. The first proposition is an easy consequence of the expressions of β' as an element of the ring $\mathbb{Z}[\beta]$ in the integral basis $1, \beta$, given by (3) and (5).

Theorem 1

Let $\beta \in (0,1)$ satisfy $\beta^2 + m\beta = 1$ and let $(G_i)_{i=0}^{\infty}$ be defined by (2). Let $i \in \mathbb{N}$. Then for $j \in \mathbb{Z}$ we have

$$\mid \beta(j+G_i) \mid = \mid j\beta \mid +G_{i-1}+\varepsilon_i(j)$$

where $\varepsilon_i(j) \in \{0, (-1)^{i+1}\}$. The frequency of integers j for which the

value $\varepsilon_i(j)$ is non-zero is equal to

$$\rho_i := \lim_{n \to \infty} \frac{\#\left\{j \in \mathbb{Z} \middle| -n \le j \le n, \varepsilon_i(j) \ne 0\right\}}{2n+1} = \beta^i.$$

Proof. The first statement is trivial. For, we have

$$\varepsilon_{i}(j) = \lfloor \beta(j+G_{i}) \rfloor - \lfloor j\beta \rfloor - G_{i-1} = \lfloor j\beta - \lfloor j\beta \rfloor + \beta G_{i} - G_{i-1} \rfloor$$

$$= \lfloor j\beta - \lfloor j\beta \rfloor + (-1)^{i+1}\beta^{i} \rfloor \in \left\{ 0, (-1)^{i+1} \right\}.$$
(8)

The frequency ρ_i is easily determined in the proof of Theorem 1. \Box

In the following theorem we determine the integers j for which $\varepsilon_i(j)$ is non-zero. From this, we easily derive the frequency of such mismatches.

Theorem 2

With the notation of Theorem 1, we have

$$\varepsilon_{i}(j) = \begin{cases} 0 & \text{if } j \notin U_{i}, \\ (-1)^{i+1} & \text{otherwise,} \end{cases}$$

where

$$U_i = \left\{ k G_{i+1} + \left\lfloor k\beta \right\rfloor G_i \middle| k \in \mathbb{Z}, k \neq 0 \right\} \cup \left\{ \frac{(-1)^{i-1}}{2} G_i \right\}.$$

Before starting the proof, let us mention that for i even, the set U_i can be written simply as

$$U_i = \left\{ k G_{i+1} + \left| k\beta \right| |G_i| k \in \mathbb{Z} \right\}.$$

For i odd, the element corresponding to k=0 is equal to $-G_i$ instead of 0. The distinction according to the parity of i is necessary here, since unlike the paper [12], we determine the values of $\varepsilon_i(j)$ for $j \in \mathbb{Z}$, not only for.

Proof. It is convenient to distinguish two cases according to the parity of i.

• First let *i* be even. It is obvious from (8), that $\varepsilon_i(j) \in \{0, -1\}$

$$\varepsilon_i(j) = -1$$
 if and only if $j\beta - |j\beta| \in [0, \beta^i)$. (9)

Let us denote by M the set of all such j,

$$M = \left\{ j \in \mathbb{Z} \middle| j\beta - \big\lfloor j\beta \big\rfloor \in [0, \beta^i) \right\}$$
$$= \left\{ j \in \mathbb{Z} \middle| k + j\beta \in [0, \beta^i), \text{ for some } k \in \mathbb{Z} \right\}$$

Therefore M is formed by the irrational parts of the elements of the set

$$\left\{ k + j\beta' \middle| k + j\beta \in [0, \beta^i) \right\} = \Sigma[0, \beta^i) = \beta'^i \Sigma[0, 1)$$

$$= (-\beta' G_i + G_{i-1}) \left\{ k\beta' - \left\lfloor k\beta \right\rfloor \middle| k \in \mathbb{Z} \right\},$$

where the last equality follows from (3) and (7). Separating the irrational part we obtain

$$M = \left\{ k G_i m + k G_{i-1} + \lfloor k\beta \rfloor G_i \middle| k \in \mathbb{Z} \right\}$$
$$= \left\{ G_i \middle| k\beta \middle| + k G_{i+1} \middle| k \in \mathbb{Z} \right\} = U_i,$$

where we have used the equations $\beta'^2 + m\beta' = 1$ and $mG_i + G_{i-1} = G_{i+1}$.

• Now let *i* be odd. Then from (8), $\varepsilon_i(j) \in \{0, -1\}$ and $\varepsilon_i(j) = 1$ if and only if $j\beta - \lfloor j\beta \rfloor \in [1 - \beta^i, 1)$. (10)

Let us denote by M the set of all such j,

$$M = \left\{ j \in \mathbb{Z} \middle| j\beta - \lfloor j\beta \rfloor - 1 \in [-\beta^i, 0) \right\}$$
$$= \left\{ j \in \mathbb{Z} \middle| k + j\beta \in [-\beta^i, 0), \text{ for some } k \in \mathbb{Z} \right\}.$$

Therefore *M* is formed by the irrational parts of elements of the set

$$\begin{split} &\Big\{k+j\beta'\Big|k+j\beta\in[-\beta^{i},0)\Big\} = \Sigma[-\beta^{i},0) = \beta'^{i}\Sigma[-1,0) \\ &= \beta'^{i}(1-\Sigma[0,1)) = (\beta'G_{i}-G_{i-1})\Big\{k\beta'-\Big|k\beta\Big|-1\Big|k\in\mathbb{Z}\Big\}. \end{split}$$

Separating the irrational part we obtain

$$M = \left\{ -kG_i m - kG_{i-1} - \lfloor k\beta \rfloor G_i - G_i \middle| k \in \mathbb{Z} \right\}$$
$$= \left\{ -kG_{i+1} - G_i(\lfloor k\beta \rfloor + 1) \middle| k \in \mathbb{Z} \right\}$$
$$= \left\{ kG_{i+1} + G_i(\lceil k\beta \rceil - 1) \middle| k \in \mathbb{Z} \right\} = U_i,$$

where we have used the equation

$$\beta'^2 + m\beta' = 1$$
, $mG_i + G_{i-1} = G_{i+1}$ and $-\lfloor k\beta \rfloor = \lceil k\beta \rceil$.

Let us recall that the Weyl theorem [15] states that numbers of the form $j\alpha - \lfloor j\alpha \rfloor$, $j \in \mathbb{Z}$, are uniformly distributed in (0, 1) for every irrational α . Therefore the frequency of those $j \in \mathbb{Z}$ that satisfy $j\alpha - \lfloor j\alpha \rfloor \in I \subset (0, 1)$ is equal to the length of the interval I. Therefore one can derive from (9) and (10) that the frequency of mismatches (non-zero values $\varepsilon_i(j)$) is equal to β^i , as stated by Theorem 1.

If $\beta \in (0,1)$ is the quadratic unit satisfying $\beta^2 - m\beta = -1$, then the considerations are even simpler, because expression (5) does not depend on the parity of *i*. We state the result as the following theorem.

Theorem 3

Let $\beta \in (0,1)$ satisfy $\beta^2 - m\beta = -1$ and let $(G_i)_{i=0}^{\infty}$ be defined by (4). For $i \in \mathbb{N}$, put

$$V_i = \left\{ k \, G_{i+1} - (\lfloor k\beta \rfloor + 1) G_i \middle| k \in \mathbb{Z} \right\}.$$

Then for $j \in \mathbb{Z}$ we have

$$\lfloor \beta(j+G_i) \rfloor = \lfloor j\beta \rfloor + G_{i-1} + \varepsilon_i(j),$$

where

$$\varepsilon_i(j) = \begin{cases} 0 & if \ j \notin V_i, \\ 1 & otherwise. \end{cases}$$

The density of the set U_i of mismatches is equal to β^i .

Proof. The proof follows the same lines as proofs of Theorems 1 and 2. \Box

4 Conclusions

One-dimensional cut-and-project sets can be constructed from \mathbb{Z}^2 for every choice of straight lines V_1, V_2 , if they have irrational slopes. However, in our proof of the self-matching properties of the Beatty sequences we strongly use the algebraic ring structure of the set $\mathbb{Z}[\beta']$ and its scaling invariance with the factor β' , namely $\beta'\mathbb{Z}[\beta] = \mathbb{Z}[\beta']$ For this, β' must necessarily be a quadratic unit.

However, it is plausible that, even for other irrationals α , some self-matching property is displayed by the graph $\lfloor j\alpha \rfloor$ against j. To show that, other methods would be necessary.

5 Acknowledgments

The authors acknowledge financial support from the Czech Science Foundation GA ČR 201/05/0169, and from the grant LC06002 of the Ministry of Education, Youth and Sports of the Czech Republic.

References

- Beatty, S.: Amer. Math. Monthly, Vol. 33 (1926), No. 2, p. 103–105.
- [2] Fraenkel, A. S.: The Bracket Function and Complementary Sets of Integers. Canad. J. Math., 21, 1969, 6–27
- [3] Graham, R. L.: Covering the Positive Integers by Disjoint Sets of the Form $\{[n\alpha + \beta]: n = 1, 2, ...\}$. *J. Combinatorial Theory Ser. A*, Vol. **15** (1973), p. 354–358.
- [4] Tijdeman, R.: Exact Covers of Balanced Sequences and Fraenkel's Conjecture. In *Algebraic Number Theory and Diophantine Analysis* (Graz, 1998), Berlin: de Gruyter 2000, p. 467–483.
- [5] de Bruijn, N. G.: Updown Generation of Beatty Sequences. *Nederl. Akad. Wetensch. Indag. Math.*, Vol. 51 (1989), p. 385–407.
- [6] Komatsu, T.: A Certain Power Series Associated with a Beatty Sequence. *Acta Arith.*, Vol. **76** (1996), p. 109–129.
- [7] O'Bryant, K.: A Generating Function Technique for Beatty Sequences and Other Step Sequences. *J. Number Theory*, Vol. **94** (2002), p. 299–319.
- [8] Komatsu, T.: Substitution Invariant Inhomogeneous Beatty Sequences. *Tokyo Journal Math.*, Vol. 22 (1999), p. 235–243.
- [9] Parvaix, B.: Substitution Invariant Sturmian Bisequences. *Thor. Nombres Bordeaux*, Vol. 11 (1999), p. 201–210.
- [10] Brown, T.: Descriptions of the Characteristic Sequence of an Irrational. *Canad. Math. Bull.*, Vol. **36** (1993), p. 15–21.

- [11] Stolarsky, K.: Beatty Sequences, Continued Fractions, and Certain Shift Operators. *Canad. Math. Bull.*, Vol. **19** (1976), p. 473–482.
- [12] Bunder, M., Tognetti, K.: On the Self Matching Properties of [*j*τ]. *Discr. Math.*, Vol. **241** (2001), p. 139–151.
- [13] Shechtman, D., Blech, I., Gratias, D., Cahn, J. W.: Metallic Phase with Long-Range Orientational Order and no Translation Symmetry. *Phys. Rev. Lett.*, Vol. 53 (1984), p. 1951–1953.
- [14] Gazeau, J. P., Masáková, Z., Pelantová, E.: Nested Quasicrystalline Discretization of the Line. In: *Physics and Number Theory* (Editor: L. Nyssen), Vol. 10 of *IRMA Lectures in Mathematics and Theoretical Physics*, Zürich, EMS 2006, p. 79–132.
- [15] Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann., Vol. 77 (1916), p. 313–352.

Doc. Ing. Zuzana Masáková, Ph.D. phone: +420 224 358 544 e-mail: masakova@km1.fjfi.cvut.cz,

Prof. Ing. Edita Pelantová, CSc. phone: +420 224 358 544 e-mail: pelantova@km1.fjfi.cvut.cz

Doppler Institute for Mathematical Physics and Applied Mathematics

Czech Technical University in Prague Faculty of Nuclear Sciences and Physical Engineering Trojanova 13 120 00 Praha 2, Czech Republic